
sensors

Article

A Novel Fault Detection with Minimizing the
Noise-Signal Ratio Using Reinforcement Learning

Dapeng Zhang 1, Zhiling Lin 2,* and Zhiwei Gao 3

1 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; zdp@tju.edu.cn
2 School of Electrical Engineering, Tianjin University of Technology, Tianjin 300384, China
3 Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne NE2 8ST, UK;

zhiwei.gao@northumbria.ac.uk
* Correspondence: Linzl2002@163.com

Received: 10 August 2018; Accepted: 10 September 2018; Published:13 September 2018
����������
�������

Abstract: In this paper, a reinforcement learning approach is proposed to detect unexpected faults,
where the noise-signal ratio of the data series is minimized to achieve robustness. Based on the
information of fault free data series, fault detection is promptly implemented by comparing with the
model forecast and real-time process. The fault severity degrees are also discussed by measuring the
distance between the healthy parameters and faulty parameters. The effectiveness of the algorithm is
demonstrated by an example of a DC-motor system.

Keywords: fault detection; reinforcement learning; noise-signal ratio

1. Introduction

With the increasing expense and complexity of modern industrial systems, there is a growing
demand for higher reliability and security. Measurement instrument faults may result in performance
degradation or even malfunction due to the incorrect conclusion drawn by the process fault detection
and diagnosis system. Therefore, the problem of fault detection and diagnosis (FDD) has become a
popular research topic [1–3].

Generally, fault diagnosis methods can be categorized into model-based methods, signal-based
methods and knowledge-based methods [1,2]. In model-based methods, the models of the industrial
processes or the practical systems are obtained by using either physical principles or system
identification techniques. Based on the model, fault diagnosis algorithms are developed to monitor
the consistency between the measured outputs of the practical systems and the model-predicted
outputs. Signal-based methods utilize measured signals rather than explicit input-output models
for fault diagnosis. The feature signals to be extracted for symptom (or pattern) analysis can be
either the time domain (e.g., mean, trends, standard deviation, phases, slope and magnitudes such
as peak and root mean square) or frequency domain (e.g., spectrum). These issues were studied by
various signal processing methods, such as wavelet transform (WT) [4], empirical mode decomposition
(EMD) [5,6], intrinsic mode functions (IMF) [7] and local mean decomposition (LMD) [8]. A large
volume of data has been more accessible with the development of modern electronic and measurement
technologies such as SCADA and smart sensors [9–13], which stimulates knowledge-based fault
diagnosis methods. Applying a variety of artificial intelligent techniques (either symbolic intelligence
or computing intelligence) to the available historic data of the industrial processes, the underlying
knowledge, which implicitly represents the dependence of the system variables, can be extracted.
Interesting results on knowledge-based fault diagnosis and applications were reported during the last
few decades [14–18].
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Unexpected faults may cause performance degradation or even malfunction, and it is thus desired
to detect, isolate and identify the faulty components as early as possible. However, it is difficult
to release the fault feature in a short time because of the influences from heavy background noises.
Based on the statistical theory, the traditional data-driven methods can be implemented by the sliding
window technology in which the data are regarded as a concentration of system character and renew
with window sliding. The features of the system can be extracted by analysing the data series in a
sliding window after a filtering process and further stressed by strengthening technology such as
PCA [19], SVM [20], information theory [21], and so forth. These traditional approaches have two
flaws for fault detection: The first is that more data examples need to be collected in order to achieve a
change of statistical character with a fault occurrence because a few new data can only have a small
impact on the statistical character of the whole window. More data examples require more time to
collect. Therefore, it is difficult for the traditional sliding window-based technology to carry out swift
fault detection. The second is the lack of effective data in the case of early unexpected fault. Due to
the complexity, uncertainty and unpredictability of the faults, it is challenging to obtain a number of
valid fault data within a short period except for some special cases such as batch process. It is trade-off
between getting more faulty data and giving less admissible time.

It is well known that the model parameters are more reliable than the state variables, especial in a
noisy condition. However, the model parameters also face two problems similar to the aforementioned
ones. The traditional approaches struggle to provide a quick detection due to the lack of the early
information on sudden and unexpected faults.

Reinforcement learning (RL) is a powerful tool, which is motivated by statistics, psychology,
neuroscience and computer science [22–24]. An agent will learn through experience, without a teacher.
In each training session, named an episode, the agent explores the environment and receives the
reward if any until it reaches the desired goal. The purpose of the training is to enhance the ‘brain’ of
the agent. The goal of an agent is to maximize the reward that is received in the long run. One can
obtain the optimal action only using the current states [25–28].

Motivated by the idea of “obtain the optimal action only using the current states”, an original
idea based on RL is proposed to solve the swift fault detection problem. The minimization of the
noise-signal ratio (NSR) is taken as the goal of the expecting series, and the policy iteration of RL
is used as a tool to get parameters by considering the parameters as actions of RL. Then, one can
get the model parameters corresponding to current states with noises. By comparing with the noise
information (it is easier to get offline from the healthy data series), one will implement prompt fault
detection and diagnosis with the next sample data. There are two main contributions in this paper.

(1) The unexpected faults will be detected promptly within a sampling period by using the
measured data only.

(2) The estimated model is always consistent with the real-time process under the noisy
condition by adjusting the parameters every sampling with the goal of minimizing the NSR using RL
technology.

2. Problem Description and Preliminaries

2.1. Problem Description

Suppose a discrete-time system with noises is controlled by a pre-controller, depicted by Figure 1.
Here, x(k − D), x(k − D + 1), x(k), · · · , x(k + 1) ∈ Rn are the system states at sampling time

k− D, k− D + 1, k, · · · , k + 1 respectively, and D is the order of the system. u(k) ∈ Rm, y(k) ∈ Rp are
the control input and measured output, respectively; ω(k) ∈ Rn is a white Gaussian signal with zero
mean and covariance matrix Σω. We suppose the system states are observable, and the control series
{u(k)|u(k) ∈ Rm, k = 1, 2, · · · , } is obtained from the pre-controller’s output.
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Figure 1. The structure of the system.

