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Abstract: In the traditional airborne distributed position and orientation system (DPOS) transfer
alignment process, the coupling angle between the dynamic deformation and body angular motion is
not estimated or compensated, which causes the process to have low precision and long convergence
time. To achieve high-precision transfer alignment, a decoupling method for the airborne dynamic
deformation angle is proposed in this paper. The model of the coupling angle is established through
mathematical derivation. Then, taking the coupling angle into consideration, angular velocity error
and velocity error between the master INS and slave IMU are corrected. Based on this, a novel
27-state Kalman filter model is established. Simulation results demonstrate that, compared with the
traditional transfer alignment model, the model proposed in this paper has faster convergence time
and higher accuracy.

Keywords: dynamic deformation coupling angle; transfer alignment; angular velocity matching;
airborne DPOS

1. Introduction

Over the years, with the improvement of imaging resolution of aeronautical earth observation
systems and the demand for high-precision position and attitude reference information of
three-dimensional images, the Distributed Position and Orientation System (DPOS) has been proposed
and widely studied to determine high-precision motion parameters and time information for each
observed load [1]. Airborne DPOS consists of the global positioning system, master inertial navigation
system (INS) and several slave inertial measurement units (IMUs) [2]. The master INS is installed on the
belly or in the cabin of the plane. The slave IMU, which consists of three orthogonal accelerometers and
gyros, is in turn mounted near the mapping sensor to measure the slave nodes’ motion parameters [3–6].
The information measured by the slave IMU is transmitted to the master INS, then the attitude error and
velocity error of the slave IMU is estimated by combining the high-precision navigation information
of the master INS, which can be used to correct the initial state of the slave IMU; this process can be
referred to as transfer alignment [7–10].

For high-performance integrated airborne earth observation systems equipped with multiple
observation loads, each observation load is installed at different positions on the aircraft. At the same
time, the aircraft is affected by loads and turbulence during flight, and its structure is dynamically
deformed. This deformation introduces errors such as attitude, velocity, and angular velocity, which can
decrease the accuracy of the transfer alignment between the master INS and slave IMU [11,12].
The traditional transfer alignment error model regards the aircraft wing as a rigid body, neglecting the
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dynamic deformation between the master INS and the slave IMUs; therefore, it is difficult to achieve
high-precision measurement [13].

The model of the dynamic deformation of the aircraft wing can be simulated by the linear function
of the specific force of the aircraft. The coefficient matrix of the linear function is closely related
to the aircraft’s load, fuel quantity, flight speed and altitude [14]. However, the calculation of the
model coefficient matrix is complex, and needs to be continuously updated according to the flight
structure and flight state, making the model not compatible. In [15], the second-order Gauss–Markov
is used to simulate the dynamic bending deformation angle, and the relevant bending deformation
angle and angular rate are used as the state vectors of the Kalman filter, but the dynamic lever-arm
is still regarded as constant during the velocity matching process. In [16], the lever arm and attitude
error between the master INS and slave IMU under dynamic deformation are modeled and applied
to the transfer alignment process, but the dynamic deformation is regarded as uncorrelated with
the body motion. Browne [17] and Mochalov [18] have mentioned that the accuracy of the transfer
alignment and the convergence time have a strong correlation with the motion of the body and the
dynamic deformation. W. Wu analyzed this kind of coupled motion [19], and verified that there exists
a relationship in amplitude and phase between the dynamic deformation and the motion of the body,
but the results of the analysis cannot be directly applied to the transfer alignment process. In [20],
a detailed mathematical analysis of the velocity relationship between the master INS and slave IMUs
under dynamic deformation was carried out. The coupling relationship between the body motion and the
dynamic deformation is also considered in the analysis. However, for airborne DPOS transfer alignment,
the attitude and angular velocity matching methods are proved to be more suitable than the velocity
matching method, because rapid maneuver will cause aircraft wing deformation, which will increase the
estimation error of the lever arm, further decreasing the accuracy of velocity matching alignment [21,22].

This inspired our current study to investigate the coupling angle, and to apply it to compensate
the angular velocity error for high precision transfer alignment. This paper is organized as follows.
Section 2 establishes the model of the coupling angle. In Section 3, the angular velocity error
and velocity error between the master INS and slave IMU are corrected by the coupling angle,
through “attitude + velocity + angular velocity” matching method, the navigation errors of the slave
IMUs are estimated in a 27-state Kalman filter which includes the coupling angle. Then the simulation
experiments are performed and the results, which show that the coupling angle can improve the
accuracy of transfer alignment, are presented in Section 4. The paper ends with the conclusion.

