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Abstract: Continuous authentication was introduced to propose novel mechanisms to validate users’
identity and address the problems and limitations exposed by traditional techniques. However,
this methodology poses several challenges that remain unsolved. In this paper, we present a novel
framework, PALOT, that leverages IoT to provide context-aware, continuous and non-intrusive
authentication and authorization services. To this end, we propose a formal information system model
based on ontologies, representing the main source of knowledge of our framework. Furthermore,
to recognize users’” behavioral patterns within the IoT ecosystem, we introduced a new module
called “confidence manager”. The module is then integrated into an extended version of our early
framework architecture, IoTCAF, which is consequently adapted to include the above-mentioned
component. Exhaustive experiments demonstrated the efficacy, feasibility and scalability of the
proposed solution.

Keywords: continuous authentication; IoT; authorization; security; behavioral patterns discovery;
Markov Model

1. Introduction

The constant evolution of modern computer systems is undoubtedly changing our lives.
Nowadays, they are not only effectively smaller, faster, and easier to use than before, but also they are
cheaper and more pervasive. Despite their benefits, there are still some critical aspects that require
more efforts and research to evolve as expected [1]. Among them, we highlight the security of the
devices [2] and, specifically, the associated authentication mechanisms.

Traditional authentication systems are based on the following three well-known Authentication
Factors (AFs) to identify users: some secret that a user knows, some token that a user has, or something
that a user is. One of the greatest improvements of modern authentication systems is the combination
of the previous three AFs in different ways, such as the two-factor authentication system involving
two independent channels for authenticating the user (e.g., a smart-card and a PIN code). However,
these systems still have limitations due to their nature, specifically:

o  AFs that leverage on user’s knowledge such as passwords or PIN codes.
Even if the user’s secret is not trivial to guess and it is safely stored, it remains vulnerable to
social engineering attacks. On top of that, there will always be the possibility that the user may
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forget his authentication secret. Thus, the general attitude of the user is to choose fairly guessable,
and therefore weak, passwords.

o AFs that leverage on user’s possessions such as smart-cards.
Limitations are similar to the previous category , i.e., a physical object can be forgotten or stolen.
Additionally, since the users are forced to carry around specific authentication token(s), the overall
usability of the system decreases.

o  AFs that leverage on user’s intrinsic characteristics such as fingerprint or face recognition.
The strong aspects of this category also represent their major limitations since biometric measures
cannot be lost or changed and thus they cannot be revoked or updated. Moreover, some of the
devices which are in charge of measuring user’s characteristics are often intrusive and expensive,
such as brainwaves or heart-rate sensors.

Not surprisingly, the continuous authentication paradigm has been increasingly employed
at every level [3] with the goal of enhancing the overall security of the authentication process.
Continuous authentication, also known as permanent authentication, was introduced to propose novel
mechanisms to validate users’ identity, addressing the problems shown by traditional techniques [4].
This methodology can continuously authenticate the legitimacy of a user over the time by analyzing
their behavioral profile, e.g., by identifying the users through their interaction with a specific
device [5,6]. However, despite their numerous advantages, existing solutions based on continuous
authentication still present some challenges that will characterize future studies, such as their necessity
of carrying out particular devices, vulnerability to particular impersonation attacks, accuracy of the
authentication process, elapsed time, and processing complexity [7].

In this authentication context, a cutting edge technology such as the Internet of Things (IoT) is
starting to be considered by the academia and industry as a key driver to improve those previous
challenges [8]. In fact, IoT is considered to be a critical part of the Internet of the future, where billions
of “intelligent objects” will communicate to provide services to humans [9]. These devices are
going to be located almost everywhere, from vehicles to buildings, home appliances, or cell phones,
passively sensing the environment to collect relevant information [10]. In this context, we state that
the versatility and ubiquity of IoT devices can be used to build a global, pervasive, and continuous
authentication system.

By gathering, combining, and correlating events generated by different IoT devices, it is possible
to create accurate behavioral profiles based on the interactions of users with the surrounding smart
objects during the time. In a nutshell, the use of the IoT as a continuous authentication mechanism
could improve some of the major limitations of existing authentication solutions [11]. However, at this
point, the use of the IoT for authentication purposes is not mature enough and several open challenges
should be addressed to demonstrate its usefulness. Among them, we highlight the management and
correlation of heterogeneous events coming from different devices in real time, the use of events to
create precise users’ behavior profiles, and the feasibility of resource-constrained IoT devices to run
authentication mechanisms.

To tackle the previous open challenges, the main contributions of this article, an extended version
of [12], are the following ones:

e A confidence manager module, fully integrated in our continuous authentication architecture,
focused on recognizing users’ behavioral patterns from series of events in real time. The proposed
module is able to detect behavioral patterns of users by considering sequences of events generated
during the interactions of users and heterogeneous IoT devices.

e An updated formal definition of our previous information model [12], which is focused on
modeling different events generated by heterogeneous devices existing in the IoT.

e The proposal of our Profiling and Authenticating users Leveraging internet Of Things
(PALOT) architecture, capable of providing a continuous and non-intrusive authentication and
authorization solution for users according to their interaction with the surrounding IoT devices.
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e A pool of experiments that demonstrates the usefulness of our continuous authentication
system to authenticate a person in an IoT-enabled environment (smart home). The proposed
experiments show the authentication confidence level, time required to perform the authentication,
and resource consumption by considering a well-known and publicly available smart
home dataset [13].

Once the main contributions of this work are presented, it is important to comment that, during the
set-up of the PALOT architecture, users establish their identities, which are associated with their
behavior patterns. Having the relationship between the pattern and the user’s identity, we are able to
provide not only identification but also authentication. In this context, PALOT generates user behavior
patterns considering ubiquitous IoT sensors that do not require an authentication process. After that
and once users are authenticated, our solution is generic enough to grant or not the access to other
kinds of devices such as smart locks, personal computers, or even services, as we further explain
throughout the manuscript.

The remainder of the paper is organized as follows. Section 2 gives an overview of the current
state of the art of the continuous authentication paradigm in IoT scenarios. Section 3 defines the
information model for the continuous authentication framework. Section 4 shows the design details of
the proposed continuous authentication system. Upon that formalization, Section 5 characterizes the
policies used to authenticate and eventually authorize the users within the system. Finally, Section 6
presents the PALOT architecture, while Section 7 discusses its experimental evaluation in terms of
authentication confidence and resource consumption. To sum-up and conclude, Section 8 briefly
discusses about the outcomes and the potential future works.

