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Abstract: Geological conditions along the Karakorum Highway (KKH) promote the occurrence of
frequent natural disasters, which pose a serious threat to its normal operation. Landslide susceptibility
mapping (LSM) provides a basis for analyzing and evaluating the degree of landslide susceptibility
of an area. However, there has been limited analysis of actual landslide activity processes in real-time.
The SBAS-InSAR (Small Baseline Subsets-Interferometric Synthetic Aperture Radar) method can fully
consider the current landslide susceptibility situation and, thus, it can be used to optimize the results
of LSM. In this study, we compared the results of LSM using logistic regression and Random Forest
models along the KKH. Both approaches produced a classification in terms of very low, low, moderate,
high, and very high landslide susceptibility. The evaluation results of the two models revealed a high
susceptibility of land sliding in the Gaizi Valley and the Tashkurgan Valley. The Receiver Operating
Characteristic (ROC) curve and historical landslide verification points were used to compare the
evaluation accuracy of the two models. The Area under Curve (AUC) value of the Random Forest
model was 0.981, and 98.79% of the historical landslide points in the verification points fell within
the range of high and very high landslide susceptibility degrees. The Random Forest evaluation
results were found to be superior to those of the logistic regression and they were combined with
the SBAS-InSAR results to conduct a new LSM. The results showed an increase in the landslide
susceptibility degree for 2808 cells. We conclude that this optimized landslide susceptibility mapping
can provide valuable decision support for disaster prevention and it also provides theoretical guidance
for the maintenance and normal operation of KKH.
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1. Introduction

Landslides are the results of changes in environmental parameters. Under the influence of extreme
climatic events, an increasing number of landslides are occurring worldwide, which results in major
economic and human losses [1]. The Karakorum Highway (KKH) is an important part of the Asian
Highway Network and is China’s gateway to Pakistan and the South Asian subcontinent, as well as
being a geopolitical link between China and Pakistan [2]. However, the elevated mountain topography,
abundant loose debris, and abrupt heavy rainfall events are leading to severe and frequent geological
disasters, such as rock collapses, glacier debris flows, landslides, debris creep, soil creep, and, in rare
cases, avalanches [3,4]. Since 1987, over 115 rock avalanches have been generated by very large
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rockslides or rock falls [5]. In 2005, there was a major earthquake in northern Pakistan, which caused
sustained and varying levels of damage to the KKH and induces many landslides [6]. In 2010, a massive
landslide in Attabad blocked the river and created a barrier lake more than 20-km long, which flooded
the highway and cut off road traffic [7]. By 2011, 150 glacial debris flows had been investigated along
the KKH, which caused damaged bridges [4]. All of these disasters result in enormous damage to roads
and the surrounding environment. Therefore, it is particularly important to evaluate the geological
disaster susceptibility of KKH. But due to the large extent and complex geological conditions in this
area, it is difficult to deepen field investigation and assessment work, which means the current disaster
assessment of the area only stays in the investigation and evaluation of a single debris flow ditch or a
single landslide, such as the investigation of surge-type glaciers [8] and the activity degree evaluation
of glacial debris flow [3]. Additionally, due to the lack of historical disaster data, it is difficult to conduct
the disaster assessment on a regional scale. Therefore, this research makes up for the lack of historical
disaster data and the evaluation gap on the regional scale, using SBAS-InSAR results to optimize
landslide susceptibility degrees, which can greatly improve the accuracy of landslide susceptibility
assessment at a regional scale. Landslide susceptibility mapping (LSM) provides a basis for geological
risk assessment. It is clearly of great importance to conduct regional LSM for the purposes of landslide
prevention and mitigation, and landslide management. The need for quantitative risk management
is increasing, and, therefore, quantitative methods are needed to evaluate landslide hazards and
risk zoning. After the emergence of GIS (Geographic Information System) technology, numerous
quantitative approaches to landslide susceptibility were developed, such as Logistic Regression,
Analytic Hierarchy Process, Artificial Neural Networks, Support Vector Machines, and Random Forest.
All of these methods have been shown to have specific advantages in different study areas and for
different sets of factors involved in disasters [9–13]. However, the accuracy of LSM is not just related
to the method itself, but also relates to the input training dataset including the historical landslides
and landslide predisposing factors. In order to compare the accuracy of different evaluation methods,
we chose logistic regression and random forest models to evaluate landslide susceptibility of KKH
separately. In order to reduce the misclassification of LSM caused by the incompleteness of historical
landslide data, we optimize LSM by using the InSAR results closely related to landslide occurrence to
improve the reliability of LSM.