2. Coupled Error Angle Model of Dynamic Bending Deformation

As shown in Figure 1, the master INS is installed in the cabin or on the belly of the plane,
while the slave IMUs are placed near the mapping sensors which are under the aircraft wing. In such
a structure, there exist two motions between master INS and slave IMUs. One is rigid body motion,
which represents movements whereby the aircraft’s structure is assumed to be rigid, meaning that
relative motion does not exist between any two arbitrary positions on the aircraft wing in the body
frame. The other is elastic body motion, composed of flexures and vibrations where there is relative
motion between the points on the aircraft. Flexure represents the high-amplitude and low-frequency
motion induced by the dynamic deformation of the aircraft while vibration defines the low-amplitude
and high-frequency motion caused by forces from the change of the environment. Vibration is
substituted by white noise in this paper [14].

2.1. Coordinate System Description

Before deriving the mathematical analysis, we define several coordinate systems commonly used
in this paper. n denotes the navigation frame, which is the East-North-Up (E-N-U) geographic frame.
e denotes the earth-centered earth-fixed frame. i denotes the earth-centered inertial frame. m denotes the
body frame of the master INS. s denotes the ideal body frame of the slave IMU. s′ denotes the actual body
frame of the slave IMU. The x-y-z-axis in the body frame of master and slave IMU points to East-North-Up.
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Figure 1. Sensor location.

2.2. Model of Coupling Angle

The errorless angular velocity of the slave IMU can be represented by Equation (1):

ω = ωstat + ωdyn, (1)

with:
ωdyn = ω

f lex
dyn + ωvib

dyn, (2)

where:

ω is the errorless angular velocity of the slave IMU,
ωstat is the static or invariant component of angular velocity, which is generated under rigid
body motion,
ωdyn is the dynamic component of angular velocity, which is generated under elastic body motion,

ω
f lex
dyn is the component of ωdyn due to flexure motion,

ωvib
dyn is the component of ωdyn vibration motion, which is assumed to be white noise.

The flexural angle between the master INS and slave IMU is simulated by the second-order
Gauss–Markov process [16]:

..
θi = −2βi

.
θi − β2

i θi + vi (i = x, y, z), (3)

where θ =
[

θx θy θz

]T
is flexural angle; the covariance of flexural angle θ is σ2

i , βi = 2.146/τi and
τi is the correlation time; vi is the Gaussian white noise with covariance as follow:

Qi = 4β3
i σ2

i . (4)

Then flexural angular velocity is shown in Equation (5):

ω
f lex
dyn =

.
θ = ωθ . (5)

The theoretical error angle between the master INS and slave IMU can be formulated as:

ϕ = ρ0 + θ, (6)

where ρ0 and θ represent the rigid misalignment angle Cs
m(ϕ) and flexural angle between the master

INS and slave IMU, respectively.
The ideal angular velocity of the s-frame with respect to the i-frame can be represented as follows:

ωs
is = Cs

m(ϕ)ωm
im, (7)
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where Cs
m(ϕ) is the theoretical direction cosine matrix from m frame to s-frame, and ωm

im means the
angular velocity between m frame and the i-frame.

However, there is a coupling angle ∆φ and flexural angular velocity ωθ that are due to the coupling
influence of rigid and elastic body motion between the master INS and the slave IMUs. Therefore,
the actual angular velocity of the s-frame with respect to the i-frame can be defined as:

ωs′
is = ωs

is + ωθ , (8)

where ωs
is =

[
ωs

isx ωs
isy ωs

isz

]T
, ωθ =

[
ωθx ωθy ωθz

]T , and we have:

ωs′
is =

[
ωs

isx + ωθx ωs
isy + ωθy ωs

isz + ωθz

]T
, (9)

The relationship between ωm
im, ωs

is, ωθ and ωs′
is is shown in Figure 2.
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The coupling angle ∆φ represents the angle between ωs
is and ωs′

is , it can be described as
Equation (10):

∆φ =
[
∆φx ∆φy ∆φz

]T , (10)