Let φ(k) = [xT(k− D)xT(k− D + 1) · · · xT(k)uT(k)]T ∈ RDn+m; the system can be rewritten as a
vector form:

xm(k + 1) = θTφ(k) + ω(k) (1)

where θT =

 θ1 · · · θ1,Dn+m

· · · . . . · · ·
θn,1 · · · θn,Dn+m

 ∈ Rn×(Dn+m) is a parameter matrix and T represents a transpose.

2.2. Noise-Signal Ratio

The noise is categorized into multiplicative noises and additive noise. Here, we only take into
consideration additive noise, which is consistent with the nature of many processes. This means
x(k) = x∗(k) + ω(k) for any time k, where x(k) is the observed system states, x∗(k) is the real data
without noise and ω(k) is the noise.

Define a noise-signal ratio δi of i-th-component of data series {x(k)|x(k) ∈ Rn, k = 1, 2, · · · , l} as:

δi =

√
∑l

k=1[xi(k)− x∗i (k)]
2√

∑l
k=1 x∗i (k)

2
(2)

where xi(k) and x∗i (k) are the i-th component of the measured data and the real data at k sampling
time, respectively, and l is the length of the data series. Further, an integer noise-signal ratio δ of data
series {x(k)|x(k) ∈ Rn, k = 1, 2, · · · , l} for an additive noise is:

δ =
n

∑
i=1

δi =
n

∑
i=1

√
∑l

k=1[xi(k)− x∗i (k)]
2√

∑l
k=1 x∗i (k)

2
(3)

There are three factors that affect the noise-signal ratio δi for a given n-dimensional data series:
the measured data {xi(k)}, the real data x∗i (k) and the length l. From the statistics viewpoint, l must
have enough length in order to discover the feature of data series. This means it will spend a long time
collecting the sample data. If one pursues a short time, the length l should be shorter. It is evident that
when l becomes shorter, the noise will have a greater effect on the statistics character of the measured
data series. It is a compromise between accuracy and velocity.
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2.3. Reinforcement Learning Method

The reinforcement learning that is motivated by statistics, psychology, neuroscience and computer
science is a powerful tool to deal with uncertain surroundings by interacting with its environment.
In terms of [22,24,25], the basic theory and methods of the reinforcement-learning are simply
introduced here. The basic frame of reinforcement learning is shown in Figure 2 [24].

Agent

Environment

Action u(k)
State x(k)

Reward RK(x(k),u(k-1))

x(k+1)

Rk+1(x(k+1),u(k))

Figure 2. The basic frame of reinforcement learning.

An agent will get the evaluation of good or bad behaviour on the environment and learn through
experience without a teacher, who teaches how to do perform this. In every single training session,
named an episode, the agent explores the environment by changing action ui and receives the state xi
and the reward Ri. The purpose of the training is to enhance the ‘brain’ of the agent. The goal of an
agent is to maximize the reward ∑ Ri that is received in the long run.

Consider a Markov decision process MDP(X ,U ,P ,<), where X is a set of states and U is a set of
actions or controls. The transition probabilities P : X × U ×X → [0, 1] represent for each state x ∈ X
and action u ∈ U the conditional probability P(x(k + 1), x(k), u(k)) = Pr{x(k + 1) | x(k), u(k)} of
transitioning to state x(k + 1) ∈ X where the MDP is in state x(k) and takes action u(k). The cost
function < : X × U × X → R is the expected immediate cost Rk(x(k + 1), x(k), u(k)) paid after
transition to state x(k + 1) ∈ X , given that the MDP starts from state x(k) ∈ X and takes action
u(k) ∈ U . The value of a policy Vπ

k (x(k)) is defined as the conditional expected value of the future
cost Eπ{∑k+T

i=k γi−kRi}, with Ri ∈ R when starting in state x(k) at time k and following policy π(x, u).
One can further have:

Vπ
k (x) = Eπ{

k+T

∑
i=k

γi−kRi}

= ∑
u

π(x, u) ∑
x(k+1)

P(x(k + 1), x(k), u(k))[Rk(x(k + 1), x(k), u(k)) + γEπ{
k+T

∑
i=k+1

γi−(k+1)Ri}]

= ∑
u

π(x, u) ∑
x(k+1)

P(x(k + 1), x(k), u(k))[Rk(x(k + 1), x(k), u(k)) + γVπ
k+1(x(k + 1))]

(4)

where T = ∞. It is noted that T = ∞ represents that the Markov decision process has enough length to
show its essential characteristic according to the statistical law. If it is too short, the Vπ

k (x) is prone to
inaccuracy with few data. We usually use enough length l instead of ∞ in practical application.
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Equation (4) releases the value function Vπ
k (x) for the policy π(x, u) satisfying the Bellman

Equation [29]:

Vπ
k (x) = ∑

u
π(x, u) ∑

x(k+1)
P(x(k + 1), x(k), u(k))[Rk(x(k + 1), x(k), u(k)) + γVπ

k+1(x(k + 1))] (5)

Therefore, the optimal actions can be gained by alternating the policy evaluation and policy
improvement according to Equations (6) and (7):

Vk(x) = ∑
u

πk(x, u) ∑
x(k+1)

P(x(k + 1), x(k), u(k))[Rk(x(k + 1), x(k), u(k)) + γVk(x(k + 1))] (6)

πk(x, u) = arg min
π

∑
x(k+1)

P(x(k + 1), x(k), u(k))[Rk(x(k + 1), x(k), u(k)) + γVk(x(k + 1))] (7)

where γ is a discount factor with 0 ≤ γ < 1 in order to be convergent.
For a deterministic system, ∑u πk(x, u)∑x(k+1) P(x(k + 1), x(k), u(k)) = 1. As a

result, Equations (6) and (7) are rewritten as:

Vk(x) = Rk(x(k + 1), x(k), u(k)) + γVk(x(k + 1)) (8)

πk(x, u) = arg min
π

Rk(x(k + 1), x(k), u(k)) + γVk(x(k + 1)) (9)

It is stressed that x(k+ 1) is only a temporary expected state in the process of alternating the policy
evaluation and policy improvement, which is used to implement the cost Rk(x(k + 1), x(k), u(k)). The
policy improvement (9) is usually obtained by using the greedy method [24] that will pursue the better
policy at each iteration.

