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Abstract: Synthetic Aperture Radar (SAR) scene classification is challenging but widely applied, in
which deep learning can play a pivotal role because of its hierarchical feature learning ability. In the
paper, we propose a new scene classification framework, named Feature Recalibration Network with
Multi-scale Spatial Features (FRN-MSF), to achieve high accuracy in SAR-based scene classification.
First, a Multi-Scale Omnidirectional Gaussian Derivative Filter (MSOGDF) is constructed. Then,
Multi-scale Spatial Features (MSF) of SAR scenes are generated by weighting MSOGDF, a Gray
Level Gradient Co-occurrence Matrix (GLGCM) and Gabor transformation. These features were
processed by the Feature Recalibration Network (FRN) to learn high-level features. In the network,
the Depthwise Separable Convolution (DSC), Squeeze-and-Excitation (SE) Block and Convolution
Neural Network (CNN) are integrated. Finally, these learned features will be classified by the Softmax
function. Eleven types of SAR scenes obtained from four systems combining different bands and
resolutions were trained and tested, and a mean accuracy of 98.18% was obtained. To validate the
generality of FRN-MSF, five types of SAR scenes sampled from two additional large-scale Gaofen-3
and TerraSAR-X images were evaluated for classification. The mean accuracy of the five types reached
94.56%; while the mean accuracy for the same five types of the former tested 11 types of scene was
96%. The high accuracy indicates that the FRN-MSF is promising for SAR scene classification without
losing generality.

Keywords: SAR; scene classification; deep learning; convolutional neural network (CNN); attention
mechanism; multi-scale spatial feature; Gabor Transform; gray-level gradient co-occurrence matrix
(GLGCM); gaussian derivative filter

1. Introduction

With the fast development of remote sensing technology, the variety of the acquired imagery
datasets has been increasing, such as Hyperspectral images, Light Detection And Ranging (LiDAR)
dense point clouds, and Synthetic Aperture Radar (SAR) images with different bands. The volume and
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complexity of skyscraping data requires automatic interpretation of remote sensing images, which has
become an urgent task to achieve the goal of a digital earth [1]. Among numerous image interpretation
techniques, scene classification using remote sensing images attracts considerable research interest.
For decades, scene classification has been widely applied in many fields such as natural disaster
monitoring [2–5], land use and land cover classification [6,7], target detection [8–10], geographical
space targets monitoring [11], geographical images search [12], vegetation mapping [13], environment
monitoring and city planning [14]. SAR is an active earth observation system that offers all-day and
almost all-weather advantages over other sensors. These advantages make SAR scene classification
more appealing. However, there are three unique challenges in SAR scene classification. First, speckle
noise in SAR imagery is more complicated than the noise in other remote sensing data, because speckle
is a granular noise that inherently exists and reduces the quality of SAR images [15]. Second, there
is not yet a deep learning network which is specifically designed for SAR image classification. The
networks commonly used are all directly relevant to optical images, which cannot be directly applied
to SAR images. Third, the generalization of SAR scene classification algorithms is more complicated,
as the variations in image parameters (such as frequency, spatial resolution and temporal resolution)
are much greater than those of optical images.

The contributions of this paper are as follows:

(1) A framework for SAR scene classification is proposed, which contains two parts: multi-scale
spatial features (MSF) extraction and Features Recalibration Network (FRN). The first part aims to
extract multi-scale low-level features, while the second part intends to extract high-level features
and then confirm the types of targets.

(2) An example of the MSF is presented, in which a Multi-Scale Omnidirectional Gaussian
Derivative Filter (MSOGDF), a Gray Level Gradient Co-occurrence Matrix (GLGCM) and Gabor
transformation are used to extract rich detailed information from SAR images.

(3) An example of the FRN is demonstrated, in which Depthwise Separable Convolution (DSC),
attention mechanism and CNN are integrated to better extract the high-level features of different
types of targets.

(4) A prototype of the above-mentioned framework is implemented and its performance is assessed
using SAR data with different frequency bands and different resolutions.

The remainder of the paper is organized as follows. Section 2 introduces the framework proposed
in detail, mainly two parts, MSF and FRN. Section 3 gives the experiments and the corresponding
results, which validate the accuracy and the generalization of the proposed framework. Section 4 gives
a discussion on the weighting selection for different features followed by some conclusions.

2. Background

2.1. State of the Art

Many scene classification approaches have been proposed, which can be categorized into
three types according to the features extraction [16]: (1) methods based on handcrafted-feature,
which usually use expertise and engineering skills to extract useful information to distinguish
between different types of targets [17], such as texture, shape and spectral features; (2) methods
based on unsupervised-feature-learning, which extract more discriminative features than manually
designed features by learning from unlabeled input data automatically [18,19]; (3) methods based
on deep-feature-learning, which extract high-level features of targets by learning from labeled input
data [20,21], as proposed by Hinton and Salakhutdinov in 2006 [22].

Deep learning extracts image features through a multi-layer neural network. As the number of the
network layers increases, it can extract higher-level features and thus better interpret SAR images. It
stems from an artificial neural network, which integrates low-level features to form abstract high-level
features to determine the types of different targets. The low-level features mainly embody the detailed
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information of targets, such as the texture and edges; while the high-level features mainly reflect the
features of types, which is better for classifying targets. Since then, deep learning has been studied
and used by scholars in many fields, especially in optical image processing (such as target detection,
object recognition and image segmentation). Hinton et al. [23] presented a fast, greedy algorithm
which used “complementary priors” to learn deep, Directed Belief Networks (DBN) one layer at a
time. It achieves better digit classification result than the best discriminative learning algorithm, which
brings some hope to solve the optimization problem of deep structures. In the ImageNet contest
of 2012, Krizhevsky et al. used a Convolutional Neural Network (CNN) to achieve a 10% accuracy
improvement [24]. It was the first time that the performance of deep learning exceeded those of
traditional learning modes, in which the features are manually designed and shallow networks are
used in the training mode. Since then, the upsurge for deep learning has begun. In 2016, AlphaGo, an
artificial intelligence robot developed by DeepMind, defeated the top player of mankind in the game
Go [25]. Many deep learning algorithms and Monte Carlo searching were adopted in it. The learning
mechanisms of deep learning are identical to machine learning, including supervised learning and
unsupervised learning.