2. Related Work

Although IoT solutions are growing in number, security features surrounding “smart objects”
remain questionable [14]. The vast amount of information flowing among IoT devices attracts malicious
entities aiming to gain unauthorized access to unprotected or insufficiently protected data [15].
Furthermore, traditional attacks such as eavesdropping, man-in-the-middle (MITM), jamming,
etc., are still posing a serious threat to the wireless communications between the devices and the
infrastructure [16], having the research community to struggle in finding efficient solutions that are able
to address these well-known security challenges. This evidence is reflected in the literature where quite
a number of works has been proposed to provide effective authentication methodologies for the IoT
ecosystem. Beyond traditional encryption-based authentication techniques [17,18], the methodologies
that continuously authenticate users and/or devices within the IoT framework look promising since
they passively leverage the continuous data flow to achieve authentication duties. In the following,
the major proposals are analyzed and grouped into two main categories: IoT Machine-to-Machine (M2M)
continuous authentication and IoT User-to-Machine (U2M) continuous authentication.

2.1. IoT M2M Continuous Authentication

With regard to the Machine-to-Machine (M2M) continuous authentication in IoT, researchers and
scientific communities have focused on how to provide lightweight authentication primitives when
using resource-constrained IoT devices due to their great limitations in computational power.
A comprehensive study on authentication and authorization mechanisms for the IoT was presented
in [19], and especially oriented to the Industrial IoT (IloT) in [20]. In the latter, considering that
M2M interactions have a greater relevance in the industrial domain, the authors presented seven
mechanisms for proximity based authentication depending on specific characteristics inherent to
wired, radio, acoustic, light, image, gesture, and biometric methods. These mechanisms were
defined to protect the sensory system when taking into account IloT devices from illicit control,
information theft, and service disruptions. Proximity authentication in the IIoT is based primarily
on the closeness between devices assuming that interactions are legitimate because IloT devices are
within a certain distance. This assumption, however, could be unjustifiable if one considers that
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such devices could misbehave because they have been previously compromised by malicious third
parties. Another thorough study on authentication protocols for IoT was presented in [21], where more
than forty protocols were examined in detail according to the target environment, for example,
M2M communications, Internet of Vehicles (IoV), Internet of Energy (IoE), and Internet of Sensors
(IoS). Additionally, thirty-five potential cyber-attacks are introduced in [21], defining the underlying
threat models and defense protocols oriented to the four previous environments.

A lightweight continuous authentication protocol applicable to a variety of IoT environments
was introduced in [5]. By applying hash functions and XOR primitives, the proposed protocol
achieves mutual authentication of IoT devices using light-computational operations. More specifically,
the protocol utilizes tokens to support the continuous authentication mode in which the tokens
contain the dynamic features calculated from the correspondent devices. In this very context, in [22],
a secure and efficient authentication protocol making use of a secret sharing scheme was featured.
It protects frequent transmissions between IoT devices in short session time intervals in which the
secret is agreed upon between the devices during the initial authentication phase and secret actions
are utilized as authentication tokens. On the other hand, a secure lightweight authentication and
key exchange protocol for IoT devices in a smart home scenario was outlined in [23]. The proposed
protocol provides mutual authentication between the IoT devices using a cumulative keyed-hash chain
scheme, where security features are demonstrated in a smart home environment with different types
of IoT sensors (mainly coffeemaker, bed, air conditioner, camera, and door sensors).

The above-mentioned works have revealed that authentication in M2M communications have
mostly focused on lightweight solutions, so that authentication and authorization procedures can be
conducted on resource-constrained IoT devices. However, continuous authentication in this context is
based on IoT devices that remain authenticated without taking into account changes in their behavior,
which in turn could cause upcoming authentication processes not to be carried out.

2.2. IoT U2M Continuous Authentication

The User-to-Machine (U2M) authentication in an IoT ecosystem opens up new opportunities and
challenges as opposed to M2M authentication processes. Human activities, motions, and (in general)
personal, family, and even social behavior make it possible to recognize (authenticate) users in real time
by using IoT devices. Ambient Intelligence (Aml) environments that surround humans in everyday
life leverage the IoT to deliver advanced added-value services in intelligent scenarios such as smart
cities, smart homes, smart offices, and intelligent office buildings among others [24].

Activity recognition has been widely identified in today’s literature as human activity trackers
for continuous authentication of users in IoT scenarios. Many works make use of IoT devices such as
smart watches, providing gesture interaction and a permanent monitoring of physical activities [25];
wrist-worn devices for extraction of raw accelerometer data to recognize walking, standing, sitting,
and lying activities [26]; smartphones to identify the owner periodically by using machine learning
(ML) techniques based on anomaly detection for an adaptive continuous authentication system [27];
and wearable glasses to discriminate the real owner of the smart object from a potential impersonator
using biometric features taken from touch gestures and voice commands [28]. Experiments of this
last work, conducted using Google Glasses, showed above 93% detection rate using the collected
features. Another proposal is presented in [29], where a transparent authentication system using
brainwaves as bio-features for IoT networks was proposed. Extracting long-term memory ability from
users’ brainwaves, the authors collected the bio-features identified in brainwaves as authentication
tokens to perform continuous identification in the background transparently.

The above-mentioned devices are characterized by maintaining a permanent physical contact with
humans (e.g., wearables such as smart watches and fitness trackers), but also with a fairly common
personal use such as smartphones. However, other devices that do not have direct contact with
humans could also be used for recognizing users’ behavioral patterns such as intelligent thermostats
and occupancy sensors. In [30], for example, Wi-Fi signals are additionally used to recognize a walking
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human subject by analyzing Gait patterns. This proposal is based on the fact that Wi-Fi signals reflected
by human bodies are generating unique variations in the channel state information measurements.
Another important aspect in activity recognition, which has not been widely covered in the literature,
is that many works assume that only one user is performing activities within the system. Recently,
in [31], the authors proposed a multi-resident activity recognition system for smart homes using
a knowledge-driven sequential pattern mining solution. The data-driven solution proposed by the
authors are based on statistical and probabilistic theories, in particular on Hidden Markov Model
(HMM) where events denoting user’s activities are modeled as a Markov chain. Formally, a Markov
chain is defined as a stochastic model that describes a sequence of (possible) events whose probability
of occurrence of a particular event depends on the state attained in the previous event [32].

In recent years, contextual information retrieved from the IoT devices is also taking on special
relevance [33] to strengthen the continuous authentication procedures. In this sense, in [34], the authors
leverage the contextual information, obtained from environmental and mobility attributes, to
continuously authenticate the users in a smart home scenario oriented toward energy utilization
management. Location and tasks’ criticality nature are used as contextual information to select the
authentication attributes. User profiles are then dynamically updated over time, thus guaranteeing
the adaptability of the entire procedure. Another continuous authentication framework was detailed
in [35], integrating contextual information for user authentication in smart homes. The framework
proposed by the authors models behavioral profiles based on how users behave or what they do.

