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Abstract: The sampling rate of wideband spectrum sensing for sparse signals can be reduced by
sub-Nyquist sampling with a Modulated Wideband Converter (MWC). In collaborative spectrum
sensing, the fusion center recovers the spectral support from observation and measurement matrices
reported by a network of CRs, to improve the precision of spectrum sensing. However, the MWC has
a very high hardware complexity due to its parallel structure; it sets a fixed threshold for a decision
without considering the impact of noise intensity, and needs a priori information of signal sparsity
order for signal support recovery. To address these shortcomings, we propose a progressive support
selection based self-adaptive distributed MWC sensing scheme (PSS-SaDMWC). In the proposed
scheme, the parallel hardware sensing channels are scattered on secondary users (SUs), and the
PSS-SaDMWC scheme takes sparsity order estimation, noise intensity, and transmission loss into
account in the fusion center. More importantly, the proposed scheme uses a support selection strategy
based on a progressive operation to reduce missed detection probability under low SNR levels.
Numerical simulations demonstrate that, compared with the traditional support selection schemes,
our proposed scheme can achieve a higher support recovery success rate, lower sampling rate, and
stronger time-varying support recovery ability without increasing hardware complexity.

Keywords: cognitive radio network; singular value decomposition; cooperative wideband spectrum
sensing; transmission loss; modulated wideband converter; progressive support selection

1. Introduction

Spectrum resources have become increasingly scarce with emerging wireless services.
Nevertheless, assigned radio spectrums to authorized users are mostly underutilized. As a solution
to this problem, cognitive radio (CR) technology can reuse spectrum resources by utilizing spectrum
sensing to intelligently recognize idle frequency bands [1]. Traditional spectrum sensing methods, such
as energy detection [2], cyclostationary feature detection [3], and matched filter detection [4], mainly
exploit spectral opportunities over a narrow frequency range. The research of wideband compressed
spectrum sensing (WCSS) is motivated by the desire to support wireless multimedia communications
in CR networks [5,6]. In WCSS, compressed sensing (CS) theory [7,8] can be applied to reduce the
sampling rate and the hardware complexity of the CR transceivers, such as by using a wideband
antenna, wideband filter, and high speed analogue-to-digital converter (ADC).

In the early years, CS research has mainly concentrated on the sensing of discrete finite-length
signals [9]. Recently, CS was applied in the analog domain to sample the wideband analog
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signals at rates far lower than the Nyquist sampling rate [10]. There have been several hardware
architectures proposed for continuous-time signals, such as the Analog-to-Information Conversion
(AIC) system [11,12], Multi-Coset (MC) system [13–15], and Modulated Wideband Converter (MWC)
system [16–18]. The AIC system is designed for narrowband multi-tone signals, while the MC and
MWC systems have multi-channel structures and can reduce the sampling rate significantly for
wideband multi-band signals. Unfortunately, the MC system needs high-rate sampling in the analog
front-end, and the time delay of each channel must be accurate. The MWC is an attractive wideband
spectrum sensing technique for multi-band signals, which requires m parallel sampling channels,
with each channel comprised of a modulator with a mixing function pi(t), a low-pass filter (LPF) and
an ADC. However, the MWC has high hardware complexity owing to a large number of parallel
channels. If m is to be reduced enough without increasing the sampling rate at each channel, the
sensing performance would be degraded sharply. Therefore, most of the recent papers about the MWC
focus on how to improve the reconstruction accuracy of the spectral support [19–22] and how to design
novel hardware architecture with low complexity [23–26].

The signals sensed by CR may suffer from fading during transmission, and the performance of a
single CR can be affected. To improve the precision of spectrum sensing, collaborative spectrum sensing
can be conducted by multiple CRs, where different CRs share their sensing results and cooperatively
decide on the spectrum occupancy [27]. In centralized collaborative spectrum sensing, multiple CRs
report their measurements to a fusion center, which makes a joint decision on the spectral support [28].
In [29], the MWC is used in the distributed cooperative spectrum sensing (DCSS), in which each CR
node uses the MWC system to sample a wideband sparse signal, where a secondary user (SU) can
be considered as a CR node. However, this strategy can lead to unacceptable hardware complexity
and cost. Xu et al. proposed a distributed MWC (DMWC) scheme, which regards one CR node
as one sampling channel [30]. The DMWC scheme can reduce the complexity and the cost of the
single sensing node. However, the DMWC needs a large number of cooperative SUs to maintain a
high success recovery probability, and has a poor sensing performance under low SNR. In addition,
the DMWC needs to know the prior information of sparsity order. Unfortunately, in practical CR
applications, the real sparsity order is time varying in nature. Thus, due to the distinct radio wave
propagation environment, the traditional WCSS technologies cannot be applied directly to sense the
wideband spectrum between SUs. To address above problems, in this paper a novel progressive
support selection based self-adaptively distributed MWC sensing scheme (PSS-SaDMWC) is proposed.
Our main contributions are summarized as follows:

(1) To reduce the complexity and the cost of cooperative wideband spectrum sensing, inspired
by [30] in which the parallel hardware sensing channels are scattered on various SUs. Namely,
the ith secondary user is treated as the ith compressed sampling channel. To mitigate multipath
fading in the CR environment, we build the transmission loss model. In the fusion center (FC),
the under-sampling data from SUs is multiplied by the transmission loss gain. Moreover, the
influence of transmission loss on the support recovery performance is also discussed.

(2) To self-adaptively achieve a high successful reconstruction probability of spectral support in a
practical CR environment. Firstly, according to the theory of singular value decomposition [31],
the internal relationship between noise singular values and useful signal singular values in a
noisy signal is obtained. Then, because the tail singular values are mainly determined by noise,
and the noise singular value has a linear characteristic, the proposed scheme uses the linear
relationship to estimate the noise intensity by adding a known additive white Gaussian noise
(AWGN) signal in the FC. Thirdly, with the contribution of the estimated noise singular values to
the singular values of the noised-signal, we use a gradient and difference operation to estimate
the sparsity order.

(3) Given a false alarm probability (Pf ) and transmission interference, the scheme uses the progressive
support selection strategy to significantly decrease the probability of missing detection under
low SNR levels.
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The rest of this paper is organized as follows: Section 2 describes the sampling principles of the
MWC and cooperative sensing system model, and gives the problem statement. Section 3 presents
the proposed PSS-SaDMWC scheme, including the analysis of transmission loss, the estimation of
noise intensity and sparsity order, and the discussion of the progressive support selection strategy.
In Section 4, we conduct a numerical evaluation of the proposed scheme and discuss the simulation
results. Finally, Section 5 concludes the paper. The main notations used are listed in Table 1.

Table 1. List of the notations.

Notation Meaning

Λ Actual spectral support of the signal.
.