At present, there does not exist a sophisticated deep learning framework for SAR image
analysis. Due to the noticeable progress of deep learning in optical image processing [26], SAR
scene classification largely adopts algorithms from optical image classification. Successful examples
include the Bag-of-Visual-Words (BoVM) [27], the unsupervised probabilistic Latent Semantic Analysis
(pLSA) model [28] and the k-Nearest Neighbor (k-NN) classifier [29]. However, most research favors
developing SAR specific scene classification methods. For example, Cloude and Pottier [30] combined
polarimetric SAR modeling and entropy-based classifier for SAR-based scene classification. But
these methods largely depend on middle-level or low-level SAR features. Sheng et al. [31] proposed
Local Ternary Pattern Histogram Fourier (LTP-HF) transformation to extract SAR features, while
Cheng et al. [32] and Hu et al. [33] constructed BoVM to encode local features. However, these SAR
features normally require manual selection, which fail to accommodate the scene classification task in
terms of high-level semantic feature representation or big data challenge.

Scientists have begun to investigate classification methods that fill in the gap between low-level
features and high-level features. Selim et al. [34] constructed a Bayesian classifier based on visual
grammar learning to perform scene classification. This method could achieve satisfactory accuracy,
but could not fully learn the rich high-level information of SAR images, but deep learning can solve
this problem effectively. Deep learning approaches can extract high-level semantic features from
SAR images hierarchically, which can encode semantic information of the scene more effectively.
Zhong et al. [35] combined traditional local features expression with CNN to tackle scene classification,
which automatically builds high-level image features using local ones. Hu et al. [36] proposed sparse
filter to learn features of salient regions, which were employed to parameterize the convolutional
layers within CNNs, for SAR scene classification.

However, none of the previous work has explored the fusion of high-level SAR features
with deep learning in SAR scene classification. Therefore, we propose a more sophisticated deep
learning framework to achieve higher accuracy by integrating high-level SAR features with low-level
features automatically.

2.2. Deep Learning

Deep learning is a new field derived from machine learning, which aims to analyze various
datasets by simulating human brain processing of targets, such as images, voices and texts. CNN builds
hierarchical networks to process data with given grid-like structures [37]. It relies on convolutional
kernels to learn structural features through multiple layers of neurons hierarchically. The learnt features
are usually passed to classifiers such as Softmax [38], to form the complete workflow of supervised
learning. The three fundamental layers of CNN are shown as follows:
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(1) Convolutional layer: it is the core of a CNN, in which the convolution operation is employed
to replace matrix multiplication. Supposing that the input image is a m× n matrix X and the number
of convolutional kernels is K with a dimension of k × k, the dimension of the output matrix Y is
((m− k)/s + 1) × (n− k)/s + 1) after convolution as follows:

yi = bi +
∑

i

ωi j ⊗ xi (1)

where xi is the input of the front layer, ωi j is the weight, bi is the bias and s is the stride of the
convolutional kernel.

(2) Activation layer: this layer implements non-linear transformation(s) to the input:

fs = τ(bi +
∑

i

ωi j ⊗ xi) (2)

where τ is the activation function, with the commonly used ones being Sigmod, Tanh, and Rectified
Linear Units (ReLU) [37]. ReLU can improve the sparse expression ability of the network and prevents
over-fitting. It solves the problem of gradient dissipation caused by the increasing number of network
layers and accelerates the convergence of Stochastic Gradient Descent (SGD) [37]. Therefore, this paper
employed ReLU as the activation function.

Pooling layer: when the input image is big, feature maps produced by the convolution layers are
huge and contain considerable superfluous features. To solve this redundancy problem, a pooling layer
is used to down-sample the feature maps. The most commonly used pooling strategies are Max-Value,
Mean-Value and Root-Mean-Square [37].

3. Methodology

3.1. The Framework Architecture

The proposed framework architecture is illustrated in Figure 1. First, training samples and testing
samples are generated respectively. Second, training samples are processed by the Multi-scale Spatial
Feature (MSF) module. In MSF, the Gray Level Gradient Co-occurrence Matrix (GLGCM) features,
Gabor transformation and Multi-scale Omnidirectional Gaussian Derivative Filter (MSOGDF) are
employed to extract the corresponding low-level features. Then, different weights for the three features
are assigned according to the analysis of classification performance. Third, the fused image is analyzed
using the proposed Feature Recalibration Network (FRN) to extract high-level features for scenes.
In FRN, it includes two Squeeze-and-Excitation (SE) Blocks [36], two New Squeeze-and-Excitation
(NSE) Blocks, some convolution layers, pooling layers and full connection layers. In the proposed
NSE Block, Depthwise Separable Convolution (DSC), SE Block and CNN are integrated to produce an
enhanced module for classification. Finally, the Softmax function classifies these enhanced feature
maps as pre-defined scene types.

3.2. Multi-Scale Spatial Feature (MSF)

MSF aims to acquire multi-scale spatial statistical features of SAR images. This is inspired by [39],
in which integration of various features extracted from multi-scale SAR images could improve the
accuracy of classification. In this paper, we developeda method of GLGCM, Gabor transform and
MSOGDF to extract different features of SAR images, which are then fused to learn high-level features.



Sensors 2019, 19, 2479 5 of 22

Sensors 2019, 19, x 4 of 22 

 

of convolutional kernels is K with a dimension of 𝑘 × 𝑘, the dimension of the output matrix Y 
is ((𝑚 − 𝑘) 𝑠⁄ + 1) × (𝑛 − 𝑘) 𝑠⁄ + 1) after convolution as follows: 𝑦௜ = 𝑏௜ + ෍ 𝜔௜௝ ⊗ 𝑥௜௜  (1)

where 𝑥௜ is the input of the front layer, 𝜔௜௝ is the weight, 𝑏௜ is the bias and s is the stride of the 
convolutional kernel. 