Remark 1. There is only state information in Equations (8) and (9). One can obtain the optimal action only
using the two states x(k) and x(k + 1) in the process of minimizing the goal Rk. It does not need more time to
collect more data, and the past information is not necessary to know.

3. Proposed Methodology

3.1. The System Reconfiguration and Parameter Acquisition

3.1.1. Fault-Free Scenario

One can obtain the estimated Equation of System (1) as follows:

x̂(k + 1) = θ̂Tφ(k) = [θ̂T
1 θ̂T

2 · · · θ̂T
n ]

Tφ(k) (10)

where x̂(k + 1) is an estimated value of x(k + 1); θ̂1, · · · , θ̂n are vector components of θ̂. If there are
enough data in data series with length l, the parameter θ̂ can be gained by using a least squares method
(LSM) [30] according to the following:

θ̂ = [φTφ]−1φTxk+1,l (11)

where φ = [φ1, φ2, · · · , φk, · · · , φl ]
T , φk = [xk−D,1, · · · , xk−D,n, · · · , xk,1, · · · , xk,n, uk,1, · · · , uk,m]

T ∈ RDn+m,
xk+1,l = [xk+1,1, · · · , xk+1,l ]

T and the subscripts k and k + 1 are the sampling time instants, while l is
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the length of the data series. The accuracy of θ̂ is further improved online by a recursion Equation (12)
with new data xk+1,l :

θ̂k+1 = θ̂k +
Pkφ[xk+1,l+1 − φT θ̂]

1 + φT Pkφ

Pk+1 = Pk −
PkφφT

1 + φT Pkφ
Pk

Pk = P0

(12)

where P is an auxiliary matrix and P0 = βI for some large positive constant β; and θ̂k+1 is an estimated
parameter improved by adding new data.

Goodwin and Sin [30] showed that LSM converges asymptotically to the true parameters if θ̂ is
fixed and φ(k) satisfies the persistent excitation condition:

ε0 I ≤ 1
N

N

∑
k=1

φ(k)φT(k) ≤ ε̄0 I (13)

for all N ≥ N0, where ε0 ≤ ε̄0 and N0 is a positive number. This indicates x∗ = x̂ in the meaning of the
LSM. Here, x∗ is the real data without noise, and x̂ is an estimated value by using LSM.

3.1.2. Fault Scenario

It is assumed that the change from the normal to faulty operation does not affect the noise
distribution and intensity. A model of data series subjected to a fault ω f is described as:

x f (k + 1) = θT
f φ f (k) + ω(k) + ω f (k) (14)

where θ f ∈ RDn+m is a coefficient vector after fault, ω(k) is the noise that is the same as fault free and
ω f is an unexpected fault. One can obtain θ̂ f by applying the least squares method again if there are
enough valid data. The estimated model subjected to faults is as Equation (15):

x̂ f (k + 1) = θ̂T
f φ f (k) = [θ̂T

f 1θ̂T
f 2 · · · θ̂

T
f n]

Tφ(k) (15)

Substitute (10) and (15) into (2), hence the noise-signal ratio of fault free δi and of fault δ f ,i is
Equations (16) and (17):

δi =

√
∑l

k=1[xi(k)− θ̂T
i φ(k− 1)]2√

∑l
k=1[θ̂

T
i φ(k− 1)]2

(16)

δ f ,i =

√
∑l

k=1[x f i(k)− θ̂T
f iφ f (k− 1)]2√

Σl
k=1[θ̂

T
f iφ f i(k− 1)]2

(17)

The integer noise-signal ratio of fault free δ and of fault δ f is obtained by substituting (10) and (15)
into (3):

δ =
n

∑
i=1

√
∑l

k=1[xi(k)− θ̂T
i φ(k− 1)]2√

∑l
k=1[θ̂

T
i φ(k− 1)]2

(18)

δ f =
n

∑
i=1

√
∑l

k=1[x f i(k)− θ̂T
f iφ f (k− 1)]2√

Σl
k=1[θ̂

T
f iφ f i(k− 1)]2

(19)
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Remark 2. The noise-signal ratio δ f ,i and δ f subjected to fault has a similar form as the noise-signal ratio δi
and δ that is fault free. One can get θ̂i by the LSM method because there are enough valid data that are fault free.
However, it is impracticable for θ̂ f i in the early fault due to lack of effective data subject to limited time.

The noise-signal ratio for a data series that is given a dimension n and a length l is related to three factors:
the current measured data {x(k)}, parameter θ̂i and the historical inputs φ(k− 1) in the condition of either
fault or fault free. When l = 1, Equation (19) becomes Equation (20):

δ f (k) =
n

∑
i=1

√
[x f i(k)− θ̂T

f iφ f (k− 1)]2√
[θ̂T

f iφ f i(k− 1)]2
(20)

The noise-signal ratio δ f (k) of single sample x f i(k) is referred to by using the input φ f (k − 1) and
responding parameter θ̂T

f i at sample k. The other way around, one can get θ̂T
f i at sample k by using δ f (k) in the

case of knowing x f i(k) and φ f (k− 1).

3.2. The Relation between Noise-Signal Ratio and Parameter

Theorem 1. For a data series {x(k), k = 0, · · · , l}, the following conclusions are obtained if it is written as the
form of Equation (1):

1. Different ω f induce different θ̂ f ;
2. The same θ̂ f causes the same noise-signal ratio δ f ;
3. Different θ̂ f incurs different noise-signal ratio δ f ,i.