Firstly, the coupling angle ∆φx related to the flexural angular velocity ωθx is shown in Figure 3.
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From the above figure, and combining with Equation (9), we have:

∆φx = arctan
ωs

isz
ωs

isy
− arctan

ωs
isz + ωθz

ωs
isy + ωθy

, (11)

Correspondingly, by utilizing the aforementioned method, we can obtain:

∆φx = arctan
ωs

isz
ωs

isy
− arctan

ωs
isz + ωθz

ωs
isy + ωθy

∆φy = arctan
ωs

isx
ωs

isz
− arctan

ωs
isx + ωθx

ωs
isz + ωθz

∆φz = arctan
ωs

isy

ωs′
isx
− arctan

ωs
isy + ωθy

ωs
isx + ωθx

. (12)

Then the trigonometric Taylor series expansion is applied to Equation (12), the coupling angle can
be rewritten as Equation (13): 

∆φx =
ωs

isz
ωs

isy
−

ωs
isz + ωθz

ωs
isy + ωθy

∆φy =
ωs

isx
ωs

isz
−

ωs
isx + ωθx

ωs
isz + ωθz

∆φz =
ωs

isy

ωs
isx
−

ωs
isy + ωθy

ωs
isx + ωθx

. (13)

Furthermore, since ωθ is much smaller than ωs
is, Equation (13) can be simplified as follows:

∆φ = Mωθ = M
.
θ, (14)

where the coefficient matrix M can be described as:

M =


0 0 − 1

ωs
isy

− 1
ωs

isz
0 0

0 − 1
ωs

isx
0

. (15)

3. Transfer Alignment Model

3.1. Model of Angular Velocity Error and Compensation

The angular velocity error between ωm
im and ωs′

is is shown in Figure 4. From the figure, the angular
velocity error δω can be calculated by Equation (16):

δω = ωs′
is −ωm

im = Cs′
m(ϕ + ∆φ)ωm

im + ω′θ −ωm
im, (16)

where Cs′
m(ϕ + ∆φ) is the actual direction cosine matrix that transforms a vector from m-frame

projection form to the s′-frame projection form, it can be approximately expressed:

Cs′
m(ϕ + ∆φ) ≈

 1 (ϕ + ∆φ)z −(ϕ + ∆φ)y
−(ϕ + ∆φ)z 1 (ϕ + ∆φ)x
(ϕ + ∆φ)y −(ϕ + ∆φ)x 1

 = I − [(ϕ + ∆φ)×], (17)

where (ϕ + ∆φ) is the actual error angle between the master INS and slave IMU. Through combining
Equations (16) and (17), the angular velocity error δω can be achieved as follows:

δω = ω′θ − [(ϕ + ∆φ)×]ωm
im, (18)
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where ω′θ is the projection of ωθ onto ωs′
is , and its direction is in accordance with ωs′

is . Hence ω′θ can be
formulated as:

ω′θ = A(ωθ)T(α)us′
is, (19)

since the coupling angle ∆φ is a small angle, its direction can be approximated along the tangential
direction, so the angle between the vectors ωθ and ωs′

is can be represented by Equation (20):

α =
π

2
U − ∆φ, (20)

where U = [1 1 1]T , A(ωθ) is the magnitude matrix, T(α) is the direction cosine matrix, and us′
is is

the unit direction vector. These can be expressed, respectively, as:

A(ωθ) =

 |ωθx | 0 0

0
∣∣∣ωθy

∣∣∣ 0

0 0 |ωθz |

, T(α) = I −
[
(

π

2
U − ∆φ)×

]
, us′

is =
ωs′

is∣∣∣ωs′
is

∣∣∣ ,
where (π

2 U − ∆φ)× is the skew-symmetric matrix of (π
2 U − ∆φ).Sensors 2018, 18, x FOR PEER REVIEW  6 of 14 
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Substituting Equation (19) into Equation (18) yields:

δω = (ωm
im×)(ρ + θ) + (ωm

im ×+
A(ωθ)∣∣∣ωs′

is

∣∣∣ ωs′
is×)∆φ + A(ωθ)

ωs′
is∣∣∣ωs′
is

∣∣∣ − π

2
A(ωθ)(U×)

ωs′
is∣∣∣ωs′
is

∣∣∣ . (21)