(2) Activation layer: this layer implements non-linear transformation(s) to the input: 𝑓௦ = 𝜏(𝑏௜ + ෍ 𝜔௜௝ ⊗ 𝑥௜௜ ) (2)

where τ is the activation function, with the commonly used ones being Sigmod, Tanh, and Rectified 
Linear Units (ReLU) [37]. ReLU can improve the sparse expression ability of the network and 
prevents over-fitting. It solves the problem of gradient dissipation caused by the increasing number 
of network layers and accelerates the convergence of Stochastic Gradient Descent (SGD) [37]. 
Therefore, this paper employed ReLU as the activation function. 

Pooling layer: when the input image is big, feature maps produced by the convolution layers are 
huge and contain considerable superfluous features. To solve this redundancy problem, a pooling 
layer is used to down-sample the feature maps. The most commonly used pooling strategies are Max-
Value, Mean-Value and Root-Mean-Square [37]. 

3. Methodology 

3.1. The Framework Architecture 

The proposed framework architecture is illustrated in Figure 1. First, training samples and 
testing samples are generated respectively. Second, training samples are processed by the Multi-scale 
Spatial Feature (MSF) module. In MSF, the Gray Level Gradient Co-occurrence Matrix (GLGCM) 
features, Gabor transformation and Multi-scale Omnidirectional Gaussian Derivative Filter 
(MSOGDF) are employed to extract the corresponding low-level features. Then, different weights for 
the three features are assigned according to the analysis of classification performance. Third, the 
fused image is analyzed using the proposed Feature Recalibration Network (FRN) to extract high-
level features for scenes. In FRN, it includes two Squeeze-and-Excitation (SE) Blocks [36], two New 
Squeeze-and-Excitation (NSE) Blocks, some convolution layers, pooling layers and full connection 
layers. In the proposed NSE Block, Depthwise Separable Convolution (DSC), SE Block and CNN are 
integrated to produce an enhanced module for classification. Finally, the Softmax function classifies 
these enhanced feature maps as pre-defined scene types. 

 
Figure 1. The proposed framework architecture. Figure 1. The proposed framework architecture.

3.2.1. GLGCM Extraction

GLGCM reflects the relationship of two basic elements in an image, gray level and gray gradient.
The gray level stands for the pixel values of a given SAR image, while the gray gradient is the
directional change in grey levels, which are commonly employed for image edge detection and texture
analysis [40]. GLGCM can describe the texture of the given image, in which the directional texture can
be depicted by the direction of the gray gradient [41].

Supposing SAR image is f (i, j), i, j = 0, 1, 2, . . . , N − 1. N is the dimension size of the image.

(1) Normalization processing for the image: F(i, j) =
[

f (i, j)L f / fmax
]
+ 1. L f is the total number of

gray levels, and fmax is the maximum gray value of a given SAR image.
(2) Computing the gray gradient image: g(i, j), i, j = 0, 1, 2, . . . , N − 1. To better extract texture

information, four Sobel operators in four directions with a 3 × 3 window are adopted considering
the amount of calculation. They are 0◦, 45◦, 90◦ and 135◦, which are denoted by S0, S45, S90, and
S135 respectively.

S0 =


−1 −2 −3
0 0 0
1 2 1

, S45 =


−2 −1 0
−1 0 1
0 1 2

, S90 =


−1 0 1
−2 0 2
−1 0 1

, S135 =


0 1 2
−1 0 1
−2 −1 0

 (3)

Then, the gradient value g(k, l) of the pixel (k, l) is computed by Equation (4):

g(k, l) =
√

g2
0 + g2

45 + g2
90 + g2

135 (4)

gm = f (k, l)3×3 × Sm, m = 0, 45, 90, 135 (5)

where the symbol ∗means dot product operation between two matrices, and f (k, l)3 × 3 denotes
3 × 3 matrix values around the central pixel (k, l).

(3) Gray gradient image normalization: G(i, j) =
[
g(i, j)Lg/gmax

]
+ 1. Lg is the number of gray

levels for the gray gradient image, and gmax is the maximum value of the gradient matrix.
(4) GLGCM computation: H(i, j) : i = 0, 1, 2, . . . , L f − 1, j = 0, 1, 2, . . . , Lg − 1. It counts the number

of the point pairs in the image which satisfies f (m1, n1) = i, g(m2, n2) = j, simultaneously.

Fifteen commonly used quadratic statistical characteristics can be computed based on the
normalized GLGCM, including small gradient dominance, large gradient dominance, inhomogeneity
of gray distribution, inhomogeneity of gradient distribution, energy, gray mean, gradient mean, gray
mean square error, gradient mean square error, correlation, gray entropy, gradient entropy, mixing
entropy, inertia and homogeneity [40]. Then the characteristics of correlation and inertia are selected in
the paper after further analysis.
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3.2.2. Gabor Transformation

Gabor transform is much like the visual stimulating response of simple cells in human visual
system. It has sound performance in extracting local spatial information and frequency features
of targets. Compared with traditional Fourier transformation, Gabor transformation has better
performance in time-frequency domain analysis. We usually adjust the directions, baseband bandwidth
and central frequency of the Gabor filter to better tackle the resolution of signal in both spatial-temporal
domain and frequency domain [42].

This paper adopts a two-dimensional Gabor filter: G(x0, y0,θ,ω) [43], to perform convolution
with SAR images: I(x, y).

IG = I(x, y) ⊗G(x0, y0,θ,ω) (6)

G(x0, y0,θ,ω) =
1

2πσ2 exp (−
x2

0 + y2
0

2σ2 )·

[
exp ( jωx0) − exp (−

ω2σ2

2
)

]
(7)

where ⊗ denotes convolution operation, where x0 = xcosθ+ ysinθ, y0 = −xsinθ+ ycosθ, and θ is the
directional angle. ω is the central frequency of the filter and σ is the mean square error of Gauss
function. exp( jωx0) is the alternating component, and exp (−ω

2σ2

2 ) denotes the direct component [39].
The features extracted by Gabor transformation are mainly local texture information. These

features depend on the Gabor kernel, which acts as a sliding window in the frequency domain to extract
local information. In this paper, Gabor transformation in the direction of 45◦ and 135◦ were selected,
because they can better represent the features of SAR image in the experiments than other directions.