With the aim of testing and assessing the solutions analyzed above, authors usually use preexisting
datasets that comprise different types of sensors, scenarios of user behaviors and activities performed
by users in daily living. In [13], for example, a dataset was produced by the authors with events
performed by 24 individuals who performed five different activities in a smart apartment testbed
(telephone use, hand washing in the kitchen sink, meal preparation, eating and medication use,
and cleaning), collecting the events from digital motion and temperature sensors as well as from
analog sensors monitoring water and stove burner use. The collected activities and events are labeled
in the dataset depending on the sensor data that was gathered by the environment during the activity
execution. Further details of this dataset are provided in Section 7.1. The authors of [13] also presented
the implementation of a naive Bayesian classifier and a Markov model to recognize the five activities
commented above. It is worth mentioning that several well-known repositories containing Aml
datasets, largely developed by the authors of [13], can be found at the Center for Advanced Studies in
Adaptive Systems (CASAS) website [36].

Another interesting dataset was presented in [37], where the authors described a complete
dataset produced from 14 sensors that monitored nine different users” activities. These activities are
grouped into three different types or classes: single activities that are isolated from the execution of
others; interleave activities that are performed at the same time than others; and in a multioccupancy
scenario where activities are being carried out by several people simultaneously. Finally, a recent
study presented in [38] deserves to be highlighted, where the authors reported a comprehensive list of
existing datasets for human activity recognition as well as a complete study of ML and data mining
techniques for activity recognition.

Although the aforementioned works constitute a substantial progress, very few consider a real
scenario in which users do not often possess any particular IoT device (e.g., biometric readers and
smart glasses). To this extent, a system that is able to correlate the data coming from the IoT
devices to authenticate the users in a transparent, passive, and non-invasive manner is missing.
This research paper is intended to fill this gap by presenting an autonomous system in which users can
be authenticated based on their interactions with the IoT devices.
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3. Information System Model for Continuous Authentication in IoT

This section presents some definitions and outlines the information system model of PALOT,
which has been subsequently defined as an ontology to shape the different components of the proposed
continuous authentication system.

3.1. System Model

The components describing our PALOT framework can be found in Figure 1, which is composed
of a vector of three main elements defined as PALOT = (D, P, L). In Figure 1, we also observe the
relationships among such components, in which the IoT Device component makes reference to the set
D, Person to P, and Location to the L set. The definition and modeling of each set is described below.

isLocated Person
/ | !u
v isAuthorizedToStay & 3
= [s]
= 5 9
%) 0}
. 5]
Location 3 :C,' E=
2 £ &
<
A I 2 l‘é
isLocated loT Device

Figure 1. Main components for continuous authentication in IoT.

The main element in any kind of IoT ecosystem is the set of devices shaping the scenario and their
features to provide certain services to users and also the system itself. They can be defined as a set
of I ToT devices (see Figure 1), denoted by D = {Dy, Dy, ..., D;}, where [ is usually a high number of
“thin” devices, which could be, to name a few:

I security devices, willing to support protection;
II  sensing devices to acquire given information for monitoring and detecting events of interest; and
III  leisure devices enjoyed by users in their daily lives.

These IoT devices will provide different services depending on their functionalities, for example,
a service such as a surveillance camera from which to capture videos and images of the environment,
or a mail service that users can consume through their smartphones, tablets, or PCs.

Many of the IoT devices are directly utilized by users interacting for working or leisure purposes,
while others are deployed in the environment to enable security functions (security cameras or
proximity devices among others). Each user is represented in Figure 1 as Person, whose terms
(user and person) are used in this paper interchangeably. Persons are modeled as P = { P, P,,..., Py},
where m is the number of users of the environment. A person P; € P represents a user who can interact
irs - - -, Dj }, although there
may also be users who could be authenticated in a continuous way to grant them certain permissions;
for example, to stay in a certain area of the environment.

Location also constitutes an important element that needs to be modeled, since the continuous
authentication system should consider location-based information in its decision-making processes.
Depending on where users are, or the IoT devices’” placement, decision-making processes could grant

with IoT devices, whose relationship can be expressed as D(P;) = {D;,, D

or deny the corresponding request. Figure 1 depicts certain links between Location and Person and
IoT Device in order to trace both users and devices, respectively, within the managed environment.
In this sense, Location is modeled as L = {L;,Ly,...,L,}, where n is the number of places such
as areas, rooms, etc., where the user can be found and, therefore, authenticated. Given that users
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and IoT devices expose a tight relationship with their respective locations, to know in which part
of the environment they are located, such locations are modeled as L(P) = {L,, Lg,, ..., L, } and
L(D;) = {Lj,Lj,...,L;}, respectively. For the sake of simplicity, this subsection presents only
the model of a reduced number of relationships between components, which is presented in detail
in Section 3.2.

It is worth noting that the system model introduced in this section, defining the main components
shown in Figure 1, needs to be extended with finer granularity in order to characterize them in
more specific sub-components. For example, the IoT devices in D should be defined in more detail
depending on their functions and features, such as security devices, sensing devices, leisure devices,
etc., as mentioned above.

3.2. Ontology

Based on the modeling of the main components of the system described above, a collection
of ontologies has been created to enable sharing knowledge between the three main components
(see Figure 1) and the use of semantic reasoning procedures to infer new knowledge according to the
information gathered by the IoT devices.

Figure 2 shows the collection of ontologies designed, developed, and managed by PALOT
(the top-level class within each ontology is depicted following the same colors used in Figure 1),
which formally shapes the three main concepts handled by the framework:

e Location Ontology modeling a given smart space, which is structured, for example, in different
parts of a smart office or home;

e  Person Ontology to represent any user who is under the framework domains and gets the benefits
it offers when using the IoT Devices; and

e  IoT Devices Ontology, which constitutes the central model of the architecture, as it is composed
by the devices providing information about the scenario status and the ones that will apply the
reactions decided by the framework to grant or deny actions to users.

Person Ontology

Legend

Role ~4—nhasRol Person [—hasAuthLeve—» Authentication
Level
/ 3
isLlocated isAuthorizedToUse | uses
hasPerson interactsWith isUsedBy
| T isAuthorizedTostay authenticates N
ding |imerte- . , > . provides h
Building therits- Location |sLomteq loT Device FisPrwideday Service
hasloTDevice
4 v
hasBlock s
isBlockof inherds inherts hasState inherits
Block
mperts M e p| User Dependant |- State - UserIndependent |,
A ; Device Device
hasFloor :
isFoordf ' A V V A V
: ' o ) D Securi ISecuri ) ! Man: n
Floor —fw=loshe. Area Leisure Device Work Device UD Security Ul Security Sensing Device anagement
fsAreat Device Device Device
LA Y3
Y Y Y o 7 N o
Hallway Stairs Room Media Tablet Sman.LDCk qu Proximity Ventilation .
Device Device Device Device Device
Location Ontology loT Devices Ontology

Figure 2. Set of ontologies making up the continuous authentication framework: Location, Person,
and IoT Devices ontologies.
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The Location Ontology is defined through several subclasses to refine the different spaces in
which a given environment is structured, where Location is the top-level class from which the rest of
subclasses inherit. As shown in Figure 2, this ontology uses a hierarchical model for shaping location,
using four subclasses with different levels of size and detail, namely (from the largest to the smallest):
Building, Block, Floor, and Area. The latter has in turn been divided into more specific spaces: Hallway,
Stairs, and Room. The location hierarchical model has been modeled taking into account that our system
is oriented to smart offices and smart homes, so that other structures in space could have been modeled
considering other location-related subclasses. It is worth mentioning that, in the context of this work,
we refer to location as for symbolic location, i.e., the place where the user is located, contrary to the
physical location which is expressed in coordinates.