Interferometric Synthetic Aperture Radar (InSAR) technology has been widely used in mapping
high accuracy slope movements, which is of great relevance for the landslide risk assessment [14,15].
The use of space-borne radar measures has proven to be a reliable approach for improving landslide
monitoring and identification for the landslide risk assessment. Oliveira used PS-InSAR to assess its
capacity in landslide susceptibility on a regional scale [16]. Piacentini also verified the accuracy and
superiority of PS-InSAR in landslide susceptibility assessment [17]. In particular, the Small Baseline
Subsets InSAR (SBAS-InSAR) technology overcomes the limitations of time incoherence and avoids
the long temporal separation, spatial incoherence, and atmospheric effects in traditional interferometry
methods, which produces land deformation results that are more continuous in time and space [18,19].
The method is suitable for monitoring both slow linear and nonlinear deformation of long sequences
and is widely used in the monitoring of land subsidence, earthquakes, active faults, and glacier
migration, as well as of slope instability such as creep and landslides [20–24].

In this study, logistic regression and Random Forest models were used to evaluate the application
of LSM to the KKH, with the aim of comparing the accuracy of the mathematical model and the machine
learning model. The accuracy of the results was evaluated by verifying the correct classification
rate of the sample set and the Area Under Curve (AUC) value of the ROC (Receiver Operating
Characteristic) curve. However, there was still potential for the misclassification of the results of the
LSM. For example, if a landslide occurs in a certain area, the susceptibility map may still indicate
that the area is less susceptible. To reduce the probability of misclassification, we used the 2016–2017
SBAS-InSAR deformation results to correct the errors, which allows the optimized susceptibility map
to provide more reliable decisions for land use and landslide prevention and mitigation.
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2. Study Area

This study area is identified by the 10-km buffer of the Karakoram Highway. It runs from Shufu
County in Kashgar to the Khunjerab Pass in China (Figure 1). It is located in the western part of
the Himalayan orogenic belt caused by the India-Asia collision [25]. A major component of the
environment of the highway is the occurrence of mountain glaciers, which result in major glacial debris
flows and rock avalanches [3]. Topographically, the KKH is characterized by deep valleys and rugged
mountains [6], with elevations ranging from 1280 to 6961 m. Strong tectonic movements and rapid
uplift have produced deep, narrow river valleys that provide dynamic conditions, which promote the
occurrence of geological disasters [26]. Therefore, geological disasters such as mudslides, landslides,
and flash floods occur frequently along the KKH, causing serious damage to the KKH.
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Figure 1. The study area and distribution of landslides (The yellow line is the border between China
and Pakistan. The red line on the up-right is the border of Chinese provinces).

Quaternary loose deposits are the main surface strata along the KKH. The exposed sedimentary
rocks and metamorphic rocks are mainly Proterozoic, Paleozoic (Carboniferous and Permian),
and Mesozoic (Triassic and Cretaceous). There are sporadic outcrops in every section within areas of
magmatic rocks, which are mainly Caledonian granite, Himalayan granite, and diorite. The overall
high altitude environment results in a cold, dry, and drought-prone climate. Annual precipitation is
less than 200 mm including 70% of which falls during July to September [26]. Consequently, the region
spanned by the KKH has very low vegetation coverage.
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3. Data and Methods

3.1. Data and Variables

Using remote sensing image interpretation, field surveys, and the collection of historical data,
a total of 44 landslides along the KKH were identified. These historical landslides are mostly distributed
along both sides of the highway, with an area ranging from 3 × 10−6 to 2.4 × 10−4 km2 (Figure 1).
The mountains on both sides are steep, and most of the mountain tops have perennial snow, which makes
the mountains prone to landslides under the action of glacier melt water in the summer. Of these
historical landslides, they are divided into five types, including 23 complex slides (52.27%), 10 rock
falls or topple (22.73%), seven superficial instability events (15.91%), and four creep (9.09%). Using GIS,
the landslide area was converted into 4546 landslides points, and an equal number of non-landslide
points were randomly generated from the area. Landslide points include training datasets to train
models and validation datasets to validate models. In this study, 80% of the total landslide points,
comprising 3637 landslide points, were selected randomly for model training, and the remaining 20%
of points, comprising 909 points, were used to validate the accuracy of the training model.

There is no general criterion for selecting the independent variables for landslide susceptibility
mapping. The principles are that the variables must be operational, non-uniform, measurable,
and non-redundant [9]. In this study, the original data included the following: a geological map from
the China Geological Survey (scale 1:500,000), a 30-m SRTM DEM, 30-m Landsat 8 images, and 0.25◦

3B43 TRMM images. The variables considered for the LSM of the KKH were: elevation, slope, aspect,
profile curvature, planar curvature, and Topographic Wetness Index (TWI) derived from the DEM.
Normalized Difference Vegetation Index (NDVI) derived from Landsat 8 images, annual precipitation
derived from TRMM images, and lithology and fault data derived from the geological map.