Proof. 1. For a measured data series {x(0), x(1), · · · , x(k), · · · , x(l)} subjected to fault and noise,
it can be described by:

x(k + 1) = θ̂T
f φ(k) + ω(k) + ω f (k) (21)

where θ̂ f is the parameter by LSM and φ(k) = [xT(k− D), xT(k− D + 1) · · · xT(k)]T .
For a fault denoted by ω f 1(k), the data series can be written as:

x f 1(k) = θ̂T
f 1φ f 1(k− 1) + ω(k) + ω f 1(k) (22)

For a fault denoted by ω f 2(k), we are not sure whether the fault will change the parameter θ̂ f .
Therefore, the data series can be written as:

x f 2(k) = θ̂T
f 2φ f 2(k− 1) + ω(k) + ω f 2(k) (23)

where the subscripts f1 and f2 are used to distinguish the data and parameters under different faults.
It is noted that we discuss the data properties of a measured data series. As a result,

x f 1(k) = x f 2(k) and φ f 1(k− 1) = φ f 2(k− 1).
We assume θ̂ f 1 = θ̂ f 2 when ω f 1 6= ω f 2. Therefore, we can have:

0 = x f 1(k)− x f 2(k) = θ̂T
f 1φ f 1(k− 1) + ω(k− 1) + ω f 1(k− 1)− θ̂T

f 2φ f 2(k− 1)−ω(k− 1)−ω f 2(k− 1) (24)

leading to ω f 1 = ω f 2, which is contradiction. As a result, we can have θ̂ f 1 6= θ̂ f 2 when ω f 1 6= ω f 2.
2. According to the definition of Equation (2), we have:

δ f 1,i

δ f 2,i
=

√
∑l

k=1[x f 1,i(k)−θ̂T
f 1iφ f 1(k−1)]2

∑l
k=1[θ̂

T
f 1φ f 1(k−1)]2√

∑l
k=1[x f 2,i(k)−θ̂T

f 2iφ f 2(k−1)]2

∑l
k=1[θ̂

T
f 2iφ f 2(k−1)]2

(25)
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For a measured data series {x(0), x(1), · · · , x(k), · · · , x(l)}, it is noted that x f 1(k) = x f 2(k) and
φ f 1(k− 1) = φ f 2(k− 1). For θ̂ f 1 = θ̂ f 2, one thus has:√√√√∑l

k=1[x f 1,i(k)− θ̂T
f 1iφ f 1(k− 1)]2

∑l
k=1[θ̂

T
f 1φ f 1(k− 1)]2

=

√√√√∑l
k=1[x f 2,i(k)− θ̂T

f 2iφ f 2(k− 1)]2

∑l
k=1[θ̂

T
f 2iφ f 2(k− 1)]2)

(26)

It is obvious that δ f 1,i 6= 0 and δ f 2,i 6= 0. Therefore,
δ f 1
δ f 2

= 1. Therefore, δ f 1 = δ f 2. This means the

same θ̂ f causes the same noise-signal ratio δ f ,i. Further, it results in the same integer noise-signal ratio
δ f due to δ f = ∑n

i=1 δ f ,i according to Equation (3).
3. Arbitrary select the i-th component x f ,i of x f .

Hypothesis 1. Different θ̂ f have the same noise-signal ratio δ f , which means δ f 1 = δ f 2. Observe that:√√√√∑l
k=1[x1(k)− θ̂T

f 1φ(k− 1)]2

∑l
k=1[θ̂

T
f 1φ(k− 1)]2

=

√√√√∑l
k=1[x2(k)− θ̂T

f 2φ(k− 1)]2

∑l
k=1[θ̂

T
f 2φ(k− 1)]2

(27)

which is equivalent to:

∑l
k=1[x1(k)− θ̂T

f 1φ(k− 1)]2

∑l
k=1[θ̂

T
f 1φ(k− 1)]2

−
∑l

k=1[x2(k)− θ̂T
f 2φ(k− 1)]2

∑l
k=1[θ̂

T
f 2φ(k− 1)]2

= 0 (28)

Rearranging the Equation above, we have:

l

∑
k=1

[θ̂T
f 2φ(k− 1)]2

l

∑
k=1

[x1(k)− θ̂T
f 1φ(k− 1)]2 −

l

∑
k=1

[θ̂T
f 1φ(k− 1)]2

l

∑
k=1

[x2(k)− θ̂T
f 2φ(k− 1)]2 = 0 (29)

l

∑
k=1

l

∑
j=1

[θ̂T
f 2φ(k− 1)]2[x1(j)− θ̂T

f 1φ(j− 1)]2 −
l

∑
k=1

l

∑
j=1

[θ̂T
f 1φ(k− 1)]2[x2(j)− θ̂T

f 2φ(j− 1)]2 = 0 (30)

l

∑
k=1

l

∑
j=1
{[θ̂T

f 2φ(k− 1)]2[x1(j)− θ̂T
f 1φ(j− 1)]2 − [θ̂T

f 1φ(k− 1)]2[x2(j)− θ̂T
f 2φ(j− 1)]2} = 0 (31)

Denote:

h̄ = [θ̂T
f 2φ(k− 1)]2[x1(j)− θ̂T

f 1φ(j− 1)]2 − [θ̂T
f 1φ(k− 1)]2[x2(j)− θ̂T

f 2φ(j− 1)]2

= {θ̂T
f 2φ(k− 1)[x1(j)− θ̂T

f 1φ(j− 1)]− θ̂T
f 1φ(k− 1)[x2(j)− θ̂T

f 2φ(j− 1)]}2︸ ︷︷ ︸
h̄1

+ 2θ̂T
f 2φ(k− 1)[x1(j)− θ̂T

f 1φ(j− 1)]θ̂T
f 1φ(k− 1)[x2(j)− θ̂T

f 2φ(j− 1)]− 2[θ̂T
f 1φ(k− 1)]2[x2(j)− θ̂T

f 2φ(j− 1)]2︸ ︷︷ ︸
h̄2

(32)

by the matching squares method.
Let:

h̄1 = θ̂T
f 2φ(k− 1)[x1(j)− θ̂T

f 1φ(j− 1)]− θ̂T
f 1φ(k− 1)[x2(j)− θ̂T

f 2φ(j− 1)]
2 ≥ 0 (33)

h̄2 = 2θ̂T
f 2φ(k− 1)[x1(j)− θ̂T

f 1φ(j− 1)]θ̂T
f 1φ(k− 1)[x2(j)− θ̂T

f 2φ(j− 1)]− 2[θ̂T
f 1φ(k− 1)]2[x2(j)− θ̂T

f 2φ(j− 1)]2

= 2{θ̂T
f 2φ(k− 1)[x1(j)− θ̂T

f 1φ(j− 1)]− θ̂T
f 1φ(k− 1)[x2(j)− θ̂T

f 2φ(j− 1)]︸ ︷︷ ︸
h̄4

} θ̂T
f 1φ(k− 1)[x2(j)− θ̂T

f 2φ(j− 1)]︸ ︷︷ ︸
h̄3

(34)
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Further, let:
h̄3 = (θ̂T

f 1φ(k− 1))︸ ︷︷ ︸
x1(k)

[x2(j)− θ̂T
f 2φ(j− 1)]︸ ︷︷ ︸

ω(j−1)

(35)

Note h̄3 6= 0 besides x1(k) = 0 or ω(j− 1) = 0 (scarcely):

h̄4 = θ̂T
f 2φ(k− 1)[x1(j)− θ̂T

f 1φ(j− 1)]− [θ̂T
f 1φ(k− 1)][x2(j)− θ̂T

f 2φ(j− 1)] = [θ̂T
f 2 − θ̂T

f 1]φ(k− 1)x1(j) (36)

(x1(j) = x2(j)) for the same series data.
If h̄ = 0, there is h̄1 = 0 and h̄4 = 0. Further:

[θ̂T
f 2 − θ̂T

f 1]φ(k− 1) = 0 (37)

Notice θ̂T
f 2 and θ̂T

f 1 are fixed by LSM and φ(k− 1) is a vector from measured data, but it is uncertain for all k.

There is no other vector to satisfy this Equation except θ̂T
f 2 − θ̂T

f 1 = 0. Therefore, θ̂ f 1 = θ̂ f 2, which is contrary to
the hypothesis.

Remark 3. The above analyses release the relationship between parameters θ̂ f and noise-signal ratio δ f ,i.
One can eliminate the influence of noise by the most extent by adjusting the parameter θ̂ f with the target of
minimizing the NSR of data series. Once the parameter θ̂ f is determined, the model is used to forecast the next
state x̂k+1 without noise. Therefore, the measured state xk+1 will be judged immediately according to the noise
law based on the model prediction x̂k+1.

The parameters θ̂ f can be estimated by traditional methods such as LSM and MLE (maximum
likelihood method) based on the historical numerical data. Window technology is used to reduce
computational load, and the sliding window is employed to capture the time-varying parameters in
the dynamic system. The statistics characteristics depend on the data in the window. A longer window,
which includes more data, means higher accuracy, but needs more time to make a decision. A shorter
window, which consists of less data, means a quick decision, but it also needs enough data in order to
satisfy the statistics law.

3.3. Seeking θ̂ f by the Reinforcement Learning Method

Engineering systems are subjected to faults or malfunctions due to unexpected events,
which would degrade the operation performance and even lead to the operation failure. As a result,
the fault should be detected quickly, and measures will be taken as early as possible. The greatest
difficulty is the lack of enough valid data for an early fault. Reinforcement learning provides a way to
estimate the parameters directly by approaching the noise-signal ratio δ f of the fault to noise-signal
ratio δh of health (fault free).

To apply the reinforcement learning, the first thing is to determine the cost function Rk(δ f (k)) at
time k. Here, one defines the cost function Rk(δ f (k)) at time k as an absolute value of error between
the current integer noise-signal ratio δ f (k) and the integer noise-signal ratio δh of being fault free.

Rk(δ f (k)) =| δ f (k)− δh |=
n

∑
i=1

√
[x f i(k)− θ̂T

f iφ f (k− 1)]2√
[θ̂T

f iφ f i(k− 1)]2
− δh (38)
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where δh is the integer noise-signal ratio of being fault free that will be achieved offline according to
Equation (18), | · | is the absolute value and the meanings of other parameters are the same as before.
The function Vk(δ f (k)) after time k is defined as:

Vk(δ f (k)) =
∞

∑
i=k

γi−kRi(δ f (i)) (39)

As a result, one has:

Vk(δ f (k)) = Rk(δ f (k)) + γVk+1(δ f (k + 1)) (40)

Following a Bellman optimal principle, the optimal value function is obtained according to
Equation (41):

V∗(δ f (k)) = min
θ̂ f (k)

Rk(δ f (k)) + γVk+1(δ f (k + 1)) (41)

where V∗(δ f (k)) and θ̂ f (k) are the optimal value function and the parameter at time k, respectively;
and γ is a discount factor, 0 ≤ γ < 1.

It is noticed that (41) cannot be used online because one cannot know the information of the
future time instant, that is δ f (k + 1). A Q-algorithm proposed by Watkins [23] provides an effective
solution by substituting the Q-function. A mimic of the Q-algorithm defines the evaluation function
Q(δ f (k), θ̂ f (k)) as the minimum discounted cumulative reward that can be achieved from δ f (k) and
θ̂ f (k) as the first action:

Q(δ f (k), θ̂ f (k))
de f
= Rk(δ f (k), θ̂ f (k)) + V∗(ϕ(δ f (k), θ̂ f (k))) (42)

where ϕ(δ f (k), θ̂ f (k)) expresses the state δ f (k + 1) that comes from δ f (k) and θ̂ f (k), that is
δ f (k+ 1) = ϕ(δ f (k),θ̂ f (k)). One denotes ϕ(δ f (k), θ̂ f (k)) in order to stress the relation between δ f (k+ 1)
and δ f (k), θ̂ f (k). If Q achieves its optimization under some parameter θ̂ f (k), the function V can also
achieve its optimization with the same parameter. As a result, V may be replaced by Q. This implies
that the optimal parameter can be obtained only by reward without using the value function V.