Λ Temporary support obtained in Algorithm 2.
Λ̂ Estimated spectral support.
|Λ| Potential of spectral support.
N Number of sub-bands in the multi-band signal.
Bi Bandwidth of the ith sub-band.

fnyq Nyquist rate of x(t).
pi(t) Periodic mixing signal.

Y Sub-Nyquist sampling signal with the MWC.
K Sparsity order of the signal.
K̂ Estimated sparsity order.

‖Z̃i→‖2 Norm of each row vector for Z̃.
Φ m× L measurement matrix or observation matrix.

Φ↓Λ̂ Extracting column vectors from Φ according to Λ̂.
ε Decision threshold.
Ei Energy coefficient of the ith sub-band.
fi Carrier frequency.
τi Time offset of the ith sub-band.
L Spectrum slice number.
fp Spectral slice width, fp = fnyq/L.
fs Sampling rate at each channel, fs = q fp, with odd q.

2. System Model and Problem Statement

2.1. Basic Principle of the MWC

As depicted in Figure 1a, x(t) is the sparse multiband signal, which is a real signal and continuous
in time. The spectrum of x(t) has at most N parts with energy in the whole frequency band. From [16],
we know that the MWC contains a number of parallel sub-sampling channels, and each channel
has the same hardware structure. The received continuous-time multiband signal is the input to
the sub-sampling channels at the same time, and in each channel x(t) is multiplied by the periodic
mixing signal pi(t) with a different mode, which can make the frequency spectrum of signal x(t)
move to baseband. The pi(t) values of each channel are uncorrelated with each other. The period of
pi(t) is Tp = 1/ fp, where fp is the frequency of pi(t). M is used to show the number of random ±1
switches in a cycle. M fp is defined as the switching frequency of mixed signals. The mixed signals
pass through the low pass filter, whose cut-off frequency is 1/2Ts. Finally, it passes through the ADC,
whose sampling rate is fs = 1/Ts and obtains the m groups low rate digital sampling sequences yi[n].
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Figure 1. The principles of the MWC system [16,17]. (a) Sparse multiband signal model;
(b) Reconstruction of signal support.

Figure 1b shows the reconstruction process of the support of x(t). Assume that the number of
bands is 4, fs = fp, and fp ≥ B. We divide the wideband spectrum into L spectrum slices, where
L = 2L0 + 1. In order to ensure that the discrete Fourier transformation result of the sampling
sequence contains all the components of the original signal spectrum X( f ), L0 must satisfy L0 =⌊(

fnyq + fs
)
/2 fp

⌋
− 1. After mixing and low pass filtering, the spectrum information of the original

signal appears in the sampling interval [− fs/2, fs/2], and the mixing coefficient of each spectrum slice
is cil , where l is the index of spectrum slices. According to the theory of CS, we can obtain the spectrum
support of the multiband signal.

On analysis of the i-th channel, the Fourier series expansion of the random mixing function is:

pi(t) =
∞

∑
l=−∞

cilej2π fp lt (1)

In (1), pi(t) denotes a pseudo-random sequence of ±1, which is used as a mixing signal of the
ith sampling channel; l is the index of the spectrum slice; and cil is the coefficient of the Fourier series

expansion. The coefficient cil = dl
L−1
∑

k=0
αike−j 2π

L lk, αik ∈ {−1,+1}. When l = 0, d0 = 1/L, and when

l 6= 0, dl = (1− e−j 2πl
L )/j2πl.

Then, after passing through the low pass filter, whose frequency characteristic is H( f ) ={
0 | f | > fs/2
1 | f | ≤ fs/2

, the relationship between the DTFT (Discrete Time Fourier Transform) of yi[n] is

obtained by sampling, and the Fourier transform X( f ) of x(t) is:

Yi(ej2π f Ts) =
L0

∑
l=−L0

ci lX( f − l fp) (2)

In (2), f ∈ [− fs/2, fs/2], and L0 is the smallest integer that makes L = 2L0 + 1 ≥ fnyq/ fp.
Equation (2) shows that the spectrum of the output sequence is changed into the shift weighted sum of
the original signal spectrum with fp as its step, and it is intercepted into fs wide spectral fragments
by the low pass filter. If Yi(ej2π f Ts) is considered as the i-th component of the m dimensional column
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vector y( f ), and X( f − l fp) as the l-th component of the 2L0 + 1 dimensional column vector z( f ), then
(2) can be expressed as:

y( f ) = Φz( f ), f ∈ [− fs/2, fs/2] (3)

In (3), Φ is an m× L matrix, Φi l = ci,−l = cil∗, 1 ≤ i ≤ m, and m < L. If the Inverse Discrete Time
Fourier Transform (IDTFT) is performed on both ends of Equation (3), we can get the corresponding
relationship between the sequence Z[n] = [z1[n], z2[n], . . . , zL[n]]

T and the sampling data Y[n] =

[y1[n], y2[n], . . . , ym[n]]
T ; that is:

Y[n] = ΦZ[n] (4)

For any frequency f ∈ [− fs/2, fs/2], (4) is a typical compressed sensing problem: when a
measured matrix Y and an observation matrix Φ are known, a sparse vector Z can be recovered. In
practical applications, the noise is included in Y.

In detail, the classic CS problem is that a Single Measurement Vector (SMV) is known to recover
a single unknown sparse vector; that is, an SMV problem. However, in the application of the MWC,
multiple measurement vectors are generated due to the parallel sampling structure of the MWC. Each
measurement vector corresponds to an unknown signal vector, which is sparse and has a common
support set. The multiple sparse vectors need to be simultaneously recovered under the condition
that multiple measurement vectors are known. In summary, the reconstruction problem with such a
joint sparse structure is called Multiple Measurement Vectors (MMV) problem [32,33], which can be
expressed as the matrix. Therefore, it also can be considered that the MMV problem is composed of
multiple SMV problems, and its essence is to achieve simultaneous recovery of a series of sparse vectors.
As a result, paper [21] gets a one-dimensional vector after projecting Y subtly, and then reconstructs
the signal support band by using the compressed sensing technique. Furthermore, paper [16] realizes
the reconstruction by building a Continuous to Finite (CTF) module. Similar to the tensor completion
problem [34,35], the observation matrix in the CTF module also has a low-rank property.

In addition, from the MMV problem we can introduce the concepts of the joint support set and
joint sparsity order.

Definition 1 (Joint Support Set) [36]. Given a matrix W = [w1, w2, . . . , wi, . . . , wn], assuming that each
column vector wi of the matrix W is sparse, and W has only a small number of common non-zero rows, then its
joint support set can be expressed as follows:

supp(W) = ∪
i∈{1,2,...,n}

supp(wi) (5)

Definition 2 (Joint Sparsity Order) [36,37]. If the potential of supp(W) satisfies |supp(W)| ≤ K, then W
is said to be joint K sparse, or we can also say that the joint sparsity order of W is K.