3.2.3. Multi-Scale Omnidirectional Gaussian Derivative Filter (MSOGDF)

Generally, the global visual spatial structure of images follows Weibull distribution statistically.
Therefore, the Weibull model of global spatial structure of images can be constructed to represent the
visual characteristics of images. The local spatial structure of each pixel can be represented by Taylor
expansion of the image I(x, y) at the given point. Thus, the observation value Î(x, y) of the SAR image
is given by the Taylor approximation in Equation (8):

Î(x, y) = Î
[

x
y

]T[
Ix

Iy

]
+

1
2

[
x
y

]T[
Ixx Ixy

Iyx Iyy

][
x
y

]
+ · · · (8)

It indicates the observation value is obtained by accumulating the spatial structure information of
the image at a given spatial scale. This illustrates that the most important visual characteristics of an
image are determined by the spatial structure of the image. The differential term Ixm yn (m, n = 0, 1, 2, · · · )
represents the spatial structure characteristics of the image, which can be generated by a Gaussian
derivative filter Gk,σ(x, y, σ) [44]:

Ixm yn(x, y) = I(x, y)Gk,σ(x, y, σ) (9)

where k = m + n is the order of the filter, and σ is the scale parameter.
We can only obtain filtered SAR images in the direction of x and y via Equation (9). To tackle

this problem, we developed an omnidirectional Gaussian derivative filter to extract spatial structure
features with arbitrary directions θ. The omnidirectional Gaussian derivative filter Gθk,σ(x, y) is shown
in Equation (10):

Gθk,σ(x, y) =
M∑

i=1

ki(θ)Gθik,σ
(x, y) (10)

where M is the number of filter bases Gθik,σ
(x, y), and ki(θ) is the interpolation function.
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In polar coordinates, supposing γ =
√

x2 + y2 and ψ = arg(x, y), then the Fourier series of
Gθk,σ(γ,ψ) can be expanded in polar angle ψ:

F
{
Gθk,σ(γ,ψ)

}
=

N∑
n=0

an(γ)einψ (11)

To solve Equation (10) by using Equation (11), if and only if ki(θ) are solutions of the following
equation [44]: 

1
eiθ

...
einθ

 =


1 1 · · · 1
eiθ1 eiθ2 · · · eiθM

...
...

...
...

einθ1 einθ2 · · · einθM




k1(θ)

k2(θ)
...

kM(θ)

 (12)

If, for any n, an(γ) = 0, then the corresponding (nth) row of the left-hand side and of the matrix
of the right-hand side of Equation (12) should be removed.

In this paper, a Multi-Scale Omnidirectional Gaussian Derivative Filter (MSOGDF) has been
proposed, using 6 directions between 0 and π with an interval of 30◦, to extract the features of the targets.

3.2.4. Multi-Scale Spatial Features (MSF) Fusion

Features extracted by GLGCM, Gabor and MSOGDF contain rich low-level information of the
targets, which are very helpful for the framework to confirm detailed information of different types
of scenes. Then, these features are fused by a weighted vector as the input to the CNN, to generate
higher level features via convolution layers and pooling layers. This process also removes redundant
features. The weight vector is generated according to the classification performance of these features
for different types of scenes.

3.3. Depthwise Separable Convolution (DSC)

CNNs have demonstrated their prominence in the field of image recognition. The most
straightforward way to improve network performance is to increase the depth of the network,
such as with the Visual Geometry Group-19 (VGG-19) model [45], which can enhance the network’s
ability for characterizing data features. However, the more network layers, the greater the number of
parameters, which makes the convergence more challenging [46]. In order to solve this problem, a
deep separable convolution module [46] is employed to replace additional convolution layers with
more parameters. The schematic diagram of the convolution module is shown in Figure 2.
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Figure 2. Convolution module (a), Standard convolution module (b), Depthwise separable
convolution module.

As shown in Figure 2a, a 2 × 2 convolutional kernel was been applied to the input image.
Supposing there is a 3 × 3 convolution layer with 16 input channels and 32 output channels, we employ
32 convolutional kernels (each kernel is 3 × 3) to process the input data. Thus, each convolutional
kernel brings 3 × 3 × 16 parameters, and the 3 × 3 × 16 convolutional kernel combines 16 input channels
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to generate a single channel output. Therefore, the number of parameters for 32 convolution kernels is
4068 (i.e., 3 × 3 × 16 × 32).

The DSC module divides the convolutional operation into two steps: (1) Depthwise operation
uses 16 convolutional kernels and each kernel is 3 × 3 (one channel), from which we obtain 16 feature
maps from 16 input channels; (2) Separable operation utilizes 32 convolution kernels and each kernel
is 1 × 1 (16 channels), to fuse 16 feature maps. The whole process includes 656 (3 × 3 × 16 + (1 × 1 × 16)
× 32) parameters.

Compared with standard convolution operations, depth separable convolution reduces the
number of the required parameters significantly. More importantly, DSC handles regions and
channels separately.

3.4. New Squeeze-And-Excitation (NSE) Block

The recognition mechanism of convolutional neural networks imitates the recognition process
of the human brain. In the process of recognition, the human cerebral cortex has different levels of
excitement for different targets, which is called the attention mechanism. This inspires the attention
mechanism of computer vision [47]. This mechanism guides the neural network to learn the important
levels of features within the entire recognition task. It has been applied well in text translation [48], text
matching [49], speech recognition [50], and especially image recognition [51]. SE Block proposed by
He et al. [36] is a deep learning method, which is a prominent implementation of attention mechanism.

In this paper, a New Squeeze-and-Excitation (NSE) Block is proposed, integrating a SE Block, and
CNN with a DSC, as illustrated in Figure 3. This is an enhancement module to extract the high-level
features of different types of targets. We developed our DSC module based on Xception [46].