Since there may be a high correlation between the independent variables used in the linear
regression model, the model estimation may be distorted or be difficult to estimate accurately.
This is because the data may not contain sufficient information to describe the problem under
consideration when the factors are highly correlated with each other. Therefore, before model
operation, a multicollinearity analysis of the independent variables is performed, and the variables
with significant collinearity are eliminated. Commonly-used collinearity diagnostic indicators include
the variance inflation factor (VIF) and tolerance (TOL) [27], which are reciprocal. In general, VIF > 10
(TOL < 0.1) indicates that the selected variable has multiple collinearity. Multicollinearity diagnostics
of the factor data influencing landslide occurrence were obtained using SPSS (Statistical Product
and Service Solutions) software. In this study, the TOL values of the above 10 variables are all <1,
as shown in Table 1, which ensures the independence of the factors and enables them to participate in
model estimation. The 10 variables were classified using the natural break point method, displayed
hierarchically, and assigned to the training datasets to facilitate the operation of the model (Figure 2).

Table 1. Multicollinearity diagnostics for the variables used in this study.

Variable TOL VIF

Elevation 0.611 1.638
Slope 0.576 1.735

Aspect 0.989 1.011
Profile curvature 0.801 1.248
Planar curvature 0.815 1.226

TWI 0.958 1.044
NDVI 0.916 1.092

Precipitation 0.644 1.553
Distance from fault 0.756 1.271

Lithology 0.691 1.446
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Figure 2. Landslide predisposing factors: (a) is the elevation, (b) is the slope, (c) is the aspect, (d) is the
profile curvature, (e) is the planar curvature, (f) is the TWI, (g) is the NDVI, (h) is the precipitation, (i) is
the distance from the fault, and (j) is the lithology. In (j), a represents plagioclase, monzonite, potassium
feldspar granite, diorite, granodiorite, b represents calcareous siltstone, quartz sandstone, phyllite,
clastic rock containing pyrite crystals, c is clastic rock sandwiched limestone, occasionally sandwiched
siltstone, quartz sandstone, d is gray mudstone, sandstone, black argillaceous siltstone, gray sandy
mudstone, limestone, e is gray medium thick, massive limestone, bio-limestone, marl, variegated
conglomerate, f is sericite green clay schist, quartz schist marble, quartz marble, dolomite quartz schist,
g is gravel, sand, sand soil, gravel soil, sub-clay, and h is snow area.

The choice of mapping unit is critical for LSM. In this study, a 100*100 m moving window was
used to calculate mean value for each numerical variable [28]. For these variables, the average value
inside a 100 × 100 m cell was used in the LSM.

3.2. Landslide Susceptibility Models

3.2.1. Logistic Regression Model

The logistic regression model is a generalized linear regression method. It uses dichotomous
variables such as 0 and 1 determined by one or more independent variables to analyze the problem [9].
Logistic regression has been widely used in landslide space prediction research because it uses simple
forms to address complex nonlinear problems, and can generate unbiased results. The approach
uses the maximum likelihood method to construct the relationship between the predictor and the
two-category result, in order to ensure that each point is the best fit. In geological hazard susceptibility
analysis, it is often used to describe the relationship between binary dependent variables (usually
0/1 for the occurrence/non-occurrence of a geological disaster) and several independent variables.
The independent variable can be continuous or discrete and it does not have to be normally distributed.
The model is expressed below.

P =
1

1 + exp(−(β0 + β1X1 + β2X2 + · · ·+ βnXn))
(1)
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In this case, P is the probability of landslide occurrence. βi is the logistic regression coefficients based
on training samples, i = 0, 1, 2, · · · , n, and Xi is the independent variable, i = 0, 1, 2, · · · , n [29].

In this study, training landslide points and an equal number of random non-landslide points were
selected as statistical samples for evaluating landslide susceptibility in the KKH. The attribute values
of the independent variables were assigned to each sample point, and all of the sample values were
imported into SPSS to perform binary logistic regression analysis.

3.2.2. Random Forest Model

The Random Forest model, which originates from the bagging algorithm of Breiman [30], is an
integrated learning mode based on random sampling. Essentially, it is the product of integrating many
decision trees into forests and combining them to predict the end result. Model building is a process of
decision tree combination. The decision tree is similar to the flowchart of the tree structure, which is
a recursive process from top to bottom. Starting from the nodes of the tree, the optimal features are
selected for different internal nodes, and the corresponding branches are determined according to the
test output. The final results are derived from the nodes of the decision tree leaves.