Remark 1. In Definition 1, supp(W) is the union of the support of sparse vectors. From the perspective of the
matrix, it can be understood as a set of index values of non-zero rows of unknown matrix W. In fact, the joint
sparse model (JSM) generated by the MWC structure belongs to the second model in [37], namely JSM-2.

2.2. System Model

In a Cognitive Radio Network (CRN), there are primary users and secondary users. Primary users
(PUs) are the licensed users, also called legitimate/authorized users. PUs have the license to operate in
the specified frequency band to access the primary base station (BS), which should not be affected by
the operations of any other unlicensed users. Secondary users (SUs) are unlicensed users without a
spectrum license, also referred to as “CR users,” or as “CRs” for brevity. SUs need to continuously
monitor the activities of the licensed users to find the spectrum holes, which is also called spectrum
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sensing, and then look for opportunistic access to both the licensed and unlicensed spectrum band.
Obviously, SUs are allowed to operate only if no interference is caused for licensed PUs [38,39].

Because spectrum sensing is done in a very wide frequency range, we consider a CR network
with m SUs, one FC, and several base stations (BS), in which the FC also contains a MWC sub-sampling
channel, as depicted in Figure 2. The multiple secondary user nodes and several primary users are
randomly distributed. The primary user can be a nearby signal transmitting base station, or an air-sky
transmitting base station that is composed of an airship or a satellite. The signals transmitted by
primary users occupy a fixed authorized frequency band. The spectrum sensing channel is a wideband
link between the PUs and the SUs. In the secondary system, each sensing node samples the PU
signal over the spectrum sensing channel in a compressed manner. Each sensing node is considered
as one compressed sampling channel within the parallel MWC hardware sampling structure. The
channel between a sensing node and FC is considered the relaying channel. Firstly, SUs transmit the
compressed sampling data to the FC through the relaying channel. Then, the FC performs wideband
spectrum sensing on the compressed data received from the SUs and the compressed data sampled by
itself. Finally, after the FC obtains signal spectral support within a very wide spectrum range, the FC
will feedback the sensing results to the SUs.
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In CR communications, the signal detected between extremely wide spectral ranges is usually
considered a sparse multiband analog signal x(t), which contains N sub-bands with signal energy.
The x(t) is shown in Figure 1a, whose frequency support resides in a union of k disjoint bands which
are spread over a very wide spectrum range [− fnyq/2, fnyq/2]. The whole spectrum range is divided
into L consecutive narrow band channels, with the bandwidth of each sub-band not exceeding B. The
sub-band unions of x(t) and the maximum bandwidth B can be expressed as:

PN =
N/2
∪

i=1
{(ai, bi) ∪ (−bi,−ai)}, B = max

i
(bi − ai) (6)

If the sub-bands are marked as [1, . . . , L], the set of all occupied sub-bands Xi( f ) is the spectral
support of the signal x(t), which is defined as Λ = supp(X( f )). |Λ| is the potential of spectral support.

Considering the WCSS, the sensing performance may degrade for several reasons, such as
multipath fading, phase shift, and noise uncertainty. The paper by Xu et al. [30] verified that phase
shift has no influence on the recovery of support. However, a change of the distance between the SU
and FC will lead to a change of the multipath channel parameters, such as the signal delay spread. In
order to simplify the problem, we only consider the different delay paths at the receiving end caused
by the diffuse reflection of several adjacent SUs, which results in a typical frequency selective fading
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effect. By drawing lessons from the analysis method of Driessen’s paper [40], the coefficient of radio
wave propagation loss Lj(td) of jth SU is calculated by:

Lj(td) =
PR(t = (rTS + rSR)/c)

PT(t = 0)
=

λ2

(4π)3

∫
A

σj
0

rTS
2rSR

2 dAj ≈
λ2

(4π)3 ∑
i

σij
0dAij

rTS
2rSR

2 (7)

The derivation of Equation (7) is given in Appendix A. In Equation (7), PR(t = (rTS + rSR)/c)
denotes the received power when t = (rTS + rSR)/c, PT(t = 0) denotes the transmission power at
t = 0, λ is the wavelength, rTS is the distance between the transmitter and the scatterer, rSR is the
distance between the receiver and the scatterer, rTR is the distance between the transmitter and the
receiver, σ0 denotes the root mean square of slope on any small diffuse reflection area dA, c is the
signal transmission speed, and A indicates the area of effective diffuse reflection. td is given as:

td = (rTS + rSR − rTR)/c (8)

Thus, in the FC, the received signal from -th SU can be represented as:

x′ j(t) = Lj(td)xj(t) (9)

2.3. Problem Statement

As previously mentioned, the FC obtains sub-Nyquist sampling signals from SUs, and then the
FC reconstructs the frequency support of x(t). However, if the reconstruction of the spectral support is
conducted by using a traditional CS recovery algorithm, some problems remain such as the need for
too many sampling channels, poor sensing accuracy in the presence of transmission interference, and
unknown prior information in practical sensing conditions.

In (4), considering the practical time-domain sampling process, the obtained matrix Y(n) must be
finite dimensional, and Z(n) is joint sparse. Therefore, (4) is a typical MMV problem [41,42], which
can be transformed into the solution of the constrained optimization problem:

min I(Z(n)) s.t. Y(n) = ΦZ(n) (10)

In (10), I(Z(n)) is the joint sparsity order of Z(n). Mishali has proved that the MWC can achieve
a high recovery success probability when m > 4N log(L/2N) [16]. However, there is still a big gap
between m and the theoretical lower limit (m = 2N) [16], and m is limited by the number of SUs in
this paper. Furthermore, in earlier research [19–22,43], the reconstruction schemes of spectral support
needed to know the signal sparsity order, which is very difficult to achieve in practice. In [20], the
decision condition of support is given by ‖Z̃i→‖2 ≥ ε, and the threshold ε is a predetermined fixed
value. However, in practice, ε is closely related to the noise intensity. In addition, in the presence of
noise interference and transmission loss, it is difficult to achieve a high success recovery probability of
support with a single support selection scheme in the existing literature.

In addition, it has been shown in [30] that if the single support selection strategy is used in the FC,
the number of sub-Nyquist sampling channels will be far greater than the theoretical lower bound, and
the sensing performance becomes terrible under low SNR or low loss gain. Thus, in order to improve
sensing performance, the proposed PSS-SaDMWC scheme uses the progressive support selection
strategy to reconstruct the spectral support.