The Location class of the Location Ontology is linked to the top-level class of the other two
ontologies through several properties. These properties determine the location in which a Person or
an IoT Device is located, by making use of the isLocated property. In addition, the isAuthorizedToStay
property has also been defined to determine whether a given Person can be in a certain Location. Here,
it is important to highlight that this property is one of the consequences of the authorization policies
defined in Section 5).

The top-level class in the Person Ontology is Person, exposing two different properties (hasRole and
hasAuthLevel with the Role and Authentication Level classes, respectively) aiming to find out whether
the Person has sufficient roles and authentication levels (i) to use and interact with a given IoT
Device (isAuthorizedToUse property with the IoT Device class) and (ii) to be located in a certain
location (isAuthorizedToStay property with the Location class). These last two properties are the
consequences of the authorization policies described in Section 5.2, which are created at runtime
by the framework administrator.

Finally, IoT Device is the top-level class of the IoT Devices Ontology, which is categorized into
two main subclasses that inherit from such root class. In particular, IoT Devices have been modeled
depending on whether they are user-dependent devices or not; that is to say, devices with which users
interact (e.g., tablets or smart lock devices requiring the user’s fingerprint) or devices deployed in
the environment infrastructure (with which users do not interact) to report information that will be
further analyzed (e.g., surveillance cameras or proximity devices). Furthermore, the State class models
the situation of IoT Devices in a given moment of time. Among the possible states, we highlight
some of them such as active, interacting, authenticated, in standby, or switched on/off. On the other
hand, the Service class presents two links to define the different services that a given user could
consume (relationship with Person) and to establish the list of services that are provided by such
devices (relationship with the IoT Device class).

It has to be noted that the above-mentioned collection of ontologies should be considered generic,
since they may be applied to different IoT scenarios. Then, as shown in Section 7.1, the gathered
knowledge was tested by leveraging the labeled dataset proposed in [13].

4. Confidence Manager

One of the main novel contributions of this research article is the introduction of the confidence
manager, whose scope is to recognize users’ behavioral patterns from series of events. Therefore,
the essential hypothesis of this research is that each user acts consistently different from the others and
this heterogeneity is identifiable by detecting behavioral patterns in the sequence of events gathered
by the sensors. Thus, the confidence manager module deployed within the PALOT architecture
takes the events collected by the IoT devices and, based on the similarity of the behavioral patterns,
it returns the probability that such events belong to a certain user. More specifically, it is able to provide
a confidence score related to the above-mentioned similarity in real-time, i.e., while the users are
performing daily activities.
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To formalize such user’s behavioral patterns, it is mandatory to introduce the following definitions.

Definition 1 (Event). An event is a message generated either periodically (e.g., temperature) or upon
status changes (e.g., door open) by any loT device connected to the smart environment and modeled by the
defined ontology.

Definition 2 (Activity). An activity is defined as a series of events (activity track) belonging to a specific pool
of sensors in a time frame.

To provide an example, the activity track of enter the building may be composed of events
potentially generated by a door sensor, proximity sensors, movement sensors, light-switch sensors,
microphones and cameras. It is clear that the sequence of these possible events depends on the state
achieved by the previous one.

For example, if the door is open, the user most likely will close it before leaving the hall. One might
say that the full history of events influences the probability of the next one , demonstrating that the
sequence of possible events can be assumed and modeled as a Markov chain as formally defined
in [32] (i.e., within the activity, the future event only depends on the state of the current one, and not
on the sequence of previous events). A process with this characteristic is called a Markov process.
It is worth mentioning that each activity can have a different time duration and the actions of several
persons (or one doing multi-tasking) are considered as different activities.

As a result, the main component of the confidence manager is a behavior profiler that can be
instantiated and trained for each user registered in the ontology previously described (Section 3.2).
As for the profiler, Algorithm 1 provides the formal definition of the training process, while Algorithm 2
presents the testing one.

The machine learning driver of the proposed confidence manager module is a series of
Markov chains. To be more precise, for each user included in the dataset, a transition matrix is
trained using the information obtained from the activity tracks. The prediction process is performed
by calculating the probability that the examined chain of events belongs to any of the trained users.

Algorithm 1 Profiler Training—TRAIN (S, E, u).

Require: S # null > All possible sensors’ events
Require: [E| > 1 > List of events for the user u
Require: u # null > User’s identifier
forall s € Sdo > Initialize the Markov transition matrix T
forallr € Sdo
T[s,r] =0
end for
end for
ec = First(E) > e is the current event
while [E has next do
e, = Next(E) > ey, is the next event
Tlec,en] +=1 > Count the occurrences of the events’ pairs
ec =ey > Update the current event,i.e., move forward
end while
for all row r of T do
T[r] = Normalize(T][r]) > Normalize each row

end for
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Algorithm 2 Profiler Testing—TEST (e, E)

Require: e, # null
Require: [E| > 1
Require: T is initialized
h=0
m=0
while E has next do
ep = argmaxT [e]

ey = Next(E)
if e, = e, then
h+=1
else
m+=1
end if
ec = ey
end while
return c = Mim

> Current event

> List of future events

> The profiler has been trained
> Number of hits

> Number of misses

> ep is the predicted event that follows the current one
> e, is the next event

> Hit if the next event is correctly predicted
> Miss if the next event is not correctly predicted
> Save the current event

> Return the confidence

While both processes are carried out in the confidence manager, the training phase requires
knowledge about the system that needs to be provided. To begin with the training phase (Algorithm 1),
the process is highlighted in Figure 3 with the red color and identified with circled numbers.
The training phase, as described below, is triggered manually by the framework administrator and it

requires the human interaction for labeling purposes. As previously mentioned, the users that need to

be continuously authenticated within the IoT scenario are asked to perform daily activities. In there,
the events generated by the interactions with the surrounding IoT devices are collected in order to be
processed by the proposed framework PALOT .

........................................................... O.Raw..EV..,
Confidence Manager
C e.2.5ensors
_8 ...................... Users ﬂ
7 | O s Activity |«@Persons. . U
— Profiler | ¢@Event. .. Manager '8
— User X =
8 . g;er‘sgnf,
ax (nt.
.................................... Aggr\egator\ ®De1ta>
............................................................................ >

Figure 3. Overview of the PALOT new confidence manager module.