The Random Forest algorithm can process datasets with large dimensions and large data volume
and it has a high generalization ability. Compared with other statistical learning methods, it is not
susceptible to overfitting, and the prediction accuracy is improved based on the criterion of no further
significant improvement in the calculation. Moreover, the results are robust in the case of missing
and unbalanced data [31]. It has been widely used in data classification and management, and has
performed well in LSM [13]. In this study, Random Forest modules in the R language environment
were used to evaluate the landslide susceptibility.

3.2.3. Verification of Model Accuracy

The following steps are followed in order to verify the accuracy of the model. First, a rationality
test is carried out based on the distribution of the actual occurrence of the landslide points in each
landslide susceptibility level. However, subjectivity is involved in selecting landslide points for testing.
In order to maximize the stability of the established model, the assessment points consist of 20% of
the verification points that are not involved in model calculation. The test for the rationality of the
model is based on the criterion that the percentage of the group of landslide points falling within a
landslide-prone area is the largest.

The second step is to use the Receiver Operating Characteristic (ROC) curve to test the accuracy of
the model evaluation, which is an effective graphical method for evaluating the validity of classification.
The ROC curve is based on a series of different two-category methods, with the true positive rate
(sensitivity) as the Y-axis and the false positive rate (1-specificity) as the X-axis. In this case, the true
positive rate is the proportion of landslide units correctly predicted, and the false positive rate is the
proportion of the units that were not correctly predicted as landslide units [32]. The closer the ROC
curve to the upper left corner of the graph, the higher the accuracy of the test is. The area under the
ROC curve is the Area under Curve (AUC) value, which is an indicator of the accuracy of the model.
The range of values of AUC is [0.5, 1]. The larger the value, the better the effect of model discrimination.

3.3. SBAS-InSAR

InSAR technology has been widely used in the early identification of landslides due to its
advantages of independence of weather conditions as well as its wide range of monitoring and
high-precision monitoring. The SBAS-InSAR method determines surface deformation over time by
processing the interferogram with a shorter baseline and smaller decorrelations, which makes the
deformation results denser and more reliable [21].

In this study, a set of 28 sentinel-1A images from 2016 to 2017 were processed in the SARScape
module. The first step was to generate the connection graph. In order to generate the SAR image
pairs, the maximum normal baseline and temporal baseline were set to 110 m and 90 days, respectively
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(Figure 3), and 76 interferogram pairs were generated. The most critical step is the interferogram
process, conducted using a Goldstein filter, which can improve both the measurement accuracy and
phase unwrapping in order to maximize the signal/noise ratio of the interferograms [33]. The Minimum
Cost Flow method (MCF) [34], with a coherence threshold of 0.35, was used for unwrapping. Thus,
some interferogram pairs with low coherence and unwrapped phase error were removed from the
connection graph. The next step was to use the Ground Control Points (GCPs) to execute the orbital
refinement and phase re-flattening process for the remaining pairs. The selection criterion for GCPs
is that they are located far from the area of deformation and in better unwrapped phase regions. In
addition, in order to ensure the accuracy of the GCPs, the coherence value cannot be <0.7 [35,36].
A cubic inversion model was used to remove the residual topography and derive the preliminary
displacement. Subsequently, the Atmosphere Low Pass Size was set to 1000 m and the Atmosphere
High Pass Size to 365 days in order to remove the atmosphere residual error. Lastly, the least squares
solution obtained by the Singular Value Decomposition (SVD) method was used to estimate the
nonlinear deformation of the time series.
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represents an interferogram).

The SBAS method obtains surface deformation values along the line of sight (LOS).
For mountainous areas, the rate of deformation in the LOS direction is insufficient for reflecting
the true deformation of the slope [20]. The deformation rate of the LOS direction is converted to the
deformation rate along the slope, using the following formulas.

Vslope =
Vlos

Index
(2)

Index = nlos × nslope (3)

nlos = (− sinθ cosαs, sinθ sinαs, cosθ) (4)

nslope = (− sinα cosϕ,− cosα cosϕ, sinϕ) (5)

In this case, Vslope is the deformation rate along the slope angle, Vlos is the deformation rate of the
LOS direction, α is the aspect, ψ is the slope, θ is the radar incident angle, αs is the angle between the
direction of the satellite orbit and true north (which is the radar satellite flight direction), ascending data
are negative, and descending data are positive [37].
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3.4. Refinement

The purpose of refinement is to increase the accuracy of LSM, and to minimize the results of
misclassification in order to obtain more accurate assessment results for landslide-prone areas. In order
to achieve this goal, we used the SBAS-InSAR slope deformation results to integrate the LSM by
building the contingency matrix between the landslide susceptibility degree and the SBAS deformation
rate (Table 2). The velocity intervals were determined based on the standard deviation (δ = 15 mm/yr)
of the Vslope [28]. The velocity intervals were determined to increase the susceptibility degree from
level 1 to 5. The greater the value of Vslope is, the higher the landslide susceptibility degree is.
The susceptibility degree cannot exceed 5. This integration reduces the probability of misclassification,
and it results in areas prone to landslides, which have a low susceptibility assessment degree being
assigned a high susceptibility degree.