Sensors 2019, 19, x 8 of 22 

 

excitement for different targets, which is called the attention mechanism. This inspires the attention 
mechanism of computer vision [47]. This mechanism guides the neural network to learn the 
important levels of features within the entire recognition task. It has been applied well in text 
translation [48], text matching [49], speech recognition [50], and especially image recognition [51]. SE 
Block proposed by He et al. [36] is a deep learning method, which is a prominent implementation of 
attention mechanism. 

In this paper, a New Squeeze-and-Excitation (NSE) Block is proposed, integrating a SE Block, 
and CNN with a DSC, as illustrated in Figure 3. This is an enhancement module to extract the high-
level features of different types of targets. We developed our DSC module based on Xception [46].  

 
(a) 

 
(b) 

Figure 3. The structure of the New Squeeze-and-Excitation (NSE) Block. (a) the workflow of the NSE 
block, (b) the specific layer setting for the workflow of the NSE block. 

As demonstrated in Figure 3b, a feature map with the size of H×W and C channels of the input 
X is processed by the DSC layer, Xception_1, initially. Then, high-level features are extracted through 
Xception_2 and Xception_3. The feature map outputted by Xception_3 with C feature maps is further 
handled by Global Average Pooling (GAP): 

𝑥̅௜ = 𝐺𝐴𝑃(𝑥௜) = ቌ෍ ෍ 𝑎௜௝ு
௜ୀଵ

ௐ
௝ୀଵ ቍ (𝐻 × 𝑊)൘  (13)

where 𝑥௜ and 𝑥̅௜ are the feature maps before and after GAP respectively, and 𝑎௜௝ is the value of 
each pixel in the feature map.  

By this means, the correlation among channels is tackled by two Fully Connected (FC) layers 
with a bottleneck layer in the middle [36]. A weighted vector with dimension C is generated by the 
second FC layer, and then it is normalized via a Sigmoid function: (𝑥෤ଵ, 𝑥෤ଶ, ⋯ , 𝑥෤஼) = 𝑠𝑖𝑔ሾ𝜎(𝑥෤ଵ, 𝑥෤ଶ, ⋯ , 𝑥෤஼)ሿ (14)

where 𝜎 denotes the bottleneck operation, and 𝑠𝑖𝑔 denotes the normalization for the vectors, while (𝑥෤ଵ, 𝑥෤ଶ, ⋯ , 𝑥෤஼) is the normalized weight vector.  
The SE Block only considers the relationship among feature maps at the given layer, rather than 

that between two layers. Therefore, we need a high-level feature to capture such relationship. To 
achieve this, the weighted integration of the top and middle channel is proposed, which is added to 
the low channel via the scale operation:  𝑥௜∗ = 𝑥෤௜ ∙ 𝑥௜ (15)

X X ∗

exF

exF
sqF

sqF
scaleF

scaleF
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block, (b) the specific layer setting for the workflow of the NSE block.

As demonstrated in Figure 3b, a feature map with the size of H ×W and C channels of the input X
is processed by the DSC layer, Xception_1, initially. Then, high-level features are extracted through
Xception_2 and Xception_3. The feature map outputted by Xception_3 with C feature maps is further
handled by Global Average Pooling (GAP):

xi = GAP(xi) =

 W∑
j=1

H∑
i=1

ai j

/(H ×W) (13)
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where xi and xi are the feature maps before and after GAP respectively, and ai j is the value of each
pixel in the feature map.

By this means, the correlation among channels is tackled by two Fully Connected (FC) layers with
a bottleneck layer in the middle [36]. A weighted vector with dimension C is generated by the second
FC layer, and then it is normalized via a Sigmoid function:

(x̃1, x̃2, · · · , x̃C) = sig[σ(x̃1, x̃2, · · · , x̃C)] (14)

where σ denotes the bottleneck operation, and sig denotes the normalization for the vectors, while
(x̃1, x̃2, · · · , x̃C) is the normalized weight vector.

The SE Block only considers the relationship among feature maps at the given layer, rather than
that between two layers. Therefore, we need a high-level feature to capture such relationship. To
achieve this, the weighted integration of the top and middle channel is proposed, which is added to
the low channel via the scale operation:

x∗i = x̃i·xi (15)

Therefore, the more effective features can be extracted fully by weighting of different channels,
through the NSE Block. It can suppress the redundant features which affect the classification accuracy
and perform the recalibration of the multi-scale features. Then, it can improve the classification
accuracy finally.

In the paper, a framework is proposed to carry out scene classification, which is called Feature
Recalibration Network with Multi-scale Spatial Features (FRN-MSF). At first, it extracts rich low-level
features by the MSF module, which can better describe the detailed information of the targets. Then,
the fused features are the inputs to the network FRN, which integrates SE Blocks, the proposed NSE
Blocks, some convolution layers, pooling layers and fully connected players. It can better extract
high-level features, which can in turn be used to confirm the types of targets.

4. Experiments and Results

4.1. Datasets Used in this Study

To assess the proposed framework, SAR images with different bands, resolutions, and acquired
from different platforms were utilized. The dataset contains two images from TerraSAR-X, five images
from Gaofen-3, one image from airborne millimeter InSAR (MM-InSAR) and one image from airborne
X-band InSAR (CAS-InSAR), as shown in Table 1. SAR images used in these systems are all single
polarization products. The two TerraSAR-X images were acquired from the Dongtinghu and Foshan
areas, respectively. The five Gaofen-3 images covered five airports (i.e., Shanghai airport). The
very-high-resolution (VHR) MM-InSAR image was acquired at Xi’an, China. The CAS-InSAR image
was provided by the Chinese Academy of Science, and we selected an image taken at Weinan, China.
We used nine large-scale SAR images in total. Seven images were selected for training and testing of
the framework except for the Foshan image from TerraSAR-X and the one airport image (Carstensen
airport) from Gaofen-3. To evaluate the generalization ability, we utilized the trained model to test
samples selected from Foshan image and the unused airport image.

Table 1. SAR image datasets used in this study.