3. Proposed PSS-SaDMWC Scheme

In this section, based on SVD, the estimation methods of noise intensity and sparsity order are
given. Then, we discuss the effect of transmission loss on the PSS-SaDMWC scheme. Finally, the
pseudo-code description of the PSS-SaDMWC scheme is given, and the convergence of the scheme
is proved.
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3.1. Preprocessing of PSS-SaDMWC Scheme

3.1.1. Estimation of Noise Intensity

In the FC, due to the influence of noise intensity changes, the decision threshold cannot be set to a
fixed value. Inspired by Liu [44], we used the SVD to estimate noise intensity. We performed singular
value decomposition on Y to obtain the singular values vector of Y; that is, ∑Y = (σ1, σ2, . . . , σK, . . . σm).
Y is composed of real signal and noise. Similarly, we can also obtain the singular values vector of the
noise and the singular values vector of the real signal, denoted as ∑N = (σn1, σn2, . . . , σnK, . . . σnm) and
∑S = (σs1, σs2, . . . , σsK, . . . σsm) respectively, where σi is the ith singular value. Obviously, in practical
applications, ∑Y is known, but ∑N and ∑S are unknown. In the next paragraph, we use the given real
signal data and the given noise data in the experiments to help the analysis.

Firstly, we define Rn and Rs. Rn is the contribution of the noise singular value to the singular value
of Y; that is, Rn = (σn1/σ1, σn2/σ2, . . . , σnK/σK, . . . , σnm/σm). Rs is the contribution of the singular
value of the real signal to the singular value of Y; that is, Rs = (σs1/σ1, σs2/σ2, . . . , σsK/σK, . . . , σsm/σm).
Under different SNR levels, the relationship between Rs and Rn is shown in Figure 3. Next, for the
received under-sampling signal Y, Figure 4 shows the distribution of singular values under different
noise intensities and different sampling channel numbers. Finally, Figure 5 shows that the distribution
of the real noise singular values is basically linear. In Figures 3 and 4, the loss gain is set to 0.9.
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Figure 3. The contribution of the singular value of the signal and noise to total singular value.

Sensors 2018, 18, x FOR PEER REVIEW  8 of 24 

 

bound, and the sensing performance becomes terrible under low SNR or low loss gain. Thus, in order 

to improve sensing performance, the proposed PSS-SaDMWC scheme uses the progressive support 

selection strategy to reconstruct the spectral support.  

3. Proposed PSS-SaDMWC Scheme 

In this section, based on SVD, the estimation methods of noise intensity and sparsity order 

are given. Then, we discuss the effect of transmission loss on the PSS-SaDMWC scheme. Finally, 

the pseudo-code description of the PSS-SaDMWC scheme is given, and the convergence of the 

scheme is proved. 

3.1. Preprocessing of PSS-SaDMWC Scheme 

3.1.1. Estimation of Noise Intensity 

In the FC, due to the influence of noise intensity changes, the decision threshold cannot be set to 

a fixed value. Inspired by Liu [44], we used the SVD to estimate noise intensity. We performed 

singular value decomposition on Y  to obtain the singular values vector of Y ; that is, 

 1 2, ,..., ,...K mY
    . Y  is composed of real signal and noise. Similarly, we can also obtain the 

singular values vector of the noise and the singular values vector of the real signal, denoted as 

 1 2, ,..., ,...n n nK nmN
     and  1 2, ,..., ,...s s sK smS

     respectively, where 
i  is the ith 

singular value. Obviously, in practical applications, Y  is known, but N  and S  are 

unknown. In the next paragraph, we use the given real signal data and the given noise data in the 

experiments to help the analysis. 

Firstly, we define 
nR  and 

sR . 
nR  is the contribution of the noise singular value to the singular 

value of Y ; that is,  1 1 2 2/ , / ,..., / ,..., /n n n nK K nm mR         . 
sR  is the contribution of the 

singular value of the real signal to the singular value of Y ; that is, 

 1 1 2 2/ , / ,..., / ,..., /s s s sK K sm mR         . Under different SNR levels, the relationship between 

sR  and 
nR  is shown in Figure 3. Next, for the received under-sampling signal Y , Figure 4 shows 

the distribution of singular values under different noise intensities and different sampling channel 

numbers. Finally, Figure 5 shows that the distribution of the real noise singular values is basically 

linear. In Figures 3 and 4, the loss gain is set to 0.9. 

   

Figure 3. The contribution of the singular value of the signal and noise to total singular value. 

   

5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

1800

i

S
in

g
u
la

r 
v
a
lu

e
 o

f 
Y

m=40

 

 

snr=10dB

snr=20dB

snr=30dB

2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

i

S
in

g
u
la

r 
v
a
lu

e
 o

f 
Y

m=20

 

 

snr=10dB

snr=20dB

snr=30dB

5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

i

S
in

g
u
la

r 
v
a
lu

e
 o

f 
Y

m=30

 

 

snr=10dB

snr=20dB

snr=30dB

5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

1800

i

S
in

g
u
la

r 
v
a
lu

e
 o

f 
Y

m=40

 

 

snr=10dB

snr=20dB

snr=30dB

Figure 4. The comparison of the singular value of Y under different SNR environments.
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Figure 5. The distribution of the noise singular value.
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As can be seen from Figures 3 and 4, the tail of the singular value is mainly determined by noise,
the distribution of which presents a linear feature, and the energy of the signal is concentrated in the
first K singular values, where K is the sparsity order of the signal. Furthermore, the initial singular
values show little change no matter how much the SNR and channel number have changed. However,
the tail of the singular values is chiefly influenced by noise intensity because the contribution of the
original signal is small. As shown in Figure 4, the tail singular values fluctuate a great deal under
different SNR levels, and the tail distribution of the singular values is basically linear. Therefore, we
can assume that the relationship is linear between the mean value MP of the P tail singular values and
the real noise intensity σ, as in:

MP = ασ + λ (11)

In (11), α and λ are the unknown parameters. In order to solve the unknown parameters and
estimate the noise intensity, we add the known Gauss white noise into the received signal at the fusion
center. Then, we can establish a set of equations, as follows:

MP1 = α
√

σ2 + σ1
2 + λ (12)

MP2 = α
√

σ2 + σ22 + λ (13)

The proof of (12) is given in [44]. Because the MP1, MP2, σ1 and σ2 are known, by using
Equations (11)–(13), we can get the value of α, λ and σ. The estimated σ is expressed as:

σ̂ =

√
(MP1−MP2)/(σ1

2/(MP1−MP)−σ2
2/(MP2−MP))

2×(MP1−MP)
σ1

2−
(MP1−MP)

2×
√

(MP1−MP2)/((σ1
2/(MP1−MP)−σ2

2/(MP2−MP)))

(14)

Remark 2. The noise intensity estimation is mainly based on two aspects: (1) the singular values of the signal
tail are mainly affected by the noise energy; (2) the singular values of noise present linear characteristics. However,
in fact, the tail singular values of the signal contain very little signal energy, and the linear characteristic of the
noise singular values is not perfect. These will lead to some deviations between the estimated value and the actual
result. In practice, we can select the appropriate number of tail singular values to reduce the estimation error.

3.1.2. Estimation of Sparsity Order

The sparsity order estimation can be implemented using CS theory in combination with other
statistical learning methods, such as Gaussian mixture models [45]. However, because some of the
results in Section 3.1.1 can be obtained directly, we used the SVD combined with the gradient and
difference methods to estimate signal sparsity order in this section.