Table 2. Contingency matrix applied to the LSM, considering the average value of Vslope in each cell (the
susceptibility degree from 1 to 5 represents very low, low, moderate, high, and very high, respectively).

Vslope (mm/yr)

Susceptibility
degree

0–15 15–30 30–50 50–100 >100

1 0 +1 +2 +3 +4
2 0 0 +1 +2 +3
3 0 0 0 +1 +2
4 0 0 0 0 +1
5 0 0 0 0 0

4. Results

4.1. Logistic Regression Results

The binary logistic regression model, using multiple iterations, was implemented in SPSS to obtain
the landslide susceptibility assessment values (Table 3). B is the regression coefficient of each variable
in the model. S.E. is the standard deviation. Wald is the Chi-Square statistic. Sig. is the significance
level. Notably, there is a statistically significant difference between the regression coefficients of the
variables. The significance values of most of the variables are less than 0.1, which indicates that the
logistic regression results pass the significance test. The coefficient of each variable can be used as a
measure of the relative importance of the independent variable, with a positive coefficient indicating
that the independent variable is positively related to landslide susceptibility [27]. In other words,
the larger the value of the factor, the greater the degree of proneness to land sliding. A negative
coefficient indicates that the independent variable has an inhibitory effect on the landslide susceptibility.
For example, the greater the vegetation cover, the less likely a landslide is to occur. Reference to Table 3
shows that the slope has a greater effect on the development of landslide proneness than any other
variable, which indicates that slope failure is directly associated with topographic characteristics. Slope
is positively correlated with landslide occurrence since it is related to shear stresses acting on the
displacement of the hill slope. When the soil layer is sufficiently thick, the greater the slope is, the more
unstable the slope will be [38].

The natural breaks method was used in the GIS environment to classify the landslide susceptibility
probability. The classification is based on natural groupings inherent in the data, and the classification
interval is identified, which provides an optimum grouping of similar values and maximizes the
differences between classes [27]. We used this approach to divide the data into five categories: 0~0.13,
0.13~0.30, 0.30~0.51, 0.51~0.73, and 0.73~1, which respectively represent very low, low, moderate, high,
and very high landslide susceptibility (Figure 4). The performance of the model was evaluated using
the ROC curve. The AUC value is 0.793, which satisfies the requirement for landslide susceptibility
accuracy. The remaining 909 landslide points were then used to verify the model accuracy. There are
578 points (63.59%) in the high and very high ranges.
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Table 3. Results of logistic regression analysis.

B S.E. Wald Sig.

Elevation −0.928 0.040 551.073 0.000
Slope 1.022 0.032 991.807 0.000

Aspect 0.080 0.023 12.127 0.000
Profile curvature 0.298 0.032 89.027 0.000
Planar curvature −0.125 0.025 24.136 0.000

TWI 0.069 0.034 4.151 0.042
NDVI −0.308 0.049 38.809 0.000

Precipitation 0.496 0.034 215.025 0.000
Distance from fault −0.566 0.036 246.496 0.000

Lithology −0.021 0.017 1.520 0.218

Constant −1.126 0.272 17.182 0.000
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4.2. Random Forest Results

We then used the Random Forest model implemented in R to obtain landslide susceptibility
evaluation results, which indicated the relative importance of each evaluation factor in the model
(Figure 5). The Random Forest method has two indicators for measuring the contribution of variables
to landslide susceptibility: Mean Decrease in Accuracy and Mean Decrease in Gini [39]. The larger
the value of both indexes is, the greater the importance of the corresponding variable is. Reference to
Figure 5 shows that the importance of elevation and slope is relatively high, which is consistent with
the results of the logistic regression.
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Figure 5. Random forest results: analysis of the relative importance of the variables. (a) is Mean
Decrease Accuracy, (b) is Mean Decrease in Gini.