3.2. Model of Velocity Error and Compensation

The position relationship between the master INS and slave IMU is shown in Figure 5. The position
vector of the master INS and the slave IMU in the e-frame can be described as Rm and Rs′ , and the
lever-arm between the master INS and the slave IMU can be expressed as r [16]. Therefore, we have:

Rs′ = Rm + r, (22)
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Under the i-frame, Equation (22) can be expressed as:

Ri
s′ = Ri

m + Ci
mrm, (23)

where Ci
m is the direction cosine matrix from the m-frame to i-frame; by differentiating on both sides of

Equation (23), we have:

..
R

i
s′ =

..
R

i
m + Ci

m(ω
m
im×)(ωm

im×)rm + Ci
m(

.
ω

m
im×)rm + Ci

m(ω
m
im×)

.
rm

+ Ci
m(ω

m
im×)

.
rm

+ Ci
m

..
rm. (24)

According to Newton’s second law of motion, we have:
..
R

i
s′ = f i

s′ + gi
s′ + ωi

ie × (ωi
ie × Ri

s′)
..
R

i
m = f i

m + gi
m + ωi

ie × (ωi
ie × Ri

m)
, (25)

where f i
s′ and f i

m are projections of specific force in earth-centered inertial frame, ωi
ie × (ωi

ie × Ri
s′) and

ωi
ie × (ωi

ie × Ri
m) are the Coriolis accelerations; gi

s′ and gi
m are the gravity accelerations.

Assuming that gi
s′ = gi

m, substituting Equation (25) into Equation (24) yields:

f i
s′ = f i

m + Ci
m(ω

m
im×)(ωm

im×)rm + Ci
m(

.
ω

m
im×)rm + Ci

m(ω
m
im×)

.
rm

+ Ci
m(ω

m
im×)

.
rm

+ Ci
m

..
rm, (26)

multiply Cm
i on both sides of Equation (26) and rearrange as follows:

Cm
s′ f s′

s′ = f m
m + (ωm

im×)(ωm
im×)rm + (

.
ω

m
im×)rm + (ωm

im×)
.
rm

+ (ωm
im×)

.
rm

+
..
rm, (27)

where Cm
s′ represents the direction cosine matrix from s′-frame to m-frame.

The velocity differential equation of the master INS and the slave IMU can be obtained:
.
vn

m = Cn
m f m

m − (2ωn
ie + ωn

en)× vn
m + gn

.
vn

s′ = Cn
mCm

s′ ( f s′
s′ +∇

s′)− (2ωn
ie + ωn

en)× vn
s′ + gs′ , (28)

where vn
m and vn

s′ represent the velocity of the master INS and the velocity of the slave IMU in
navigation frame, respectively. ∇s′ is the accelerometer bias of the slave IMU. The direction cosine
matrix from s′-frame to s-frame is given as:

Cs
s′ = I − (φ×), (29)

where φ is the equivalent rotation vector between s′-frame and s-frame. The velocity error δv is defined
by Equation (30):

δv = vn
s′ − vn

m. (30)

Differentiate the two sides of Equation (30), and substituting Equations (27) and (28) into
Equation (30) yields:
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δ
.
v = −(2ωn

ie + ωn
en)× δv + [(ωn

im×)(ωn
im×) + (

.
ω

n
im×)]rn + 2(ωn

im×)
.
rn

+
..
rn

+ Cn
s′∇

s′ + ( f n
s ×)φ, (31)

then from [20], we can obtain:
r = r0 + δr

δr = R0(θ + ∆φ)
, (32)

where r0 =
[

x0 y0 z0

]T
and R0 =

 0 z0 0
0 0 x0

y0 0 0

, then differentiate both sides of Equation (32),

we have:
.
r = δ

.
r = R0(

.
θ + ∆

.
φ)

..
r = R0(

..
θ + ∆

..
φ) = R0B1

.
θ + R0B2θ + R0∆

..
φ

, (33)

from Equation (3), we can obtain:

B1 =

 0 −2βy 0
0 0 −2βz

−2βx 0 0

 B2 =

 0 −β2
y 0

0 0 −β2
z

−β2
x 0 0

. (34)

Substituting Equations (33) and (34) into Equation (31) yields:

δ
.
v = −(2ωn

ie + ωn
en)× δv + R0B2θ + (2(ωn

im×)R0 + R0B1)
.
θ + Cn

s′∇
s + R0∆

..
φ

+[(ωn
im×)(ωn

im×) + (
.