Denote the optimum of Q as Q∗; therefore, one has:

Q∗(δ f (k), θ̂ f (k)) = min
θ̂ f (k)

[Rk(δ f (k), θ̂ f (k)) + V∗(ϕ(δ f (k), θ̂ f (k)))]

= R∗(δ f (k), θ̂ f (k)) + V∗(δ f (k + 1)) = V∗(δ f (k), θ̂ f (k))
(43)

where the superscript ∗ expresses the optimal values. It is seen from Equation (43) that Q∗(δ f (k), θ̂ f (k))
is equivalent to V∗(δ f (k), θ̂ f (k)) with the same parameter. Therefore, the optimal parameter θ̂ f (k)
can be obtained by the policy iteration that includes the alternation of two processes: policy evaluation
and policy improvement following Equations (44) and (45):

Q(δ f (k), θ̂ f (k)) = R(δ f (k), θ̂ f (k)) + γ min
θ̂ f (k+1)

Q(δ f (k + 1), θ̂ f (k + 1)) (44)

πk(δ f (k), θ̂ f (k)) = arg min
θ̂ f (k+1)

Q(δ f (k), θ̂ f (k)) (45)

where πk is called a policy in reinforcement learning. By using policy iteration, it will finally converge to
the steady state, and we get the responding parameter.

It is important for policy iteration to be convergent. Fortunately, it has been proven by Lemma 1.
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Lemma 1 ([21]). Consider a Q learning agent in a deterministic Markov decision process (MDP) with bounded
reward (∀δ f (k), θ̂ f (k))|Rk(δ f (k), θ̂ f (k))| ≤ c. The Q learning agent uses the training rule of Equation:

Qk(δ f (k), θ̂ f (k))← Rk(δ f (k), θ̂ f (k)) + γ min
θ̂ f (k+1)

Qk+1(δ f (k + 1), θ̂ f (k + 1))

initializes its Qk(δ f (k), θ̂ f (k)) to arbitrary finite values and uses a discount factor γ such that 0 ≤ γ < 1.

Let Q(n)
k (δ f (k), θ̂ f (k)) denote the agent’s hypothesis Qk(δ f (k), θ̂ f (k)) following the n-th update. If each

state-action pair is visited infinitely often, then Q(n)
k (δ f (k), θ̂ f (k)) converges to Qk(δ f (k), θ̂ f (k)) as n→ ∞,

for all δ f (k), θ̂ f (k).

Remark 4. Lemma 1 provides a guarantee on the convergence of Q learning. By using policy iteration,
the Q learning agent will finally converge to the steady state, and the optimal control π∗(δ f (k), θ̂ f (k)) can be
obtained readily.

Procedure 1:
The RL algorithm can be summarized as follows:
Step 1: Initialize Q̂(δ f (k), θ̂ f (k)) to zero.
Step 2: Select a parameter θ̂ f (k) randomly.
Step 3: Receive immediate reward R(δ f (k), θ̂ f (k)) according to Equation (38).
Step 4: Get the new state δ f (k + 1) and compute the value function according to Equation (40).
Step 5: Update the Q̂(δ f (k + 1), θ̂ f (k + 1)) based on current state δ f (k) according to Equation (41).
Step 6: Set the next state δ f (k + 1) as the current state δ f (k).
Step 7: Repeat Steps 3–6 until it is convergent.
Step 8: Find the best parameter θ̂∗f (k) according to Equation (46).

3.4. Detection of Fault

Based on the parameters θ̂∗f (k), we will get the next state x̂ f (k + 1) according to Equation (15).
Therefore, we have a chance to judge new measure data x f (k + 1) immediately with taking x̂ f (k + 1)
as a criterion.

The state x̂ f (k + 1) with fault is made up of three parts: the real state x∗(k + 1) that is fault free,
the component from fault ω f and the component from noise ω. We take the first two items as an
integer and remark that they are the real data x∗f (k + 1) of x f (k + 1). Considering the parameter θ̂∗f is
obtained by seeking for a goal of minimizing the noise-signal ratio, Equation (15) implies the noise
minimization of forecasting the state at the next time k + 1. Therefore, x∗f (k + 1) is obtained by θ̂∗f
according to Equation (15). We will get the estimated state x̂ f (k + 1) at time k + 1 in the case of fault
according to:

x̂ f (k + 1) = x̂∗f (k + 1) + e = (θ̂∗f )
T(k)φ f (k) + e (46)

where θ̂∗f (k) is the parameters at time k obtained from the RL algorithm, T is the transpose and

e = [e1, e2, · · · , en]T is the confidence interval of noise ω at confidence level α:

ei = ±
√

Di
l

Zα/2 (47)

where Di is the variance of the i-th component of samples, which are obtained offline by data series
{x(k)|x(k) ∈ Rn, k = 1, 2, · · · , l} that is fault free:

Di =
1

l − 1

l

∑
j=1

[xi(j)− x̂i(j)]2 (48)
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Zα/2 is a normal distribution.
The above analysis shows that one can forecast x̂ f (k + 1) in a noisy condition only by using φ(k)

during one sampling period. It is valuable for the system to detect faults promptly.
Define the Euclidean distance (ED) between measure x f (k + 1) and estimation x̂ f (k + 1) as:

ED(k + 1) =
n

∑
i=1

[x f i(k + 1)− x̂ f i(k + 1)]2 (49)

where x f (k + 1) ∈ Rn and x̂ f (k + 1) ∈ Rn are the measured data and the estimated data at time k + 1
under the fault, respectively.