System Platform Band Resolution (m) Size(pixels) Location (China)

TerraSAR-X Satellite X 3 14,804 × 30,623 Dongtinghu, Foshan
Gaofen-3 Satellite C 1 31,699 × 26,193 Airports (i.e., Shanghai)

MM-InSAR Airborne Millimeter 0.15 10,240 × 13,050 Xi’an
CAS-InSAR Airborne X 0.5 16,384 × 16,384 Weinan
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Samples of the datasets are shown in Figure 4. Figure 4a1–a4 illustrate parts of the sampled
SAR images acquired at Shanghai, Dongtinghu, Xi’an and Weinan SAR images. Figure 4b1–b4 show
samples extracted from the corresponding SAR images in Figure 4a1–a4.Sensors 2019, 19, x 10 of 22 
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Figure 4. SAR images and samples: (a1–a4) SAR images used in the paper; (b1–b4) The scene samples
extracted from left SAR images.

A total of 300 samples for each type were generated with a size of 500× 500 pixels by the commonly
used method for preparing samples in the remote sensing image scene classification [1]. A total of 11
kinds of scenes were generated in total, including airport, bridge, farmland, pond, river, road, ship,
terraced field, town, overpass and woods. In the datasets, 80% of the samples for each type were
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selected randomly as training samples, and the rest are selected as testing samples. Examples for
the 11 types are shown in Figure 5. In the airport samples, airplanes were not included, but airport
runways, grassland and aprons were. The bridge samples contained only bridges above water. The
pond samples were small pools, rather than lakes. The roads we selected did not contain urban roads,
which were marked as town. The ship samples were only ships in water. The overpass samples only
contained bridges across roads in the city.
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4.2. Parameters Setting of the Proposed Framework

For the SAR datasets, FRN was proposed to perform classification. It contained four Conv2D
convolution layers, four pooling layers, two NSE Blocks, two SE Blocks, three FC layers and one
Softmax layer. The multi-scale fusion images were the input of the network. The output results of
the network were normalized vectors in accordance with pre-defined scene types. The results were
generated by the Softmax layer. The parameters of the network are shown in Table 2.

Table 2. Parameters setting of the network FRN.

Layer Types Convolutions/Pooling Window Size

Input −

Conv2D Convolution Layer C1 5 × 5 × 96
Pooling S1 2 × 2
SE Block_1 −

Conv2D Convolution Layer C2 3 × 3 × 256
Pooling S2 2 × 2
SE Block_2 −

Conv2D Convolution Layer C3 3 × 3 × 256
Pooling S3 2 × 2

NSE Block_1 −

Conv2D Convolution Layer C4 3 × 3 × 512
Pooling S4 2 × 2

NSE Block_2 −

FC_1 1024
FC_2 1024
FC_3 11

Softmax −
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4.3. Results

4.3.1. Multi-Scale Feature Extraction and Fusion

In this paper, three feature extraction methods were used, including GLGCM, Gabor transformation
and MSOGDF. For a SAR scene, we could compute 15 digital feature maps by GLGCM. After analyzing
the effects of texture features for the 11 types of scene, the correlation and inertia features were selected.

The correlation and inertia GLGCM features were further combined as a fused feature for SAR
scene classification. The correlation describes the grayscale similarity between rows and columns in a
matrix, which is a measure of the relationship between gray level and gray gradient in GLGCM. The
greater the similarity, the higher the correlation coefficient is. While the inertia reflects the smoothness
of the texture. The coarser the texture is, the smaller the inertia value is. Fusing the two features
together with SAR image by concatenation [52], we could obtain the enhanced texture feature, as
depicted in Figure 6.
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The Gabor function is like the biological function of the human eye, which is frequently used to
recognize a texture and achieves good results. Through the analysis for four angles of feature extraction
with Gabor transformation in the experiments, we found that the 45◦ and 135◦ transformation features
were clearer. We could get the fusion map in Figure 7 after fusing the 45◦ and 135◦ features together.
From which, we could see much better local texture features, especially the edge information. It is
much more useful for us to classify the different types of scene.
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According to Equation (10), we analyzed the feature effects of the different directions for θ by
30◦ spacing with the scale of σ is 1 or 2 respectively. Finally, we selected three directions (45◦, 90◦ and
135◦) with two scales (σ = 1, 2), considering the characteristic of the targets in different directions and
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the demand of the three channels in the concatenation method. Therefore, we could generate the six
features of a SAR image.

MSOGDF can extract multi-directional gray-scale change information, which is frequently applied
to identify edges and corners. It can capture detailed spatial information with different directions in
the image. Thus, it is widely employed to classify various objects [44]. Figure 8 delineates the fusion
map of two feature maps of MSOGDF in 90◦ direction with scale σ = 1 and σ = 2. The fusion map
presents more detailed information about targets.Sensors 2019, 19, x 13 of 22 
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4.3.2. Performance Assessment

(1) Feature Fusion Method

In this paper, we use three methods to extract different features of the targets: GLGCM, Gabor
and MSOGDF. For GLGCM, we fused the correlation and inertia feature maps with the SAR image
into a three-channel matrix as the output. As Gabor transformation is concerned, we combined the
feature maps of 45◦ and 135◦ with the SAR image into a new three-channel feature map. For MSOGDF,
we select three directions, namely 45◦, 90◦and 135◦. For each direction, we chose two observation
scales, σ = 1 and σ = 2. The feature maps were grouped by angle, within each group two different
scale feature maps were integrated to form a three-channel matrix as the new feature map.

For MSOGDF, the three groups of fusion features were separately experimented for classification
with the proposed algorithm. From Table 3, we find that the 45◦ group presented the best classification
results. Therefore, we selected this group as the input for further analysis.

Table 3. Average classification accuracy in three angles for MSOGDF.