ω
n
im×)]δr + ( f n

s ×)φ + [(ωn
im×)(ωn

im×) + (
.

ω
n
im×)]r0

. (35)

3.3. State Equation

The state equation of the system can be formulated as

.
x = Fx + Gw, (36)

where the state vector x can be expressed as follows:

x =
[

φ δv ε ∇ ρ0 θ
.
θ δr ∆φ

]T
, (37)

The differential equation of the attitude error between s′-frame and s-frame is given by
Equation (36):

.
φ = −ωn

in × φ− Cn
s′ ε

s′ , (38)

where Cn
s′ is the direction cosine matrix from s′-frame to n-frame.

The differential equation of the coupling angle is formulated by Equation (39):

∆
.
φ = M

.
ωθ = M

..
θ

∆
..
φ = M

...
θ = M(B1

..
θ + B2

.
θ) = M(B2

1

.
θ + (B1B2 + B2)θ)

. (39)

Integrating Equations (3), (33), (35), (38) and (39), we obtain the expression of the state matrix
as follows:
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F =



(−ωn
in×) 03×3 −Cn

s′ 03×3 03×3 03×3 03×3 03×3 03×3

( f n
s ×) F22 03×3 Cn

s′ 03×3 F26 F27 F28 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 I3×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 B1 B2 03×3 03×3

03×3 03×3 03×3 03×3 03×3 F86 F87 03×3 03×3

03×3 03×3 Cn
s′ 03×3 03×3 F96 F97 03×3 03×3


(40)

where F22 = −[(2ωn
ie + ωn

en)×], F26 = R0B2 + R0M(B1B2 + B2), F27 = (2(ωn
im×)R0 + R0B1) + R0MB2

1
F28 = [(ωn

im×)(ωn
im×) + (

.
ω

n
im×)], F86 = R0MB2, F87 = R0 + R0MB1, F96 = MB2 and F97 = MB1.

3.4. Measurement Equation

In the process of transfer alignment of the aeronautical earth observation system, the ideal flight
status is that the speed of the body is constant while the attitude angle changes with the flight state.
Hence, the “attitude + velocity + angular velocity” matching model is very suitable. On the one hand,
for airborne DPOS transfer alignment, “attitude + velocity + angular velocity” matching methods
are proved to be more suitable than “attitude + velocity” matching. On the other hand, using this
matching method, the alignment accuracy is improved, and the alignment time is shortened.

The system state equation can be described as:

y = Hx + ν, (41)

The measurement vector y can be selected as follows:

y =
[

δφE δφN δφU δνE δνN δνU δωE δωN δωU

]T
. (42)

From Equation (21), we have:

δω =
[

03×3 03×3 03×3 03×3 (ωm
im×) (ωm

im×) I3×3 03×3 H4

]
x, (43)

where H4 = (ωm
im ×+ A(ωθ)

|ωs
is|

ωs
is×).

As for δφ we have:

δφ =
[

H1 03×3 H2 H3 03×3 03×3 03×3 03×3 03×3

]
x, (44)

where H1, H2 and H3 can be found in [15].
Integrating Equations (43) and (44), we get the corresponding measurement matrix:

H =

 H1 03×3 H2 H3 03×3 03×3 03×3 03×3 03×3

03×3 I3×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 (ωm
im×) (ωm

im×) I3×3 03×3 H4

. (45)

3.5. Filter Selection

Since the Kalman filter provides the optimal estimate of the states of a stochastic dynamical
system if the system is linear, the measurements are also linear functions of states and the errors in
system modeling and the measurements are Gaussian white noise. At the same time, from the mod-el
which was established in this paper, lever-arm is the linear function of bending deformation angle,
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and the coupling angle is the linear function of bending deformation angle rate. Finally, the linear
estimator chosen for the transfer alignment of airborne DPOS was the Kalman filter.

4. Simulation and Results

The basic principle of the high-resolution mapping system requires the aerial sensors to move
at constant speed along a linear trajectory. However, in practical flight, due to the influence of
atmospheric turbulence, equipment performance and other factors, the aircraft has interference effects
in with respect to flight direction and lateral direction, resulting in changes in the attitude angle.
Therefore, the simulation flight trajectory is approximate to a straight line, as shown in Figure 6.
The initial longitude and latitude we choose for simulation are 108◦, 34◦. The simulation time is
180 s. The simulated position, velocity, attitude, and raw measurement data of the accelerometer and
gyroscope are used as the navigation parameters of the master INS. Attitude angle for master INS is
shown in Figure 7.