The natural breaks method was again used to classify the landslide occurrence probability into five
categories: 0~0.11, 0.11~0.27, 0.27~0.64, 0.64~0.80, and 0.80~1, which corresponds, respectively, to very
low, low, moderate, high, and very high (Figure 6). The performance of the model was evaluated using
the ROC curve. The AUC value was 0.981, which indicates that the susceptibility result is near-perfect.
We used the remaining 20% (909 historical landslide points) to verify the accuracy of the model, and 898
(98.79%) were within the range of high to very high landslide susceptibility.
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Forest model.

The AUC value of the evaluation results and the correct classification ratio of the verification
points demonstrate that the Random Forest evaluation results are superior to those of the logistic
regression. Therefore, we chose the Random Forest evaluation results for optimization of the landslide
susceptibility degree.
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The results of both the logistic regression and Random Forest models show that the KKH is
highly prone to landslides in the areas of the Gaizi Valley and Tashkurgan Valley. In the Gaizi
Valley, where landslides occur frequently, the landslide susceptibility degree is mainly high and very
high. The geological conditions in the area are complex, faults are developed, and earthquakes are
frequent. Under the action of short-duration heavy rainfall events and meltwater from ice and snow,
landslides including rock falls, complex slides, superficial instability events, and creep occur frequently,
which seriously obstruct the KKH and prevent its normal operation. The other landslide prone area is
in the Tashkurgan Valley where the sides are steep and the rock masses are fragmented. The lithology
is mainly sericite and turquoise schist, with well-developed joints and fractures, which makes it
susceptible to land sliding under the action of water and wind. In addition, in the evaluation results of
the Random Forest model, there is an area with a high degree of landslide proneness in the mountainous
area on the west side of Tashkurgan County. Notably, a large mudslide occurred there in past, and the
entire county is located on a huge debris flow fan. Therefore, engineering work should potentially be
undertaken in the area in order to minimize the impact of mountain landslides. From Tashkurgan
County to the south, with the gradual increase in altitude, the mountains on both sides of the KKH
are affected by ice and snow. The repeated frost heave reduces the stability of the rocks and soils,
which makes the area prone to landslides.

4.3. SBAS-InSAR Results

The LOS direction deformation rate result was obtained using 0.7 as the coherent threshold
(Figure 7a). A total of 6,185,930 coherent targets were obtained, with an average density of 773.82 km−2.
The LOS direction deformation rate result was −82.46 to 142.48 mm/year and the stability threshold
was chosen as −3 to 3 mm/year. The LOS direction deformation result was converted to the along-slope
direction deformation result using a transformation formula (Figure 7b). A total of 79,003 slope
deformation points were obtained, with a density of 98.82 km−2. The maximum slope deformation rate
was −473 mm/year, with 0 to −15 mm/year as the threshold stability point. In addition, 94.67% of the
slope deformation points are defined as stable. The stability threshold was set as the deformation rate
standard deviation. Due to the incoherence caused by regional glaciers and water bodies, the results
of SBAS deformation do not cover the entire study area. The area of statistically reliable SBAS
deformation results represents 23.16% of the total area, including along the KKH. Field verification of
the Vslope deformation shows that the geological disasters include 117 landslides, 79 subsidence, and six
glacial movements (Figure 7b). The statistic shows that only 22.78% of newly identified landslides by
SBAS results fall into the high and very high susceptibility degrees by using a random forest model.
Therefore, the results are reliable and can be used to optimize the landslide susceptibility evaluation
results. The resulting slope deformation map highlights clusters of deformation points in the following
localities: Gaizi Valley, Blumkou Reservoir, Tashkurgan County, and the Khunjerab Pass. However,
this distribution is inconsistent with the distribution of historical landslide points, and, therefore, it is
necessary to refine the LSM results. Additionally, since the SBAS monitoring results include landslides
and subsidence, this study only considers the assessment of landslide susceptibility, the Vslope, which is
defined as removed ground subsidence, and is then optimized for LSM using the Vslope after removing
the subsidence points.
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Figure 7. Ground deformation velocity map using SBAS-InSAR along the KKH. (a) Deformation
velocity along the LOS direction. (b) Deformation velocity along the slope direction.