If 30% tail singular values are used as noise singular values to perform linear fitting, we can get
the estimated noise singular values Σ̂n = diag(ŝn1, . . . , ŝni, . . . , ŝnm), where ŝni is the ith estimated noise
singular value. The contribution of noise singular values to the singular values of Y is calculated by
Equation (15):

R̂n = Σ̂n./Σ =
m
∪

i=1
(ŝni/si) (15)

GRn = abs
(
gradient(R̂n, 1)

)
DRn = di f f (GRn) (16)

GRn and DRn are defined in (16), where abs() is a function which is used to find absolute values. If
the noise intensity is strong, GRn is first obtained by performing the gradient operation on R̂n, and
then DRn is obtained by performing the difference operation on GRn . The calculation method of GRn

and DRn is shown in (16). The results of the operation are in ascending order. The position of the
minimum value in DRn plus 1 is the estimated sparsity order K̂. If the sampling channel number is
close to the theoretical lower limit, K̂ needs to add one adjustable parameter e, where the empirical
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value e is usually set to 1. Figure 6 is a sketch map of the sparsity order estimation under different
SNR levels.
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Figure 6. The estimation of the sparsity order under different SNR levels.

If the noise is weak, the signal energy is dominant. The sparsity order can be estimated directly
by using the singular values of Y. Firstly, all singular values are shifted to the left one time, and the last
empty position is filled by sm, represented as Σa = diag(s2, . . . , si, . . . , sm, sm). Then, R is calculated by
(16), and R is in descending order. The index of the maximum value in R is the estimated sparsity
order K̂. Although K̂ has some deviations, due to adopting the progressive support selection strategy
the deviation has no impact on the success rate of reconstruction:

R = Σa./Σ (17)

Remark 3. Since the noise singular values are obtained by linear fitting, the estimation error is directly related
to the signal-to-noise ratio. If the signal-to-noise ratio is too small, the estimation of the noise singular values
will be biased. Although these deviations can be corrected by the empirical correction parameter, they still affect
the estimation accuracy of the sparsity order. In practice, we will list an error correction parameter table and
choose appropriate correction parameters for different actual scenarios.

3.2. The Influence of Propagation Loss on Support Reconstruction

When the sub-Nyquist sampling data is transmitted to the fusion center by the CR node,
transmission loss is inevitable. Thus, according to the conclusion in Section 2.2, Equation (2) can
be expressed as:

Yi(ej2π f Ts) =
L0

∑
l=−L0

Lj(td)e
jθj ci lX( f − l fp) f ∈ [− fs/2, fs/2] (18)

Firstly, from Xu’s research [30], we can draw the conclusion that phase shift θj in the jth path has
no effect on the spectral support recovery. However, in the practical networks, we have to investigate
the influence of propagation loss on the recovery success rate of support. In the presence of observation
noise and channel fading, the optimization problem with the equality constraints of (10) can be relaxed
as a constrained inequality optimization problem:

min
z
‖Z(n)‖1 s.t. ‖Y(n)−ΦZ(n)‖2 ≤ ζ (19)

where ζ ≥ 0 is a permissible error disturbance. Here, Φi l = Lji(td)ci,−l = Lji(td)cil∗. In addition, from
Theorem 1, we also can conclude that (19) is convergent.

Theorem 1. Let Z ∈ <n, Φ ∈ <m×L, for a positive constant C, if m satisfies:

m ≥ Cµ2(Φ)K log(L/δ) (20)
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where m is the number of parallel channels, µ(Φ) = max
j 6=i

|〈φi ,φj〉|
‖φi‖2‖φj‖2

is the maximum absolute value of the

cross-correlation between the different columns in Φ, and µ(Φ) ∈
⌊√

L−m/m(L− 1), 1
⌋

[46]. Then, the
solution of (19) can be obtained by the probability precision of 1− δ. In other words, the high-dimensional
discrete sparse signal Z can be reconstructed from the low dimensional sampling signal Y with the probability of
1− δ.

Proof. The proof of Theorem 1 can be found in [47]. �

Remark 4. It is worthwhile to note that, in (20), an important constraint relationship is established between the
observation matrix Φ, the number of measurements m, the spectral slice number L, and the sparsity order K. In
addition, when the correlation between the column vectors in Φ is smaller, the number of measurement samples
required is less. From (20), we can get an acceptable loss gain through the constraint of the sampling channels
number. For a given N, we can get an intuitive relationship from Figures 7 and 8 between m, the SNR level, the
successful recovery probability, and the loss gain L(td). In Figures 7 and 8, we use the S-MUSIC scheme [43]
based on a single support selection strategy.
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Figure 8. Influence of the sampling channels number on recovery accuracy under different loss gains.
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According to (18) and Theorem 1, loss gain has an influence on the correlation between the
column vectors of the observation matrix. From Figure 8, this correlation directly affects the number of
sampling channels m. Moreover, m directly corresponds to the number of SUs involved in spectrum
sensing. Thus, in order to obtain a high support reconstructed probability, the transmission loss
is too large to lead to the need for too many sampling channels, which is impossible in real CR
communications. Therefore, we need a suitable and acceptable m to ensure a high recovery success
rate of spectral support.

3.3. Support Selection Strategy Based on Progressive Operation

From Section 3.2, we know that the successful recovery rate is very low from using the single
selection strategy when the SNR is low and the channel loss is large. In order to further illustrate
the problem, we conduct 100 experiments separately using the RPMB scheme [20] and S-MUSIC
scheme [43]. In each experiment, different multi-band signals were randomly generated as sparse
signal sources. Meanwhile, each experiment takes 20 iterations, and each gets a signal support. If
the correct spectral support exists in the 20 supports of the sets, we investigate the ability of the two
methods to extract the correct spectral support in the 100 experiments, respectively. The results are
shown in Table 2.

Table 2. The comparison of the extraction and reconstruction ability.

Parameters SNR = 15 dB, B = 50 MHz, fNYQ=10GHz, m = 15,
N = 6, and L(td) = 0.9

Scheme RPMB S-MUSIC
Extraction ability 45.4% 61.4%

Recovery success rate 7.6% 34%

The above analysis shows that the extraction ability is weak in the case of the correct spectral
support in the vector set, which leads to a very low successful recovery rate. However, if we combine
the two algorithms for progressive extraction, we can get good results. Figure 9 demonstrates the
system structure of the PSS-SaDMWC scheme.Sensors 2018, 18, x FOR PEER REVIEW  13 of 24 
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Figure 9. The structure of the PSS-SaDMWC scheme. (a) DMWC sub-Nyquist sampling; (b) Spectral
support reconstruction with progressive support selection strategy.

To reduce the time complexity, the PSS-SaDMWC scheme generally only needs two to four levels
for progressive reconstruction. The PSS-SaDMWC scheme, based on the progressive support selection
strategy and preprocessing methods, is summarized in Algorithm 1.
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Algorithm 1. The description of the PSS-SaDMWC scheme.