Following the control flow, the training phase is composed of four steps here identified:

(1)  the collector acts as source, passing the raw training events to the modeling ontology described

in Section 3.2;

(2)  the events are enhanced with knowledge regarding the users (e.g., the framework administrator
manually labels the instances) and the sensors that have been registered in the system and thus

reflected to the confidence manager; and

(3) inside the confidence manager, a submodule called “user activity manager” takes care of
instantiating the profilers (one for each registered user) with the labeled events plus the registered
sensors and initiates the training phase according to Algorithm 1.
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Regarding the testing phase, the process is also illustrated in Figure 3 in blue color and identified
with circled letters. Specifically, starting from the events gathered by the collector, this phase is able
to output the most probable user which is performing the related activity together with the confidence
score of such decision, in the form of probability, and the absolute difference among the two highest
confidence values, to which we refer as delta. Thus, the training phase is composed of five steps,
here described:

(A) Firstly, the collector acts as source, passing in real-time an unlabeled event to the aggregator.

(B) The aggregator replays the event to the user activity manager.

(C) The user activity manager in turn shares it with all the registered user profilers, looking for
similarities in behavioral patterns.

(D) The aggregator collects all the confidence scores calculated by the registered profilers according to
Algorithm 2.

(E) Finally, it returns the user with the maximum score, its confidence and the delta,
calculated according to Algorithm 3.

Algorithm 3 Confidence Delta—d¢ (IP).

Require: P # null > Registered profilers
Umax, Cmax = {1, ¢ € P: c = max(P.values())} > Find the user with the maximum confidence
P={uceP:u+#upxACF Cnax} > and remove it from the set
3 = Cmax — max(P.values()) > Calculate the 6 between the two highest values
return ¢ > and return it

Note that there are no restrictions regarding the size of the testing events list. The proposed
Algorithm 2 works perfectly with a single event, thus enabling real-time authentication capabilities.
That is, at this prototypical stage, the recorded events might be analyzed individually or in batches,
according to the specific configuration chosen by the framework administrator.

5. Policy-Based Decision-Making System

The proposed solution continuously authenticates and authorizes users to stay in certain spaces
or utilize different IoT devices by employing semantic rules, which form policies. The proposed
architecture uses rules composed of two lists of predicates, the antecedent, and the consequent. If all
predicates of the antecedent part take the Boolean value true, all predicates in the consequent part are
evaluated. It is important to know that in our semantic rules the predicates in the consequent part
establish new relationships between entities of the ontologies, but do not generate new entities.

Our policies are composed of the following elements: Type is the kind of policy; Target is the person
considered by the policy to be authenticated or authorized; Location is the place or environment in
which the policy is applied; Confidence is the output of the confidence manager; and Result determines
the relationship that the Target will have with the IoT Device or Location regarding authentication and
authorization grants. Note that Result is the consequent part of the semantic rule, while the remaining
fields belong to the antecedent part [39].

Our system manages two kinds of policies: Authentication and Authorization policies. Both families
are defined by the Framework Administrator to decide the authentication and authorization of the
users to stay in a given space or use specific IoT Devices. Below, we show an example for each one of
these policies.
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5.1. Authentication Policies

Authentication policies consider the information modeled by the ontologies as well as the output
of the confidence manager, which returns the user with the maximum score, its confidence, and the
delta. Different levels of authentication are generated by policies according to the previous fields.

The antecedent of authentication policies considers different elements belonging to the three
proposed ontologies (Person, Location, and IoT Devices) and the confidence manager. On the other
hand, the consequent part generates relationships between entities belonging to the Person ontology.
As an example, the next policy indicates that users will be continuously authenticated with the Green
authentication level when they have a confidence level of 0.7 or higher, a delta score of at least 0.6,
and their location is the smart home. At this point, it is important to note that the confidence level and
delta values have been set-up according to the experiments presented in Section 7.

Person(?person) A

hasCon fidence(?person, ?con fidence) A greaterThan(2confidence,0,7) A
hasDelta(?person, ?delta) A greaterThan(?delta,0,6) A
isLocated(? person, #SmartHome) —

has AuthLevel (? person, #Green AuthLevel )

5.2. Authorization Policies

Authorization policies take into account the level of authentication, provided by the
Authentication policies, to allow users to stay in certain locations or use specific devices located
in the users’ environment. By default, the proposed architecture denies the authorization in the
absence of rules. As an example, the next policy authorizes users to stay in the smart office and utilize
its IoT Devices when they are located in that room with the GreenAuthLevel authentication.

Person(?person) A

has AuthLevel (? person, #Green AuthLevel ) A
isLocated(?person, #SmartOf fice) A
hasIoTDevice(#SmartOf fice, ?ioT Device) —
is AuthorizedToUse(? person, 2ioT Device) A
isAuthorizedToStay(? person, #SmartOf fice)

6. PALOT Architecture

This section shows the proposed architecture, which is able to provide users with a continuous
and non-intrusive authentication and authorization solution according to their interaction with
heterogeneous IoT devices. To reach the transparent authentication and authorization processes,
PALOT encompasses several modules organized in three different layers according to their
functionalities. Figure 4 illustrates the Data, Management, and Service Layers composing the
presented architecture.
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Figure 4. Overview of the PALOT multilayered architecture.
6.1. Data Layer

This lower level includes all the IoT Devices belonging to the smart-environment. Each device
outputs a stream of events according to the device purpose. As defined in Section 4, these events
might be generated either periodically (e.g., CCTV camera frames, temperature sensors, etc.) or upon
status changes (e.g., interaction with the device, movement sensors, etc.). As modeled by the ontology
specified in Section 3.2, there exist two main categories of IoT devices, according to which the events’
stream can be either sporadic or continuous. These events are filtered and all the information that
might be used for authentication purposes is sent to the Collector module in the Management Layer.

A Location Middleware module is taking care of locating all the devices belonging to the framework.
For example, a device such as a CCTV camera might not be able to provide a localization service,
thus it has to be located through other information, such as the unique identifier and the installation
location. As for the IoT Devices, the location data are sent to the Collector that will interpret them
according to the previously mentioned ontology (Section 3.2).

6.2. Management Layer

This layer represents the intelligent core of this framework. It provides several features,
among them the possibility of modeling all the events generated by the Data layer according to
a standard format (the ontology). This function is required in order to be able to provide both the
authentication and the authorization services responsible for controlling the IoT devices. In this
context, these capabilities enable the framework to authenticate users according to their behavior and
interaction with the devices, without losing the capabilities of providing layered security. It is clear,
in fact, that the layer receives different inputs from multiple devices that are collected, integrated,
and analyzed.
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Three main sources of knowledge for the Reasoner module are found, namely the Policies and the
Ontologies databases and the Confidence Manager module. The first one contains the definition of all the
policies structured in two groups, one for the authentication (Section 5.1) and one for the authorization
(Section 5.2); the second one includes the three ontologies of IoT Device, Location, and Person as
described in Section 3.2; and the last one is in charge of learning the users’ behavioral model in order
to be able to recognize them as described in Section 4. However, the control flow starts with the
location information and events’ streams that are collected by the Collector module, which takes care of
interpreting and saving them in the aforementioned ontologies database.