The threshold of ED is selected as the maximum error between measured data and estimated
data being fault free:

EDsh = max
k
{

n

∑
i=1

[xi(k)− x̂i(k)]2, k = 1, · · · , l} (50)

One can detect a fault if:
ED(k + 1) > EDsh (51)

Once one detects a fault, the parameters that are fault free will keep unchanged in order to build a
virtual healthy model. Meanwhile, the parameters subject to fault continue to renew by the proposed
RL method and forecast the next state under fault. In this condition, the ED becomes an indicator of
fault degree (IFD). Therefore, we get Equation (52) by replacing x̂ f (k + 1) for fault with x̂(k + 1) for
fault free in Equation (49):

IFD(k + 1) =
n

∑
i=1

[x̂ f i(k + 1)− x̂(k + 1)]2 (52)

Here, x̂ f i(k + 1) for minimizing NSR is used to instead of x f i(k + 1) in order to reduce the effect
of noise. We use the IFD(k + 1) to express the severity of the fault at k + 1, so we will evaluate the
fault degree in time and take measures to balance the safety and efficiency of the plant.

Remark 5. One will detect a fault and evaluate the fault degree promptly during one sampling period according
to Equations (51) and (52).

The forecast of states at k + 1 is valid under faulty or under fault-free conditions because the parameters of
a reference model are essentially obtained by minimizing the noise-signal ratio.

This method only makes use of the residual and noise-signal ratio so that it is easy to identify the condition
under being fault free. Meanwhile, it has the ability to trace unexpected fault by adjusting the parameters online.

Procedure 2:
The fault detection and fault seriousness degree procedure is given as follows:
Step 1. Get the next real state x̂∗f (k + 1) without the noise based on the parameters θ̂∗f (k) from

Procedure 1 according to Equation (15).
Step 2. Computer the variance of the i-th component of samples from the data series being fault

free according to Equation (48).
Step 3. Get the estimated state x̂ f (k + 1) according to Equation (7).
Sept 4. Get the measured data x f (k + 1).
Step 5. Compute the Euclidean distance (ED) between measure x f (k + 1) and estimation x̂ f (k + 1)

according to Equation (49).
Step 6. Compute the threshold of ED according to Equation (50).
Step 7. Perform fault detection and get the fault seriousness degree according to (51) and (52).
Step 8. Go to Step 1 to check the next state.
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4. Examples and Simulations

In this section, simulation results based on a DC-motor are presented to verify the efficacy of the
proposed scheme. Figure 3 shows the topology of the DC-motor test bed.

DC-motor
Integrated 

driver
ControllerComputer

 Rotary 
encoder

Armature current

Speed

Control voltage
JTAG

Figure 3. The topology of DC-motor test bed.

The DC-motor is selected as Model 57BL90-210 with 24 V, 1000 rpm and 60 W. The rotary encoder is
LPD3806-600BM. The integrated driver is an improved ZD-6405 that provides the positive inversion
with a toggle switch and speed governing with 0–5V control voltage. It also gives the armature current
detection and some protections against short circuit, under voltage and overload. The DC-motor
is driven by an integrated driver with the controller of the STM32 single-chip microcomputer. The
controller of STM32 is used to receive the DC-motor speed collected by the rotary encoder and the
armature current from the integrated driver and, meanwhile, to output the driver control voltage
according to the control approach. The controller is programmed on the plat of Keil3.0 by the JTAG
(Joint-Test-Action-Group) interface, and the data are transmitted to the computer online in order to
save memory. The computer is an i5-2320 CPU with 3.0 GHz and 32 G RAM. The MATLAB 2011 is
used to run the method and share the data from the controller by data/file exchange technology. We
add a white noise to data from the sensor before they are transmitted to the computer in order to
strengthen the noise’s effects. The test bed of the DC-motor is shown in Figure 4.

Figure 4. The test bed of the DC-motor.
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A fault-free time series is produced according to the DC-motor system. The estimated model of
one-order of system is obtained by LSM and has passed the statistical test under the significance level
of 0.05 in the healthy condition:

[
ia(k + 1)

ωβ(k + 1)

]
=

[
0.4261 0.0030 0.0123
1.3430 0.9910 0.0329

]  ia(k)
ωβ(k)
u(k)

 (53)

4.1. Swift Detection

Firstly, we do an experiment to test the speediness of fault judgement. The fault signal ω f with a
step of amplitude 0.2 is added to State x2 from Sample 200. The results from Sample 195 to Sample
235 are shown in Figure 5. The blue curve, the red curve and the green curve are the data that are
fault free, measured data subject to fault and estimated data by the proposed method, respectively.
When the fault occurs, the system responds to the fault after two sampling periods due to the inertia.
State x1 conforms to the healthy state (blue curve) due to the little influence of this fault. State x2
begins to deviate from the blue curve from Sample 203 and raises to 0.5 after seven sampling periods.
The new stability that has a stable bias with the healthy state (blue curve) achieves at the time of system
response the stability of the fault. The estimated data (green curve) for the RL method are obtained by
immediately adjusting the model parameters along with minimizing the NSR. One can see that the
green curve coincides with the red curve whether before and after a fault occurs.195 200 205 210 215 220 225 230 23500.10.20.30.40.5 time /sarmature current /A x1−fault freex1−measure datax1−estimated by proposed methodx1−estimated by LSM195 200 205 210 215 220 225 230 23500.20.40.60.81 time /sangular velocity /radian x2−fault freex2−measure dataestimated by proposed methodestimated by LSM

Figure 5. The evolution of states (from 195–235).

In order to compare with the sliding window method (SLW), we determine an estimated θ̂

instead of θ by LSM with the width of sliding window l = 50. The result is shown in Figure 5 as the
black curve. The black curve shows that State x2 has a similar tendency as the green curve except
with a delay. During the healthy stage, both SLW and RL methods have good performance in tracing
measure data (red curve), and the SLW has less fluctuations than RL. When a fault appears, the SLM
will experience a transient process similar to the green curve, raising from 0.3–0.5 after about 25
sampling periods, but not immediately. This means the SLM will have a longer delay to respond to the
fault. The SLW method is good for the healthy process that has a stable statistical indicator. When
there is a fault occurrence, the statistical indicators of the data series move to a new stable state to fit
the fault after they suffer a transition change. This process depends on the fault style and intensity.
Therefore, the SLW method cannot avoid the delay due to its necessary data collection to change the
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statistical indicators in the range of its window length. It can speed the judgement by shortening the
window length. However, if the window length is too small, the statistical indicators will become
unstable because the data of the window cannot express the feature of the data series. Our proposed
RL method will make up for this condition.