Parameters: x(t), N, B, fnyq, L, fs, fp, rSR, rTS, σ1, and σ2.
Initializations: Λ̂0 = ∅.
I. DMWC compressed sampling

(a) Deliver the sub-Nyquist observation by (2).
(b) Solve (7) to obtain the loss coefficient.
(c) Construct Y(ej2π f Ts ) according to (18), and get the observation matrix Φ.

II. Pretreatment process

(a) Add AWGN σ1 to Y, we can get (12). Then, add AWGN σ2 to Y, we get (13).
(b) Solve (14) to obtain σ̂.
(c) Get K̂ by (16) and (17).

III. Reconstruction of spectral support based on progressive support selection

(a) Construct an initial weight vector: W0 =
{

w0,1, w0,2, . . . , w0,i, . . . , w0,2K̂

}
= {0}.

(b) According to [48], we can get
[
W1, Λ̂1

]
= Reconstruction_algorithm_1(Y, Φ, σ̂, K̂, Λ̂0, W0).

(c)
[
W2, Λ̂2

]
= Reconstruction_algorithm_2(Y, Φ, σ̂, K̂, Λ̂1, W1).

. . . . . .
(d)

[
Wn, Λ̂n

]
= Reconstruction_algorithm_n(Y, Φ, σ̂, K̂, Λ̂n−1„ Wn−1).

Output: Λ̂n.

In Algorithm 1, wi,j represents the importance of the jth support element in the i-th reconstruction.
The progressive idea is included in Algorithm 1. The reconstruction algorithms in Algorithm 1 are
actually an improvement on the existing reconstruction algorithms. The improved reconstruction
algorithms do not need to know the sparsity order of the signal in advance, in which the decision
threshold can also be adaptively adjusted by the estimated noise intensity, and the idea of progressive
support selection is also incorporated into the improved reconstruction algorithm.

The concrete implementation of the progressive idea is embodied in each support reconstruction
algorithm, the pseudo codes of which are expressed as follows (Algorithm 2):

Algorithm 2. The ith support reconstruction with the progressive idea.

Input parameters: Y, Φ, σ̂, K̂, Λ̂i−1, Wi−1.
Obtain progressive spectral support:

(a) 2K̂ elements of spectral support are obtained by using input parameters (Y, Φ, σ̂, K̂) and ith

reconstruction Algorithm, named
.

Λ.
(b) j = 0;

while j < 2K̂

if (
.

Λ(j) ∈ Λ̂i−1)

pos = f ind
(

Λ̂i−1 ==
.

Λ(j)
)

;

Update the weights: Wi(j) = Wi−1(pos) + 0.1, and delete Wi−1(pos) and Λ̂i−1(pos)
from vector Wi−1 and vector Λ̂i−1, respectively.
else
Wi(j) = 0;
end
j = j+1;
end

(c) After the loop, obtain a new Wi−1 vector and a new Λ̂i−1 vector, named W ′ i−1 and Λ̂′ i−1.
(d) Wtemp = sort(Wi ∪W ′ i−1, ′descend′), and Wi = Wtemp(1 : 2K̂).

(e) According to Wi, 2K̂ support elements corresponding to the weights are selected from vector
.

Λ ∪ Λ̂′ i−1
to form a new spectral support Λ̂i.

Output: Λ̂i and Wi.
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4. Performance Evaluation and Analysis

4.1. Design Example and Performance Metrics

Firstly, we simulated the scheme using sinc signal contaminated by white Gaussian noise. The
sparse multiband analog signal with noise is generated by (21), which consists of three pairs of bands
(total N = 6):

x(t) =
N/2

∑
i=1

√
EiBi sin c(Bi(t− τi)) cos(2π fi(t− τi)) + n(t) (21)

where sinc(x) = sin(πx)/πx, x(t) is a multi-band signal, and n(t) is a white Gaussian noise. For the
multi-band signal, the carriers fi are chosen uniformly and randomly in

[
− fnyq/2, fnyq/2

]
. Table 3

lists the simulation parameters and their meanings. The PSS-SaDMWC scheme performs the process
as Algorithm 1. The reconstruction algorithms of the PSS-SaDMWC in numerical experiments include
an improved SwSOMP_MWC and an improved S-MUSIC_MWC.

Table 3. Simulation parameters.

Symbols Value Meanings

N 6 Number of sub-bands with energy (three pairs of bands)
Ei {1,2,3} Energy of the i-th sub-band
Bi {50,50,50} MHz Maximal width of each sub-band
τi {0.4,0.7,0.2} Time offset of the i-th sub-band

fnyq 10 GHz Nyquist rate
L 195 Aliasing rate, or the spectrum slice number
M 195 Number of intervals in each period of pi(t)
fp 51.28 MHz Spectral slice width, fp = fnyq/L
fs 51.28 MHz Sampling rate at each channel, fs = q fp, with odd q

Lj(td) 0.9 Transmission loss gain

Next, the simulations are performed with MATLAB to evaluate the performance of the proposed
scheme against the existing schemes, and the following procedure was repeated 500 times to calculate
the recovery success probability:

(1) Generate the mixing signal pi(t) randomly.
(2) Generate the carrier frequency fi uniformly and randomly in

[
− fnyq/2, fnyq/2

]
.

(3) Generate new sinc signal according to fi.
(4) Estimate the spectral support using SOMP_DMWC [30], SwSOMP_DMWC [48],

ReMBo_DMWC [21], RPMB_DMWC [20], S-MUSIC_DMWC [43], and PSS-SaDMWC,
respectively, and determine whether the support is successfully recovered.

Finally, to evaluate the efficiency and reconstruction performance of proposed scheme (see
Figure 9), we chose the following four performance metrics: (1) the recovery success rate of support;
(2) the required minimum SUs number and minimum sampling rate; (3) the time-varying support
recovery ability; (4) finding an acceptable Lj(td) under different SNR levels; and (5) a discussion of
time complexity.

4.2. Simulation Results and Analysis

(1) The recovery success rate of support: When Pf is less than or equal to the upper bound, we
refer to the successful recovery criteria in [16]; that is, when the estimated support Λ̂ and the actual
support Λ meet the constraint condition given by Equation (22), where Λ̂ ⊇ Λ, and Φ↓Λ̂ is with full
column rank, it is considered a successful reconstruction. If the recovery success rate is more than 90%,
it is considered a high probability reconstruction:

success s.t.
(

Pf ≤ Eupper&&Λ̂ ⊇ Λ&&Rank(Φ↓Λ̂) = ‖Λ̂‖0

)
(22)



Sensors 2018, 18, 3011 15 of 23

Pf =
(
‖Λ̂‖0 − ‖Λ‖0

)
/L (23)

Eupper = ‖Λ‖0/L (24)

where ‖Λ̂‖0 is the potential of the reconstructed spectral support; that is, the length of support Λ̂;
‖Λ‖0 is the potential of the real spectral support; L is the number of spectrum slices; Pf is the false
alarm probability; and Eupper is an acceptable upper bound of Pf —that is to say, in L spectrum slices,
there are at most ‖Λ‖0 false alarm sub-bands allowed.