The information is then used by the Reasoner, whose implementation details are highlighted in
Section 7, which ultimately triggers a decision and a reaction in the Engine. The decision is taken
according to the policies specified in the aforementioned database applied over the collected events
modeled upon the class-specific ontology. The decision is hence enforced by retro-fitting the reaction
for the Data layer. Finally, an administrative APl is available for human administrators in order to be
able to configure (i.e., add, edit or delete policies and ontologies) and tune (i.e., frequency of update,
etc.) the system.

6.3. Service Layer

This layer contains the set of services provided by our solution to interact with different IoT
devices and authenticate or authorize users to employ specific devices or stay in given places. Here,
it is important to highlight that some devices such as boundary authentication gateways do not
require these services because they are used firstly to identify users. Thus, our solution has a specific
authentication and authorization service for each IoT device. To be able to manage this process,
some devices expose APIs that permit the authentication and authorization of the users that are
interacting with them. Multiple services can be included later on for increasing the maneuverability
and the reactiveness of the system to external inputs [40].

6.4. Actors

The main actors included in this architecture are the Framework Admin, whose tasks include the
configuration and the maintenance of the policies and ontology database, and the Person who may
interact with the devices. The benefits for persons are clear, since avoiding intrusive authentication and
authorization procedures greatly simplifies the user experience without jeopardizing the environment
security. In fact, independently from their active interaction, our framework is built so to be able to
recognize and profile them, in order to provide real and continuous authentication.

7. Deployment and Experimental Results

To deploy, analyze and validate PALOT, we designed several experiments aiming to characterize
the framework performances in terms of both resource consumption and confidence of the
authentication process. To test cross-compatibility and scalability, experiments were conducted on
different machines and, when not otherwise specified, the experiments were run on both devices
multiple times, thus the reported metrics are to be considered as the average of all the executions.
Here follows the list of machines:

e aDell M3800 workstation with an Intel i7-4712HQ processor running at 2.30 GHz, 16 GB of DDR3
RAM at 1600 MHz, using Windows 10 (Build 17134) OS; and

e a personal laptop with an Intel Core i7-3770 running at 3.40 GHz, 16 GB of DDR3 RAM at
1600 MHz, using Ubuntu 16.04 LTS OS.

The experiments were designed in three categories, targeting:

I the resource consumption of the decision-making modules (Section 7.2);
I the performances and scalability of the authentication module (Section 7.3); and
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Il the efficacy and confidence of the authentication module (Section 7.4).

As already mentioned and when not otherwise stated, the experiments were conducted as
described in Section 7.1.

7.1. Dataset and Motivating Scenario

The dataset presented in [13] and used for the evaluation of our proposed framework includes
events for 24 individuals, with a total of 120 activity traces and 6425 events. More specifically,
participants were asked to perform certain daily activities (i.e., make a phone call, wash hands,
cook, etc.), while interacting with the surrounding sensors within the smart apartment. The sensors
used in [13] are a collection of commons IoT sensors that can be found in a smart environment,
e.g., sensor to measure motion, temperature, item usage, etc. The collected data are fully labeled,
detailing which participant is performing the specific activity. It is worth mentioning that the
participant does not perform activities in parallel, that is, each of them carries out the tasks in
a sequential fashion.

The proposed system generates the users’ behavior patterns considering IoT ubiquitous sensors
(motion, presence, light, or water sensors) that do not require authentication mechanisms. Once we
authenticate the user by considering the events generated by the previous IoT devices, our solution
is generic enough to grant or not the access to other kinds of devices such as smart locks,
personal computers, or even services. In any case, it is also worth noting that PALOT provides different
levels of authorization and, according to that level, a given user can perform (or not) particular actions.
However, in this work, we consider that IoT devices used to generate behavior patterns do not require
authentication mechanisms.

In the previous scenario, during the set-up of the PALOT architecture, users establish their
identities, which are associated with their behavior patterns generated during the training phase.
After that, during the evaluation phase, for each user the proposed solution is able to identify the most
similar behavior pattern. Having the relationship between the pattern and the user’s identity, we are
able to provide not only identification but also authentication.

7.2. On the Performances of the Decision-Making Modules

We deployed PALOT to validate its proper functioning and measure its throughput and scalability.
In this context, the representation of the information (ontologies and policies) and the decision-making
process (Reasoner and Engine) are based on Semantic Web techniques, where Location, Person, and IoT
Device ontologies, shown in Section 3, are defined in OWL 2 (Web Ontology Language) [41] and
were generated with the Protégé tool [42]. We chose OWL 2 rather than other languages such as RDF,
RDFS, or DAML+OIL because OWL 2 is more expressive than the rest. It was specifically designed as
an ontology language, being an open standard, and the main ontology language used nowadays in
Semantic Web. On the other hand, semantic rules defining the policies in Section 5 are expressed in
SWRL (Semantic Web Rule Language) [43]. SWRL includes a type of axiom, called Horn clause logic,
of the form if ... then..., being the most widely used solution in Semantic Web today.

The proposed architecture makes decisions about the authentication and authorization of users
according to the previous ontologies and semantic rules. For that, a semantic reasoner, implemented
by the Reasoner component of Figure 4, infers new knowledge that decides whether a given user is
authenticated, authorized, or not. We used Pellet [44] as semantic reasoner, which receives ontological
models with the information shaped by the ontologies and policies. Finally, the Engine component
of the proposed architecture is in charge of applying periodical queries, performed in SPARQL [45],
to the inferred model and gets the result about the authentication and authorization of users.
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We conducted several experiments with the aim of measuring its throughput and scalability.
These experiments were intended to deal with two questions:

e Is the decision-making process time acceptable?
o  How does it scale with different IoT devices and authentication/authorization policies?

It has to be noted that the results shown in this section were obtained by executing the experiments
100 times and computing their arithmetic mean.

A way to measure the performance of the decision-making process is doing executions with
different levels of complexity. This complexity is related to the number of individuals present in
the ontologies and the number of semantic rules making up the policies. Increasing the number of
individuals and semantic rules will provoke an increment on the number of statements, and thus
on the complexity of executions. The number of individuals contained in our ontologies is referred
as population. This was randomly generated, but in a controlled way to achieve a real distribution
of the elements composing the environment. Table 1 depicts the number of elements used in our
environment and their percentages.

Table 1. Individual distribution of population.