4.4. Refining the Results

To refine the results, the slope direction deformation rate was converted to the grid values at a
100-m resolution, and the contingency matrix was then used to optimize the landslide susceptibility
degree map obtained by the Random Forest model (Figure 8a). Compared with the evaluation results
of the Random Forest model, the percentage change of the cells of each degree is not clear in the
new susceptibility degree map, and this also illustrates that most of the landslides identified by the
SBAS-InSAR method are in the evaluation results. In order to more directly reflect this, the newly
generated LSM and the LSM using the Random Forest model were used to compare the degree of
difference for each cell (Figure 8b). There are three areas with obvious landslides with increased
landslide susceptibility. The percentages of cell degrees in the original and new LSM results are listed
in Table 4. Class 1 comprises 56.91% of the cells, class 2 comprises 19.88%, class 3 comprises 10.68%,
class 4 comprises 6.77%, and class 5 comprises 5.76%. Calculation of the difference between the new
LSM assessment results and the original results revealed that there are 2808 cells with an increase
in landslide susceptibility. Among them, 1387 cell susceptibility degrees increased by one, 1084 cell
susceptibility degrees increased by two, 305 cell susceptibility degrees increased by three, and 32 cell
susceptibility degrees increased by four.
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Figure 8. (a) New landslide susceptibility mapping results after the application of the correction matrix.
(b) Difference between the original landslide susceptibility degree and the new landslide susceptibility
degree for each cell. The circled areas labelled 1–3 correspond, respectively, to the Blumkou Reservoir,
the Muztag Mountains, and an area of mining activity.

Table 4. Comparison of the original landslide susceptibility assessment degrees with the revised
degrees after correction.

Landslide
Susceptibility

Degree
Original LSM New LSM Susceptibility

Degree Increase

Class No. Cells % No. Cells % Class No. Cells

1 481,668 57.11 480,041 56.91 0 840,628
2 166,190 19.70 167,670 19.88 +1 1387
3 91,057 10.80 90,059 10.68 +2 1084
4 56,650 6.71 57,130 6.77 +3 305
5 47,880 5.68 48,536 5.76 +4 32

4.5. Results of Specific Cases

Three areas with pronounced increase in landslide susceptibility degree (numbered 1–2) are
illustrated Figure 8b. We now present a detailed analysis of these three areas. Locality 1, on the
west side of Blumkou Reservoir, is a hilly area composed mainly of Quaternary loose deposits. It is
substantially affected by the action of wind and rain. Around the reservoir, except for a small part of
the shore, the slope is steep, and most of the slope is steeper than 30◦. The physical and mechanical
parameters of the soil are reduced after long-term immersion softening of the bank slope. As the water
level changes reciprocally and the waves are eroded, the soil becomes steeper and the stability decreases.
Eventually, a certain scale of collapse, local slip, and other instability events occur. The deformation of
SBAS shows that the deformation rate is higher, and assessment of the degree of landslide susceptibility
after optimization by the SBAS-InSAR reveals an increase (Figure 9).
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Figure 9. Results of landslide assessment for locality 1 (west of Blumkou Reservoir). (a) Landslide
susceptibility assessment results obtained using the Random Forest method. (b) SBAS deformation rate
values along the slope direction. (c) Optimized landslide susceptibility assessment results. (d) Mapping
results of the difference in the degree of landslide susceptibility assessment before and after optimization.

Locality 2 is near the Muztag Mountains and glacial moraines are widely distributed.
Tectonic activity in the area is strong, earthquakes are frequent, and it is prone to moraine landslides.
Previous work indicated that a landslide, in this case, was triggered by an earthquake. As a result
of extra-seismic forces, the morainic material in the landslide area began to be mobilized and the
structure of the moraines beneath the glaciers in the vicinity of the landslide was affected. Cracks
appearance and melting began to affect the stability of the upper layer of the moraines, which results
in accelerated movement and damage to the road. The latest SBAS results show that there are multiple
deformation centers, which indicate that there is a greater possibility of landslides in areas where
landslide susceptibility is low. The optimized LSM shows this difference and corrects the low landslide
susceptibility area to high landslide susceptibility area (Figure 10).
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Figure 10. Results of landslide assessment for locality 2 (Muztag Mountains). (a) Landslide susceptibility
assessment results obtained by the random forest method. (b) SBAS deformation rate values along the
slope direction. (c) Optimized landslide susceptibility assessment results. (d) Mapping results of the
difference in the degree of landslide susceptibility assessment before and after optimization.

5. Discussion

This research object is the landslide susceptibility evaluation of KKH. There are few studies on
the maximum limit range of damage caused by disasters on both sides of linear highways, so there is
no uniform standard for road boundary range, but is only considered for the distribution range of
historical landslides and the possible damage to the road. Most of the historical landslides in KKH are
within the 10-km buffer zone. Exceeding this range, most of them are glacially covered areas. Because
it is far away from the highway, even if a large landslide occurs, it is difficult to cause damage to
the highway. Therefore, this study selects the 10-km buffer zone on both sides of KKH as the actual
research scope.