Figure 10 shows the support recovery success rate of the proposed PSS-SaDMWC scheme
in comparison with the other existing single support selection schemes, such as SOMP_DMWC,
SwSOMP_DMWC, ReMBo_DMWC, RPMB_DMWC, and S-MUSIC_DMWC. Obviously, the
PSS-SaDMWC scheme outperforms the other schemes on the whole. When the number of cooperative
SUs is small, the PSS-SaDMWC scheme can improve the performance by 23%–34% compared with
the SwSOMP_DMWC scheme, in the case of a lower SNR. Even when the SNR is 15 dB or 20 dB, the
PSS-SaDMWC scheme also can effectively increase the recovery success rate. Compared with the best
single selection scheme, the maximum performance promoting rate is shown in Table 4.

Table 4. Comparison of the maximum promoting rates.

Comparison m = 19
SNR = 5 dB

m = 18
SNR = 10 dB

m = 15
SNR = 15 dB

m = 15
SNR = 20 dB

PSS-SaDMWC scheme vs. the best
single selection scheme 23%↑ 34%↑ 22%↑ 7.5%↑
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Figure 10. Reconstruction performance comparison between the PSS-SaDMWC and other existing
single selection schemes. (a) SNR = 0 dB; (b) SNR = 5 dB; (c) SNR = 10 dB; (d) SNR = 15 dB;
(e) SNR = 20 dB.

Subsequently, we change the SNR levels and evaluate the reconstruction performance with
different m values, as Figure 11 shows. Specifically, when m is above 23 and the SNR is above 5
dB, the successful recovery rate improves steadily as m increases. When the SNR is less than 5 dB,
more cooperative users are required to obtain high reconstruction probabilities. Finally, when SNR =
20 dB, the PSS-SaDMWC scheme can achieve a high probability reconstruction with the number of
cooperative users close to the theoretical lower bound.

Sensors 2018, 18, x FOR PEER REVIEW  17 of 24 

 

Figure 10. Cont. 

 

(e) 

Figure 10. Reconstruction performance comparison between the PSS-SaDMWC and other existing 

single selection schemes. (a) SNR = 0 dB; (b) SNR = 5 dB; (c) SNR = 10 dB; (d) SNR = 15 dB; (e) SNR = 

20 dB. 

Subsequently, we change the SNR levels and evaluate the reconstruction performance with 

different m  values, as Figure 11 shows. Specifically, when m  is above 23 and the SNR is above 5 

dB, the successful recovery rate improves steadily as m  increases. When the SNR is less than 5 dB, 

more cooperative users are required to obtain high reconstruction probabilities. Finally, when SNR = 

20 dB, the PSS-SaDMWC scheme can achieve a high probability reconstruction with the number of 

cooperative users close to the theoretical lower bound. 

 

Figure 11. Performance comparison of the PSS-SaDMWC scheme under different SNR levels. 

(2) The required minimum number of sampling channels and minimum sampling rate: In 

theory, Mishali’s paper [16] points out that the spectral support of the signal can be reconstructed as 

long as the number of sampling channels is satisfied by . In addition, the MWC can achieve 

sub-Nyquist sampling. The total sampling rate of MWC is 
Σ sf mf . The theoretical minimum of the 

sampling rate for the multiband signal (that is, the Landau rate [21]) is defined as:  

 
/2

1

2
N

i i

i

M b a


   (25) 

where M  is Landau rate, which is the sum of all sub-band frequency widths, and ( )i ib a  is the 

frequency width of the ith sub-band. Since the number of the SUs m  and total sampling rate f  

15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of cooperative SUs (m)

R
e
c
o
v
e
ry

 s
u
c
c
e
s
s
 r

a
te

 

 

SNR = -5dB

SNR = 0dB

SNR = 5dB

SNR = 10dB

SNR = 15dB

SNR = 20dB

2m N

Figure 11. Performance comparison of the PSS-SaDMWC scheme under different SNR levels.

(2) The required minimum number of sampling channels and minimum sampling rate: In theory,
Mishali’s paper [16] points out that the spectral support of the signal can be reconstructed as long as the
number of sampling channels is satisfied by m ≥ 2N. In addition, the MWC can achieve sub-Nyquist
sampling. The total sampling rate of MWC is fΣ = m fs. The theoretical minimum of the sampling rate
for the multiband signal (that is, the Landau rate [21]) is defined as:

M = 2
N/2

∑
i=1

(bi − ai) (25)

where M is Landau rate, which is the sum of all sub-band frequency widths, and (bi − ai) is the
frequency width of the ith sub-band. Since the number of the SUs m and total sampling rate fΣ
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are directly related, the smaller the m is, the lower the cost of the system and the corresponding
sampling rate.

As shown in Figure 10 and Table 5, under different SNRs, the number of hardware channels and
the sampling rate of the PSS-SaDMWC scheme for the high probability reconstruction are smaller
those that of the other single selection schemes. Thus, the proposed scheme in this paper can use
fewer hardware channels and a lower sampling rate to achieve a high success rate of reconstruction.
Obviously, the lower the number of hardware channels needed by the scheme, the more the system
can save in costs; and the lower the sampling rate, the easier it is to implement the system hardware.

Table 5. The comparison on the minimum number of SUs and minimum sampling rate needed.

Schemes
SNR = 5 dB SNR = 10 dB SNR = 15 dB SNR = 20 dB

mmin f∑ min/MHz mmin f∑ min/MHz mmin f∑ min/MHz mmin f∑ min/MHz

PSS-SaDMWC 33 1692.24 23 1179.44 18 923.04 16 820.48
The best single selection scheme 39 1999.92 27 1384.56 23 1179.44 18 923.04

(3) Time-varying support recovery ability: From [41], if more sub-bands can be reconstructed by
the scheme, the reconstruction ability of the scheme is stronger. Obviously, the increase of N leads to
the increase of the signal sparsity order. As shown in Figure 12, the reconstruction performance of the
PSS-SaDMWC is significantly better than that of SwSOMP_DMWC and S-MUSIC_DMWC under the
same conditions. Specifically, when N = 8, the reconstruction performance is improved by 20% and
27%, respectively, compared to that of SwSOMP_DMWC and S-MUSIC_DMWC. In addition, when
N = 10, the reconstruction performance is improved by 41% and 39%, respectively. Nevertheless,
when the signal is not sparse enough, the recovery ability of all schemes will decrease sharply. Thus,
when spectral support Λ is time-varying, the PSS-SaDMWC can dynamically increase the amount of
cooperative SUs to obtain a stable support recovery ability. That is to say, the number of sampling
channels can be flexibly added when N is large or the transmission loss is large.
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(4) Finding an acceptable Lj(td) under different SNR levels: Figure 10 shows that the proposed
scheme can significantly improve the sensing accuracy. However, Theorem 1 indicates that the decrease
of the loss gain increases the correlation between the columns of the observed matrix, which leads to
a poor sensing performance. The average recovery success rate versus the loss gain under different
instantaneous SNR conditions is shown in Figure 13. Obviously, in practical applications, we hope to
find a minimum transmission loss that must be satisfied according to a given sensing accuracy. Then,
the constrained distance between the SUs and FC can be estimated by (7). Therefore, for a cooperative
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spectrum sensing network, we can choose the appropriate SUs as the sub-sampling channel by using a
quantized distance. That is to say, the selected user must be within this quantized distance.
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Figure 13. Recovery success rate versus the loss gain. (a) m = 20, N = 6; (b) m = 30, N = 6.