Element Amount Percentage Element Amount Percentage
Buildings 1 0.1% Persons 4 0.1%
Floors 4 0.2% Roles 10 0.3%
Areas 20 0.6% IoTDevices 1000 31.0%
Sections 80 2.5% Others 100 3.1%
Positions 2000 62.1% Total 3219 100%

Another important aspect, related to the second question highlighted in this section, is to evaluate
the scalability of the decision-making process. With this goal, we defined an initial population
of 30,000 individuals, which was increased by 30,000 individuals in each step. Table 2 shows the
complexity of the proposed ontologies (relationships between the individuals and the statements
generated by the semantic reasoner). As observed, the number of statements is proportionally increased
according to the number of individuals.

Figure 5a depicts the time, measured in milliseconds (ms), used by the semantic reasoner to
validate the ontology considering different population groups (shown in Table 2).

Table 2. Number of individuals and statements per population.

Population 0 1 2 3 4
Individuals 30,000 60,000 90,000 120,000 150,000
Statements 352,532 710,004 1,065,537 1,465,409 1,804,336
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Figure 5. Time required by the PALOT decision modules.

Such time is used by the reasoner in order to infer knowledge starting from the information
modeled within the ontologies. The result of this operation is a model which contains each individual
of the proposed population, and in this context each individual of the smart scenario. Comparing the
increase of individuals and statements with the time required by the decision-making process, we can
observe that the proposed solution can support a very large number of individuals or statements
within a reasonable time. Furthermore, the linearity property behind these results allows us to deduce
that a better computer system setting would obtain lower reasoning times.

The above experiment demonstrated a linear relationship between individual/statements and
the reasoning time, but without considering policies. Thus, the main goal behind the next test was to
check how policies affect the scalability of the proposed solution. In this sense, we defined several
percentages of policies related with the persons contained in our population groups.

Figure 5b shows the variation of the time required by the Engine component when it makes
a query for different populations (see Table 2) and numbers of policies. As previously mentioned,
such time is needed to get the result about the authentication and authorization processes based on the
policies. Thus, the process of querying the formerly generated model must be executed following the
flow of events stemming from the IoT devices within the smart scenario. As we can see, policies have
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a very low impact in our framework. For all populations, the difference between having 10 and
200 policies per user is around a few milliseconds.

As main conclusion of this section, we demonstrated with the previous experiments that, when the
number of individuals/statements is linearly increased in our ontology, the decision-making process
time also increases linearly. Furthermore, the semantic rules that form the policies do not have
an important impact on the decision-making process time.

7.3. On the Scalability of the Authentication Module

Undoubtedly, the scalability of the system while performing the continuous authentication
process represents a critical factor. On the one side, a low impact on the resource consumption is highly
desirable, especially when considering scenarios in which the computational power is limited. On the
other side, the overall time required to authenticate the users has to be reduced as much as possible
to accommodate the real-time events stemming from the smart environment. Bearing in mind such
consideration, we stressed the proposed authentication component to discuss on its scalability in terms
of resources (Experiment 1) and time (Experiment 2), as reported in the next sections.

Experiment 1 (CPU and RAM consumption). Identify the impact of the Authentication module on the resources.

Experiment 2 (Execution time). Measure the time elapsed to perform Training and Testing procedures.

7.3.1. CPU and RAM Consumption

To argue on the resources consumption of the proposed Continuous Authentication framework,
several experiments were conducted aiming at stressing it. Specifically, while the system was
performing the continuous authentication duties, CPU and RAM consumption were monitored,
as illustrated in Figure 6. In the figure, the arithmetic average is plotted to avoid possible spikes and
outliers. More in detail, we decided to carry out two experimental sessions:

1.  resources consumption (in terms of CPU and RAM usage) while increasing the number of events
belonging to the targeted users, as depicted in Figure 6a; and

2. resources consumption (in terms of CPU and RAM usage) while increasing the number of targeted
users, as shown in Figure 6b.

Regarding the first experiment, CPU and RAM were monitored while increasing the events
belonging to the target users from 100 to 1 million. As depicted in Figure 6a, the proposed system
is not particularly CPU-demanding, since its utilization remained at 30% steadily during the entire
experiment. On the contrary, the RAM usage presents an increasing linear trend, reaching 2 GB to
analyze 1 million events. Such results can be explained by looking at the operations performed by the
Continuous Authentication system: by increasing the number of events, the data structures needed
to store the behavioral patterns of the target users become wider. Thus, the more events are used
to train the model, the more RAM memory is used. Nonetheless, one could say that the number of
events the proposed framework has to analyze during its normal operations does not reach such high
value (i.e., 1 million). Moreover, the RAM usage for 100,000 events is lower than 400 MB, which can be
considered as acceptable for a quite large events sample.
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Figure 6. Resource consumption of the proposed framework with respect to number of people and events.

Regarding the second experiment, CPU and RAM were monitored while increasing the number of
targeted users the system is continuously authenticating from 10 to 500. As shown in Figure 6b, in this
case, the RAM required during the experiment is quite constant, remaining at ~120 MB of utilization.
On the other side, the CPU usage reaches 80% while the system is performing the authentication
process for 500 people. Such behavior can be justified by considering that the system requires more
cycles when processing more targeted users. This characteristic directly implies that, while the RAM
utilization remains quite constant, the CPU shows a trend with linear increment when increasing the
number of users.

The conducted experiments on the resources consumption of the Continuous Authentication
framework showed that the proposed system presents a RAM-demanding trend when the number
of considered events become huge, while it shows a CPU-demanding tendency when increasing the
number of users. Nevertheless, the framework performs well in normal conditions: it utilizes less than
400 MB to analyze 100,000 events, and it uses less than 60% to authenticate 100 people. Such results
demonstrate its applicability to smart environments, such as smart home or smart office.
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7.3.2. Execution Time

Among the desirable characteristics of a continuous authentication system, it is clear that the time
required to perform the authentication duties is among the most critical factors. In fact, the system
must be able to analyze the event stemming from several smart objects in an acceptable time in order to
grant the authentication to the users within the smart environment. With this mindset, we conducted
a set of experiments to test the execution time of the proposed system. In particular, we registered
training and testing times separately while increasing the number of incoming events.

Figure 7 shows the relation between the execution time and the number of events. As expected,
the system requires more time to train the model than to perform the testing process. In fact, during the
training phase, the probabilistic model is created, while, during the testing phase, the events are
directly compared against such model. Another interesting feature is the increasing trend shown by
the execution time: that is, when increasing the number of events, the time required by the system
linearly increases, reaching ~4 s to deal with 1 million events. Such result allows one to argue that the
required execution time scales accordingly with the number of incoming events, thus demonstrating
the scalability of the presented component. In addition, the time required to train the model with
100,000 events, and to test 100,000 events against such generated model, is less than 0.5 s, which seems
more than acceptable in the context of the proposed scenarios (i.e., smart home or smart office).
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Figure 7. Training and testing times of the proposed system.

7.4. On the Efficacy of the Authentication Module

As described in Section 4, the proposed framework works by comparing the predictions of all
the users registered in order to find the right one. To evaluate such approach, two experiments
were defined, aiming to study and analyze the evolution of the confidence in the authentication
(Experiment 3) and its adaptation to the dataset used as source (Experiment 4).