Group 45◦ Group 90◦ Group 135◦ Group

Average Accuracy 95.45% 94.24% 94.55%

Four classification methods were tested based on the fused feature maps. They are FRN without
feature extraction, FRN with the GLGCM feature, FRN with the Gabor feature, and FRN with the
MSOGDF feature. The confusion matrices are shown in Figure 9. The abscissa axis shows the real
11 types of scene, while the ordinate shows the classified results of the 11 types. Compared with the
standard FRN method, the remaining three methods presented better classification accuracy.
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Figure 9. The confusion matrix of different methods for 11 types (‘Airpt’ means Airport, ‘Brid’ means
Bridge, ‘Farld’ means Farmland, ‘Riv’ means River, ‘Terra’ means Terraced field, ‘Overp’ means
Overpass, ‘Wood’ means Woods).

From the FRN confusion matrix, we found that the classification accuracies of bridge, farmland,
pond, ship and town were all 100%, because their features are relatively distinctive. While for the
airport scene, 16.7% of the samples were classified as road due to their high similarity, which is
illustrated in Figure 10c. For the river scene, there were 5% and 1.7% misclassifications as road and
town, respectively. Possible reasons include the river might be embedded in a town, or the small
river is very straight like a road, as samples depicted in Figure 10a. For the road scene, there were
10%, 5% and 5% misclassifications as overpass, airport and river. It might be because the road looks
like a straight small river or overpass, or the road locates in the airport, such as the samples in
Figure 10a,c,d. For the terraced field scene, there were 8% and 5.3% misclassifications as farmland and
woods, because of their similar texture delineated in Figure 10b. For the overpass scene, there were 2%
and 1.3% misclassifications as farmland and road; while the woods scene results in 1.3%, 1% and 1%
misclassification as terraced field, farmland and pond, as shown in Figure 10b.

Compared with the FRN algorithm, the FRN with GLGCM feature fusion method improved
the accuracies of river, road, terraced field and woods to 100% in our case study, which verifies the
advantage of GLGCM considering the local gray level and gray gradient, which provides a better way
to encode a scenes’ texture. However, we find the accuracies of farmland and pond were both reduced
by 3.3%. They were misclassified as terraced field, and GLGCM feature maps of some farmland and
pond samples are quite like features of terraced field samples. According to Figure 9c, the accuracies of
road, terraced field and overpass increased by 6.7%, 6.6% and 3.3%, respectively, compared to FRN,
but the accuracy of farmland decreased by 10%. After the MSOGDF feature fusion, the accuracies of
airport, river, terraced field, overpass and woods were improved by 6.7%, 6.7%, 10%, 3.3% and 3.3%
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compared with FRN. However, the accuracies of bridge, farmland, pond and road decreased by 6.7%,
3.3%, 3.3% and 3.3%, respectively.
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From the above analysis, we conclude that the proposed framework using three methods of feature
extraction and fusion are not suitable for every scene. Therefore, we should select an optimal method
for different scenes according to the confusion matrix in Figure 9. The selected feature extraction
methods for the 11 types of scene from Gabor, GLGCM, MSOGDF are presented in Table 4. In this
table, 1 denotes the feature is selected for the scene classification, and 0 denotes the opposite. For
the airport, the MSOGDF feature was selected, since it is the only feature that could improve the
classification according to the experiment performance. For the bridge classification, Gabor and
GLGCM features were selected with an identical weight, because the MSOGDF feature will increase
the risk of misclassification into ponds. For the farmland, none of the features were selected, because
they will all reduce the classification accuracy at least by 3.3%. For the pond, the Gabor feature was
selected. For the river, the GLGCM feature and MSOGDF outperform. For the road, we prefer the
GLGCM feature. Ships are very distinctive thus we do not need to employ feature extraction and
fusion. For the terraced field, the GLGCM feature was the best. According to Figure 9, we found that
the town’s classification accuracies were all 100% in the four confusion matrices, but there were some
river samples which were misclassified as town samples, as show in Figure 9a,c. Therefore, GLGCM
feature and MSOGDF features were selected for the town. For the overpass, Gabor and MSOGDF
features were chosen. For the woods, GLGCM and MSOGDF features were adopted.

Using the features fusion method in Table 4 and the proposed framework FRN, the final classified
accuracies for the 11 types are shown in Figure 11b. Figure 11a lists the classified accuracy by using
the SENet algorithm [36] without feature fusion, which achieved a better scene classification result
than many new deep learning networks, such as ResNet-200 [53], Inception-V4 [54], ResNetXt-101 [55],
DenseNet-264 [56] and PyramidNet-200 [57].

Compared with the SENet algorithm, the classification accuracy of the proposed framework
outperformed. Our framework achieved 100% accuracy in 9 types of scene, and the accuracy of airport
was improved by 3.4% as well. Only the accuracy of bridge was reduced by 6.7%. It is likely our fused
features make some bridges samples more like pond samples. According to the classification results of
FRN-MSF, some airport samples were classified as road. Table 5 gives the classification Mean Accuracy
(MA) of different algorithms. FRN-Gabor denotes the FRN with Gabor feature, FRN-GLGCM means
the FRN with GLGCM features, FRN-MSOGDF stands for FRN with MSOGDF features, and FRN-MSF
is the proposed framework, which is FRN with multi-scale spatial statistical features. From Table 5 we
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can see that the proposed framework has achieved the best accuracy, which was improved by 6.07% in
the whole compared with the SENet algorithm.

Table 4. Feature selection.

Gabor Transformation GLGCM Feature MSOGDF Filter

Airport 0 0 1
Bridge 1 1 0

Farmland 0 0 0
Pond 1 0 0
River 0 1 1
Road 0 1 0
Ship 0 0 0

Terraced field 0 1 0
Town 0 1 1

Overpass 1 0 1
Woods 0 1 1

1: denotes the feature is selected; 0: denotes the feature is not selected.Sensors 2019, 19, x 16 of 22 
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Table 5. Classification accuracy of different algorithms.

Algorothm MA (%)

SENet 92.11
FRN 94.24

FRN-Gabor 94.85
FRN-GLGCM 97.58

FRN-MSOGDF 95.46
FRN-MSF 98.18

4.3.3. Impacts of the Training Sample Ratios on the Performance

To find out the best training samples ratio, we repeated the experiments using our prior knowledge
and physical accessibility and got the final accuracies for the 11 types of scene when the training sample
ratios were 40%, 50%, 60%, 70%, 80% and 90%. We tested two algorithms for the experiments with the
same datasets, FRN algorithm and FRN-MSF. Table 6 gives the mean accuracies of the two algorithms
at different ratios.
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Table 6. Different training samples ratios and classification accuracies.