As can be seen from Figure 13, when L(td) ≥ 0.8 and SNR ≥ 15 dB, we can obtain a high recovery
success rate of above 93%, and we only need no less than 20 collaborative users. This number is
significantly less than the number of SUs required in [30]. In addition, when SNR = 20dB and m ≥ 20,
it can also achieve a high sensing accuracy under high transmission loss conditions. However, when
SNR ≤ 5 dB, the performance of the PSS-SaDMWC scheme will get worse. Meanwhile, when the
loss gain becomes very small, the recovery success rate will also decrease significantly due to the
destruction of the joint sparse property.

(5) Discussion of time complexity: The software environment for the experiment is: 64-bit Win7
operation system and Matlab 2017b. The hardware environment is an Intel(R) Core(TM) i5-4590 CPU
@ 3.3 GHz and 8 GB RAM, and the PC used in the experiments was manufactured by Lenovo Inc.
of Beijing, China. From the analysis of Cao’s research [49], we know that the magnitude of the time
complexity of the whole sensing process is related to the sparsity order K, and K is directly related to
the number of sub-bands N. Obviously, the number of reconfigurable sub-bands N is an important
indicator of the reconstructed ability of the spectrum sensing algorithm. Therefore, we give the time
complexity results of the simulation experiments for different N.
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The time overhead of MWC-based wideband spectrum sensing is mainly composed of two phases:
(1) the time taken by the sub-Nyquist sampling process of the parallel channel; and (2) the time taken
for the spectral support to be reconstructed. As shown in Table 6, the main time cost of wideband
spectrum sensing is spent during the sub-Nyquist sampling phase, and the time spent on the support
reconstruction phase is relatively brief.

Table 6. Average time spent during sub-Nyquist sampling and reconstruction with different N.

Number of Bands
with Energy (N)

Parameters: m = 20, SNR = 15 dB, L(td) = 0.9, Repeat 500 Times, Progressive Levels = 2.

Average Time Spent on Sub-Nyquist Sampling Process and the Support Reconstruction (/s)

Sub-Nyquist
Sampling SOMP_DMWC SwSOMP_DMWC ReMBo_DMWC RPMB_DMWC S-MUSIC_DMWC PSS-SaDMWC

2 0.1175 0.0009 0.0010 0.0030 0.0138 0.0003 0.0046
4 0.1196 0.0014 0.0020 0.0115 0.0566 0.0004 0.0051
6 0.1187 0.0026 0.0034 0.0203 0.1260 0.0007 0.0062
8 0.1180 0.0034 0.0033 0.0266 0.2162 0.0007 0.0057

10 0.1193 0.0048 0.0036 0.0064 0.1175 0.0007 0.0062

Subsequently, it is worth noting that two types of sensing methods are proposed in the IEEE
802.22 standard for the type of the primary service: fast sensing and fine sensing [50]. For the public
safety spectrum, the sensing period is required to be very small. However, for the TV band space
where the spectrum usage varies over a much larger timescale, the real time requirements for the
sensing period are not so strict [51]. Therefore, the results, as shown in Table 7, show that as long
as we choose the appropriate cascading progressive levels and the appropriate algorithms, the time
complexity of the proposed scheme is fully acceptable for both types.

Table 7. The total time spent on different schemes with different N.

Number of Bands with
Energy (N)

Parameters: m = 20, SNR = 15 dB, L(td) = 0.9, Repeat 500 times, Progressive levels = 2.

The Total Time Spent on Different Schemes (/s)

SOMP_DMWC SwSOMP_DMWC ReMBo_DMWC RPMB_DMWC S-MUSIC_DMWC PSS-SaDMWC

2 0.1184 0.1185 0.1205 0.1313 0.1178 0.1221
4 0.1210 0.1216 0.1311 0.1762 0.1200 0.1247
6 0.1213 0.1221 0.1390 0.2447 0.1194 0.1249
8 0.1214 0.1213 0.1446 0.3342 0.1187 0.1237
10 0.1241 0.1229 0.1257 0.2368 0.1200 0.1255

5. Conclusions

In this paper, by exploiting the intrinsic properties of the sparse multi-bands signal and cascaded
progressive operation-based support selection strategy, a self-adaptive distributed MWC wideband
spectrum sensing scheme (PSS-SaDMWC) was proposed. The PSS-SaDMWC scheme can achieve
self-adaptive blind wideband spectrum sensing in CR networks, and can significantly improve the
recovery success rate of support and the recovery ability of time-varying support when there are
fewer cooperative SUs. Moreover, the PSS-SaDMWC scheme took full use of the advantages of the
MWC architecture to achieve centralized cooperative spectrum sensing without increasing hardware
complexity. Theoretical analysis and numerical results showed that the proposed scheme can find a
good balance between transmission interference and sensing accuracy. In addition, the reconstruction
performance was improved by up to 34% in comparison with the best single selection scheme, and the
sampling rate can be reduced to 16.9%, 11.8%, 9.2% and 8.2% of the Nyquist sampling rate when the
SNR is equal to 5 dB, 10 dB, 15 dB, and 20 dB, respectively.
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Appendix A

Considering the diffuse reflection effect, a general formula for radio wave propagation loss is
given in [40], which can be expressed as:

L(td) =
PR(t = (rTS + rSR)/c)

PT(t = 0)
=

λ2σ

(4π)3rTS
2rSR

2
(A1)

where σ denotes the effective diffuse reflection area. Assuming that the slope of each point on the
target scatterer is the same, σ can be expressed as:

σ = σ0 A (A2)

According to Lambert radiator model theory [52], we have:

σ0 = γ cos θi (A3)

where γ is the reflectivity of scatterers, θi represents the angle between TS and the diffuse surface
normal, and TS represents the vector between radio frequency (RF) transmitter T and any scattering
point S. Figure A1 shows the schematic diagram. If the slope of each point on the target scatterer is not
the same, the effective diffuse reflection region can be approximately represented as:

σ = σ0dA (A4)

Combining (A1) and (A4), we can get Equation (7).
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