The master INS data, the flexural angle θ and the rigid misalignment angle ρ0 are combined as
the output of the simulated IMU data of slave IMU. ρ0 =

[
10
◦

10
◦

5
◦]

is the rigid misalignment
angle. τ = [60 60 60] represents the correlation time of the second-order Gauss–Markov process.
The variance of flexural angle is set as σ =

[
0.1

◦
0.1

◦
0.1

◦]
. The initial lever-arm is set as R0 =

[3.6m 0.15m 0.25m]. The sensors’ specifications of master INS and slave IMUs are shown in Table 1.
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Table 1. The sensors’ specifications of master INS and slave IMUs.

Master INS Slave IMU

gyroscope random drift 0.005
◦
/h 0.1

◦
/h

white noise 0.002
◦
/
√

h 0.02
◦
/
√

h

accelerometer
random drift 10µg 100µg
white noise 0.05µg

√
h 0.2µg

√
h

A model which takes the coupling angle into consideration as proposed in this paper (Method A),
as well as a model which neglects the coupling angle (Method B) are performed for comparison.
The estimation errors of the coupling angles are presented in Figure 8. As is shown in Figure 8,
estimation errors of the coupling angles converge fast, and the root-mean-square errors (RMSE) of the
x-axis, y-axis and z-axis are 0.101349’, 0.083983’ and 0.016011’, respectively.
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Figure 8. The estimation errors of the coupling angles.

The estimation errors’ variations of the dynamic lever-arm are shown in Figure 9a–c. The RMSE of
the dynamic lever arm is shown in Table 2. Figure 9 shows that the estimation errors of the flexural lever
arm can be estimated properly by Method A, while it is not stable when using Method B. Meanwhile,
from Table 2, we can draw the conclusion that the errors of the dynamic lever arm are much smaller by
Method A proposed in this paper than Method B.
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Table 2. The RMSE of the dynamic lever arm.

Estimation Error Method A Method B

δrx(m) 0.004998 0.074664
δry(m) 0.056484 0.499977
δrz(m) 0.037366 0.015182

Figure 10a–c shows the estimation errors of attitude variations, and the RMSE is presented in
Table 3. It is clear that Method A converges more steadily and faster. Hence, with better accuracy and
shorter convergence time, Method A is demonstrated to be more capable for the practical information
measurement process in DPOS. From Table 3, we conclude that Method A, which is proposed in this
paper, has higher precision than Method B on the estimation of attitude. The RMSE of method A is
reduced to 92.9% of that of method B on average.
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Table 3. The RMSE of attitude error.

Estimation Error Method A Method B

φx(◦) 0.021147 0.043164
φy(◦) 0.019393 0.061425
φz(◦) 0.078595 0.045374

5. Discussion

This paper has proposed a method which can be used to estimate the coupling angle caused by
the coupling influence of dynamic flexure with aircraft motion and compensate velocity error, as well
as angular velocity error, to improve the estimation accuracy while using an angular velocity matching
method in the transfer alignment process. By taking the correlation between the dynamic deformation
and body motion into consideration, we established a model based on angular velocity, velocity and
coupling angle. Then, this model was used to correct the angular velocity error and dynamic lever-arm.
An “attitude + velocity + angular velocity” matching method was applied to estimate the coupling
angle and attitude error. Simulation results demonstrated that, compared to the traditional method,
which assumes the dynamic deformation and body motion to be uncorrelated, the model developed in
this paper can effectively estimate the flexural lever arm and the coupling angle, thus compensating
the angular velocity and velocity error.

In practice, aircraft experience different circumstances, such as strong wind, turbulence and
other factors, and the deformation of the aircraft wing is great. Thus, the nonlinearity of the airborne
DPOS increases. In addition, the measurement results of the system are utilized in the off-line states.
Thence the change of the aircraft wing’s parameters introduced by environment changes can influence
the accuracy of the results. Further studies should be performed with regard to a nonlinear filter such
as EKF and a nonlinear model to compensate the angular velocity error and lever-arm in order to
realize the higher-resolution aerial mapping.
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