Training Sample Ratio 40% 50% 60% 70% 80% 90%

Classification MA of FRN 89.09 91.81 92.72 93.33 93.94 93.95
Classification MA of FRN-MSF 95.15 96.07 96.67 96.67 98.18 98.20

From Table 6, we find the classification accuracy was basically no longer higher when the ratio
exceeded 80%. Figure 12 shows the specific classification accuracy for the 11 types of scene with
different training sample ratios. The abscissa axis stands for training samples ratios, from 40% to 90%;
the ordinate shows corresponding classification accuracies. Figure 12a shows the mean classification
accuracy for FRN and FRN-MSF with various training samplings ratios, with details being listed in
Table 6. Figure 12b-(l) shows mean classification accuracies for the 11 types of scene. According to
Figure 12, once the training samples ratio reached over 80%, there was only very limited accuracy
improvement. Therefore, 80% of the total samples for each type were selected as the training samples
in this paper, and with the rest of samples being used for testing.
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Figure 12. The classification mean accuracy with different training sample ratios. (a) The MA curves
for FRN and FRN-MSF with training sample ratios; (b) The MA curves for Airport with training sample
ratios; (c) The MA curves for Bridge with training sample ratios; (d) The MA curves for Farmland with
training sample ratios; (e) The MA curves for Pond with training sample ratios; (f) The MA curves for
River with training sample ratios; (g) The MA curves for Road with training sample ratios; (h) The MA
curves for Ship with training sample ratios; (i) The MA curves for Terraced Field with training sample
ratios; (j) The MA curves for Town with training sample ratios; (k) The MA curves for Overpass with
training sample ratios; (l) The MA curves for Woods with training sample ratios.
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4.3.4. Generalization

To further validate the generalization ability of the proposed framework, we selected the two
unused SAR images, Foshan SAR image from TerraSAR-X and an airport image (Carstensen airport)
from Gaofen-3, which are shown in Figure 13. We designated five types of scene in total, which were
river, town, bridge, airport and woods. Some of the samples are shown in Figure 13b,d. For each type,
we collected 200 samples. Then, we use the model trained by the proposed framework to classify the
1000 samples for the five types.
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Figure 13. The SAR images and the samples acquired from the left SAR images.

Figure 14 delineates classification results for the five types of scene. From the figure, we found that
the classification accuracy for the airport was 87.5%, and the remaining 12.5% was classified as road.
For the bridge, the achieved accuracy is 91.5%, with 8.5% pond misclassification. The classification
accuracy of rivers reached 95%, and the remaining 3.3% and 1.7% were classified as town and road,
respectively. Fortunately, samples of town were all classified correctly, and 98.8% of the wood’s samples
were classified correctly. The mean classification accuracy of the five types of scene was 94.56%, which
was a little lower than the tested accuracy of 98.18% with the 11 types of scene in Table 6. When we
recalculated the tested accuracy for the same five types of scene using the classification results in
Figure 11b, we got a mean accuracy of 96%. Because the airport and bridge scenes are more challenging
than the other types. Therefore, the mean classification accuracy of the validation data was 1.44%
lower than the tested data, which is negligible considering the size of data. Consequently, the proposed
framework FRN-MSF presented an excellent generalization ability for SAR scenes classification.
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5. Discussion

In view of the three problems in SAR scene classification mentioned in the Introduction, we studied
the second and third problems. We constructed a framework (FRN-MSF) for SAR scene classification
which was not limited by resolutions and bands. It integrates GLGCM, Gabor transformation and
MSOGDF to extract multi-scale space statistical features. To fuse these features, FRN-GLGCM,
FRN-Gabor and FRN-MSOGDF are performed, from which different weights are selected for the three
features according to the classification accuracy of different scenes. However, the selected weights
might not be optimal. Therefore, it will be part of our future research on the method for choosing
optimal weights automatically to further improve the algorithm. Furthermore, we found that over
10% of the airport samples were classified as road, due to their high similarity. Thus, we need to incur
additional contextual information to enhance the performance of our FRN-MSF framework, which
will be another focus of our future work. In addition, the first problem mentioned in the introduction
(the module for speckle noise suppression) is also part of our following research, which will be very
interesting and meaningful.

6. Conclusions

This paper proposed a new FRN-MSF framework for SAR scene classification. It first relies on
multi-scale space statistical features (MSF) for feature extraction and fusion, then employs the proposed
Feature Recalibration Network (FRN) to extract the high-level features, which are handled by FC neural
networks for scene classification. In this paper, the proposed FRN integrates the Depthwise separable
convolution, attention mechanism and CNN to improve the training speed and classification accuracy.

As far as we know, there are few SAR scene datasets provided in public except MSTAR datasets
which are used for targets recognition. To test our proposed framework, we used scene samples
for 11 types from various large-scale SAR images with different resolutions and bands. We used
nine large-scale SAR images in total, including two TerraSAR-X images, five Gaofen-3 images, one
MM-InSAR image and one CAS-InSAR image. Among them, seven SAR images were used to make
samples for the 11 types for training and testing the framework. The remaining two large-scale SAR
images (one TerraSAR-X image and one Gaofen-3 image) were used to evaluate the generalization
ability of the framework. According to the experiment results, the classification mean accuracy reached
98.18% for the 11 types, which is 6.07% higher than the SENet algorithm. In the experiment of
generalization evaluation, the mean classification accuracy could reach 94.56%, which was only 1.44%
lower than the mean accuracy for the same five types in the former training and testing experiment. The
proposed framework shows high accuracy and good generalization ability for SAR scene classification.
It can be widely used for SAR scene classification without much consideration of the resolutions or the
bands of the SAR systems. Moreover, it has shown a wide range of potential in target detection for
large-scale SAR images.
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