Experiment 3 (Confidence evolution).

Training—A set of activity tracks belonging to the Target User.

Testing—A set of activity tracks belonging to all the 24 other users.

First Task—Identify in the testing set the activity tracks belonging to the Target User.

Second Task—For each activity track in the testing set, establish the confidence of the classification as defined in
Section 4.

Experiment 4 (Dataset evolution). Measure possible improvements based on the dataset enhancement.
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7.4.1. Confidence Evolution

As previously mentioned, Experiment 3 was designed to analyze the feasibility of the
authentication process. It is composed of 24 parts, and, to be more precise, the chosen dataset [13]
features 24 guests performing everyday activities in a smart environment; the application scenario and
the dataset are introduced in Section 7.1. The PALOT approach is capable of recognizing the guest
after a few sensor events.

Figure 8 presents the evolution of the confidence for an example guest (i.e., user P23) with respect
to the number of sensor events over a long time period (multiple activity tracks). On horizontal axis,
multiple activity tracks are combined, highlighting the number of sensor events. On the vertical
axis, the confidence score (calculated as defined by Algorithm 2) for the Target User (colored in
green), and all the other users (colored with different shades of gray) is presented. Moreover, to help
identify the previously defined ¢ (delta) score (Algorithm 3), both the maximum and the ¢ itself have
been plotted.
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Figure 8. Confidence evolution for a target user.

By walking through the chart, from left to right, it is possible to notice:

e the bootstrap phase (between zero and 35 events), in which the system has seen too few events to
make a proper prediction (i.e., the delta score is very small and abruptly changes);

o the wavering phase (between 35 and 50 events), in which the system has already a good hint about
the classification result, but not a final decision (i.e., the delta score is lower than the designed
threshold: 6 < 6); and

o the authentication phase (after 50 events), in which the system is confident enough to properly
make a decision regarding the Target User.

While Figure 8 presents details about a specific Target User, Figure 9 presents how these
distributions vary across the whole dataset during the decision phase. Specifically, both figures shares
the vertical axis, i.e., the confidence score for the specific Target User, while the latter figure presents
each guest’s view on the horizontal axis.
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Figure 9 is divided in three parts:

e the green box plots, representing for each user its target confidence distribution, i.e., the green
series presented in Figure &;

e the gray box plots, representing the average confidence distribution of all the other users,
i.e., the gray series presented in Figure 8; and

e the Target User average confidence score represented as a dotted blue line, i.e., the mean of
the average values of all users” confidence scores; and, symmetrically, the other users average
confidence score represented as a dotted red line, i.e., the mean of the average values of all other
users series.
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Figure 9. Confidence evolution across the dataset.

As shown in the boxplot chart in Figure 9, by using the confidence delta (as specified in
Algorithm 3), it is possible to clearly recognize the targeted user even when the confidence scores of
the other profiles are quite high (e.g., user P4). To be more precise, the confidence score of each targeted
uses varies between 0.63 (minimum of user P24) and 0.98 (maximum of user P4), with an average
value of 0.78. On the contrary, the other users’ profiles achieves results as low as 0.08 (minimum of
user P19) and as high as 0.59 (maximum of user P4), with an average of 0.29.

It is up to the framework administrator to define the minimum threshold for the delta score,
to minimize the effects of classification errors and mimicking attacks.

7.4.2. Dataset Evolution

As already mentioned, the proposed PALOT can seamlessly authenticate and authorize the user
to perform certain activities within the designed scenario. The authentication process has been proved
to be reliable during the experimental sessions on the tested dataset [13] (as previously described
in Section 7.1), reaching a more than acceptable confidence level. Specifically, the system is able to
recognize the targeted users with a confidence level above 70%, and it can also distinguish among
different users. It is worth mentioning that the dataset used during our experiments was initially
created with the aim of recognizing the activities performed by the users within the smart environment.
Thus, we leveraged such data to recognize the behavior of a specific person who was carrying out the
activities. In this context, one could say that the data provided by the dataset are quite poor (a few
hundred events per person). Hence, we decided to test the authentication capabilities of the proposed
system when repeating some of the activities of the targeted users (Experiment 4). Figure 10 illustrates
the results of such experiment, comparing the confidence level with different versions of the dataset,
which are explained as follows:
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e  Original: The original version of the dataset, from which we extract the labeled activities.
e Enhanced 1: A second version of the dataset, in which we replicated 10 activities for each user.
e Enhanced 2: A third version of the dataset, in which we replicated 20 activities for each user.

A N oo v o

Average of Confidence
of Being Target User

—]

® O®© OO0 ®©O ®©O O O ®© ©®© o B
(%2

®© B N W b

Original Enhanced 1 Enhanced 2
Dataset Version
-+ Average of the Other Users -o- Average of Target User

Figure 10. Confidence with regards to the quality of the dataset.

In particular, we plotted the confidence level our authentication system provides for each
version of the dataset. It is possible to notice that the confidence level regarding the targeted users
(i.e., the capability of the system of recognizing person) is increasing when considering the different
versions. Specifically, it rises above 80% with the last proposed version. On the other side, it also
notable that the confidence level with regards to the other users (i.e., the capacity of the system
of distinguish person) is decreasing throughout the experiment. In fact, it drops below 20% when
considering the dataset with 20 activities repetitions. Such results allow one to claim that the overall
authentication performance of the proposed system may further improve when the quality of the
analyzed dataset (in terms of number of events) enhances.

8. Conclusions and Future Work

Despite the numerous efforts to develop successful authentication systems, a number of challenges
remain unsolved. In particular, most of the times the quality of experience of the users tends to be low,
since they have to carry intrusive devices or remember complex authentication secrets. In this regard,
the main contribution of this paper is a novel IoT-enabled continuous authentication framework
called PALOT. Specifically, we designed and developed an ontology to formally model IoT scenarios
and designed an architecture to deal with the current status of a given IoT scenario. Within such
architecture, we introduced and integrated a novel module called “confidence manager”, whose main
task is to recognize users’ behavioral patterns by leveraging the powerful capabilities of the Markov
models. The output of the confidence manager, together with the other elements of the ontology,
is then used to authenticate and authorize users by employing semantic rules, which form policies.

Within our framework, users are seamlessly authenticated and authorized without requiring
any additional device. However, these processes are natively dependent on the deployment context,
thus requiring extensive training to correctly model the users” behavior. To demonstrate the suitability
of the proposed solution, we designed several experiments aiming to characterize the framework
performances in terms of both resource consumption and confidence of the authentication process.

As future work, we intend to apply further machine learning techniques to possibly argue on the
pros and cons of each methodology. Additionally, we plan to evaluate PALOT while multiple users
interact with each other, thus extending the above-mentioned concepts of event and activity. Finally,
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we also plan to perform adversarial attacks to measure how easy or difficult it is mimic the behavior of
particular persons.
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