We also show a training process of minimizing the noise-signal ratio by reinforcement learning.
It is seen in Figure 6. The horizontal coordinate and vertical coordinate represent the episodes and
the responding NSR, respectively. The discount factor γ is 0.95. Beginning with a parameter θ̂ f (k)
randomly (as Procedure 1), the NSR will converge after a training of 8300 episodes, and one will get
the required parameter θ̂ f (k) when it is convergent.
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Figure 6. The training process.

4.2. Fault Detection

A comprehensive fault signal ω f combined with a step, a sine and a slope is added to State x2 in
order to verify the fault diagnosis and detection ability of the proposed RL method. The fault signal is
generated according to Equation (54):

ω f (k) =



0 0 < k ≤ 200
0.2 200 < k ≤ 300
0.2 + 0.15 sin(π(k− 300)/30) 300 < k ≤ 600
−0.001k + 0.8 600 < k ≤ 800
0 800 < k ≤ 1000

(54)

and shown in Figure 7.
The state x̂ f (k + 1) at time k + 1 is estimated based on the observation φ f (k) at time k according to

Equation (15) and in which θ̂ f is obtained by the proposed RL approach. The evolution of states from
k = 100 to k = 1000 is shown in Figure 8. The blue curve, the red curve and the green curve are the
data that are fault free, the measured data and the estimated data, respectively.
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Figure 7. The fault signal.100 200 300 400 500 600 700 800 900 1000−1−0.500.511.5 time /sarmature current /A 100 200 300 400 500 600 700 800 900 100000.511.5 time /sangular velocity /radian x1−fault freex1−measure datax1−estimated by proposed methodx2−fault freex2−measure datax2−estimated by proposed method

Figure 8. The evolution of states.

It is seen from Figure 8 that the estimated data (green curve) coincide with the measure data
(red curve) throughout the process of different faults. In fact, the green curve is an estimation based on
the measured data at the previous moment by using the proposed RL approach. It is produced a
sampling period earlier than the red curve. We also compute the errors between measurement and
estimation according to Equation (49) in order to show the accuracy. The mean of x1 and x2 between
measured data and estimated data are 0.05 and 0.02, respectively, and the maximum error is 0.25 and
0.15. The result is seen in Figure 9.
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Figure 9. The error between measure and estimation.

If the data that are fault free are taken as a reference and the fault degree is expressed with the
IFD according to Equation (52), the threshold of ED is obtained in the condition of being fault free
based on the healthy data from 1–200 by Equation (50) and EDsh = 0.0286. Then, we compute the
IFDs at every sampling time according to Equation (52). The results are shown in Figure 10. The blue
curve and the red curve are the indicator of fault degree (IFD) and the threshold of ED, respectively.
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Figure 10. Results of fault detection. IFD, indicator of fault degree.

Figure 10 shows the IFD that is fault free is below the threshold. During the fault process, the
IFD that fluctuates with a limited range is above the threshold except some samples that are close to
healthy data.

We will also know the fault severity at every sample by observing the IFD′s scale. For example,
the fault from Sample 200–Sample 300 is limited between 0.05 and 0.15, which means the fault is
comparatively stable. At Samples 320, 380, 440 and 510, a peak appears respectively with a heavy fault
over 0.3.
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4.3. Influence of Disturbance

We give a step disturbance to State x2 by raising the control voltage at Sample 20. The evolution of
states is shown in Figure 11. The blue curve, the red curve and the green curve are data without
disturbance, measured data and estimated data by the proposed method, respectively. It is seen that
the armature current almost keeps the initial state because there is no load change. The angular velocity
(red curve) rises to 0.4 rad in response to this disturbance after a short transition. The proposed method
gives an ample estimation (green curve) because the data with disturbance have enlarged the NSR
more that without disturbance in a long enough process. From an inverse view, an ample estimation
will be taken to make up the NSR without disturbance according to the proposed method. This shows
the RL’s robustness in disturbance.10 20 30 40 50 60 70 80 90 10000.10.20.3 time /sarmature current /A 10 20 30 40 50 60 70 80 90 10000.20.40.60.81 time /sangular velocity /radian x1−without disturbancex1−measure datax1−estimated by proposed methodx2−without disturbancex2−measure datax2−estimated by proposed method

Figure 11. The evolution of states in disturbance.

The proposed method cannot distinguish between faults and disturbances because it makes
a decision only according to the NSR. In fact, the disturbance is eliminated by the closed loop of
the control system. If the disturbance cannot be removed by the control system due to the fault,
it is necessary for this disturbance to be handled as a special fault in order to keep the plant safe
and effective.

5. Conclusions

Comparing a single sample datum with healthy data is the fastest way for fault detection.
However, it can hardly be achieved because the noise of sample data will disturb the normal data.
No one knows whether the discrepancy between sample data and healthy data comes from fault
or comes from noise only according to a single collected datum. The statistical method needs a
quantity of valid data; however, it is difficult to obtain them in the early stage of unexpected fault,
which leads to a dilemma of prompt FDD. In order to solve these shortages, a reinforcement learning
method has been proposed to estimate the model parameter by taking the parameter as a special
action. Taking a minimization of the NSR as a goal of the data series, the model parameter can be
obtained by applying the technology of the policy valuation and policy improvement. This method
has the ability of getting rid of the noise’s influence and keeping consistency with the current situation.
Furthermore, the FDD has been implemented by evaluating the residual of the real-time process data
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and pre-obtained healthy time-series data. The fault can be promptly detected with the help of the
threshold from the healthy data series by only using the information within one sampling period.

In the future, further work will distinguish the slight fault signal from healthy data as quickly as
possible and apply this method to an engineering-oriented real-time process.
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