When we obtained the LSM by logistic regression and random forest, it is necessary to evaluate
its accuracy. The most straightforward way is to calculate the correct classification ratio. To do this,
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we need to use a testing set to verify the model’s ability to discriminate against new samples, and then
use the testing error as an approximation of the generalization error. In general, we assume that
the verification sample is also obtained by sampling independently from the true distribution of the
sample. Additionally, the verification set should be as mutually exclusive as possible to the training
set. In addition, the division of the training set and the verification set should maintain the consistency
of the data distribution as much as possible, and avoid the influence of the data division process in
the final result. Generally, approximately 2/3 to 4/5 samples are typically used for training and the
remaining samples are used for testing.

The optimization of LSM is only effective when the SBAS deformation indicates the landslide
occurrence. In fact, the slope deformation recognized by the InSAR method is generally a precursor
to landslide occurrence, when the slope deformation rate has an accelerated process in time series
analysis. It generally indicates the occurrence of the landslide [20,40]. Through field investigation and
verification of InSAR results, we found that the landslide state of activity has been determined through
Vslope. Essentially, the greater the Vslope is, the more unstable the slope is, and the more likely the
landslide occurs. It is demonstrated that InSAR results can greatly improve the monitoring capacity of
very slow landslides. Therefore, the InSAR deformation monitoring results can provide important
evidence for early identification and susceptibility evaluation of landslides [16,17].

In the SBAS-InSAR results, the sentinel-1A satellite used in this study has a 12-day revisiting
time, which makes the InSAR method suitable only for slow and very slow earth surface movements.
Thus, it fails to effectively monitor rapid movements such as rock falls and debris flow. Due to this
inherent limitation of the InSAR technology, there is no effective SAR monitoring of vegetated and
glacier covered areas. The L-band sensor reduces the temporal incoherence effect caused by vegetation
coverage and improves the penetrating ability of the radar signal [28], whereas the X-band sensor is
suitable for the monitoring of glaciers [41]. The sentinel-1A C-band, however, combines the advantages
of the L-band and X-band sensors to reduce the spatial and temporal decorrelation, and provides an
improved monitoring of vegetation and glaciers.

In this study, logistic regression and the Random Forest model were used to conduct LSM, but the
results have several limitations that cause the misclassification. One is related to the quality of data
associated with each landslide predisposing factor and the other is the quality of the landslide inventory.
Regarding the last one, only 44 landslides mapped due to the harsh environment of KKH exist for this
study area, and they cannot completely represent the total number of historical landslides. This resulted
in a large misclassification error for the LSM, and demonstrates the necessity of refining the LSM using
SBAS results. Notably, the new LSM, combined with the SBAS results, reduced the misclassification
in which terrain affected by slope deformation was classified with very low and low susceptibility.
Another issue is that the LSM only portrays the predicted landslide distribution in areas and does
not depict dynamic deformation processes over time. However, changes in landslide activity over
time is a primary concern for decision makers [42]. The new LSM combined with the SBAS results can
reveal the actual activity state of landslides and should be used for preliminary landslide mapping and
quantitative risk management at a regional scale [43].

In summary, LSM is a fundamental tool in landscape management and can be used to evaluate the
risks for people and infrastructure areas prone to landslides. Both the LSM and the SBAS deformation
results individually can achieve the required goal, but the combination of the two methodologies
allows the LSM to be optimized and refined. The LSM optimized by the SBAS results led to an
improvement in the susceptibility ranking of a portion of the KKH over the LSM obtained by the
Random Forest model. Thus, we suggest that LSM, optimized by the use of SBAS, is potentially very
useful for effective land use management and planning activities in the area of the KKH.

6. Conclusions

In this study, logistic regression and the Random Forest model were used to evaluate the accuracy
of LSM of the KKH. Subsequently, SBAS-InSAR results were used to improve the accuracy of the LSM.
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The purpose of this combination of techniques is to further improve the accuracy of the evaluation
results by taking into account recent landslide events in order to reduce the potential landslide risk.

LSM was obtained by using logistic regression and random forest methods, respectively,
which were divided into five categories: very low, low, moderate, high, and very high. By comparing
the correlated classified rate of the validation data set and the AUC value of the ROC curve, the random
forest values reached 98.79% and 0.981%, respectively. Therefore, the random forest result was selected
to participate in the LSM optimization. Then, we create the contingency matrix based on both the
susceptibility degree and the Vslope after removing the subsidence rate to optimize LSM. The new LSM
showed that there were 6595 cells with the landslide susceptibility degree increased.

Our research has a significant implication for the refinement of landslide susceptibility mapping,
especially in areas where the SBAS method is suitable and available. This optimized landslide
susceptibility mapping can provide valuable decision support for disaster prevention, mitigation,
and management along the KKH.
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