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Abstract: To reduce time delays during data collection and prolong the network lifetime in Wireless
Rechargeable Sensor Networks (WRSNs), a type of high-efficiency data collection method based
on Maximum Recharging Benefit (DCMRB) is proposed in this paper. According to the minimum
number of the Mobile Data Collectors (MDCs), the network is firstly divided into several regions with
the help of the Virtual Scan Line (VSL). Then, the MDCs and the Wireless Charging Vehicles (WCVs)
are employed in each region for high efficient data collection and energy replenishment. In order to
ensure the integrity of data collection and reduce the rate of packet loss, a speed adjustment scheme
for MDC is also proposed. In addition, by calculating the adaptive threshold of the recharging request,
those nodes with different energy consumption rates are recharged in a timely way that avoids their
premature death. Finally, the limited battery capacity of WCVs and their energy consumption while
moving are also taken into account, and an adaptive recharging scheme based on maximum benefit is
proposed. Experimental results show that the energy consumption is effectively balanced in DCMRB.
Furthermore, this can not only enhance the efficiency of data collection, but also prolong the network
lifetime compared with the Energy Starvation Avoidance Online Charging scheme (ESAOC), Greedy
Mobile Scheme based on Maximum Recharging Benefit (GMS-MRB) and First-Come First-Served
(FCFS) methods.

Keywords: wireless sensor networks; data collection; balance of energy consumption; wireless
recharging; Maximum Recharging Benefit

1. Introduction

In recent years, Wireless Sensor Networks (WSNs for short) with sensing, computing and
communication ability have gradually become essential components of the Internet of Things.
Sensor nodes are often deployed in the wild with limited battery capacity and are difficult to
replace. Therefore, how to balance the energy consumption of the whole network as far as possible,
and meanwhile provide the nodes with continuous energy supply at the lowest cost is becoming more
and more important for WSNs.

With the deepening of research, more and more energy efficient strategies are adopted to
reduce the energy consumption of both sensors and networks. For example, we could optimize
the deployment of nodes to balance their traffic load [1], adopt efficient communication protocols for
data collection [2] or adjust the sampling frequency to reduce sending redundant data [3]. In addition,
some studies are dedicated to low-power hardware design, low-complexity software implementation,
and power-efficient wireless communication [4–6]. However, it is undeniable that nodes near the
sink, for example, cluster heads, are more likely to die due to their large amount of data collecting
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and forwarding activity. This results in network disconnection and causes the “hotspot problem”.
As important WSN nodes, sinks are always assumed to be static and placed in the center of the network.
They usually act as a gateway between the sensor nodes and the end-users [7]. To solve this problem,
Xie et al. [6] have analyzed the relationship between expected energy expenditure, packet loss ratio,
end to end delay as well as WSN lifetime. They have then proposed a Residual Energy Aware scheme
with adjustable Duty Cycle (READC) based on the fact that energy consumption is higher in the region
near sinks, while it is lower in the areas far away from the sinks.

Mobile Data Collectors (MDCs) have been frequently used in data gathering systems
nowadays [8–10]. Generally, MDCs are resource-rich devices with more energy, higher communication
power, and more powerful sensing as well as computing capabilities. Since the routing task has
been partially or fully taken over by one or more MDCs, this approach can effectively eliminate the
non-uniformity of energy consumption among sensor nodes and reduce their heavy traffic load.

Although the network connectivity and the energy efficiency could be improved with the help of
MDCs, this cannot ensure the perpetual operation of the network. On the other hand, many studies
have shown that energy harvesting from natural sources, such as solar, wind, thermal and vibration
can effectively improve network performance and prolong network lifetimes. However, the effect of
energy harvesting mainly depends on the environment. For example, in a solar harvesting system,
the amount of harvested energy is determined by the time and strength of solar radiation. Thus, energy
harvesting from the environment is not entirely applicable to WSNs [11]. In recent years, with the rapid
development of energy harvesting and wireless recharging technologies, the advantages of Wireless
Rechargeable Sensor Network (WRSN) become more and more obvious in extending WSNs’ lifetime
and improving system robustness [12–16]. In a realistic scenario, a Wireless Charging Vehicle (WCV)
travels across the network and charges all the rechargeable sensor nodes [17]. The recharge sequences
are often calculated out in advance such that nodes can be recharged before energy depletion [18].
Each node would be charged only once by WCV in one charging cycle [17]. After visiting all the
nodes, the WCV moves back to the service station. Ideally, the lifetime of a WRSN can be extended
to infinitely long for perpetual operations [18]. However, the main drawback of energy harvesting
is the low efficiency of recharging, since the power output of energy harvesting devices is relatively
low compared to the energy consumption on sensing and communications. To solve it, one or more
mobile Wireless Charging Vehicles (WCVs) with a certain amount of energy are commonly used in
WRSNs to recharge the sensor nodes. For example, a proof-of-concept prototype of WRSN has been
established by Peng et al. [19], and experiments have been conducted to evaluate its feasibility as well
as the energy replenishment performance in small-scale WSN.

Both MDCs and WCVs, however, expend significant time and energy for moving, and most
studies do not consider the cooperativity between them. Therefore, how to determine the optimal
number of MDCs and WCVs and how to optimize the moving path to ensure real-time data collection
as well as high efficient wireless recharging, has become a hot issue to be solved urgently in WRSNs.

The remainder of this paper is organized as follows: related works and the network model are
described in Sections 2 and 3, respectively. In Section 4, we propose a type of multi-MDCs based
data collection strategy with maximum delay constraints. On this basis, an adaptive recharging
scheme based on maximum benefit is described in Section 5 and experimental results are shown in the
next section.

2. Related Works

As mentioned before, in the era of big data and the Internet of Things, how to use one or more
mobile elements for data collection as well as supplement the energy has become an important research
topic. A large number of studies have shown that the routing strategy of MDCs and the recharging
response mode of WCVs are the key factors to determine the network efficiency. In this section,
the related works about these are described in detail.
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2.1. Mobile Data Collection and Energy Replenishment in WRSN

Currently, there are three kinds of mobile Sink based data collection strategies:

• Random Mobility: The movement of MDC is on a random trajectory.
• Fixed Mobility: The MDC moves along a fixed pre-specified path.
• Controlled Mobility: The trajectory of MDC is controlled depending on its position and the

density of data in its vicinity.

As an application example illustrated in Figure 1, sensor nodes are deployed along a highway to
sense some statistical data related to traffic jams and then the line is patrolled by a mobile vehicle to
collect this data efficiently [20]. Charalampos et al. [21] proposed another rendezvous-based sensory
data collection approach, named MobiCluster. The mobile sink (MS) is mounted on public buses
circulating within urban environments on fixed trajectories and near-periodic schedule. Nodes are
often deployed in urban areas in proximity to public transportation vehicle routes. To balance energy
consumption, nodes located near the sink trajectory are grouped in small-sized clusters while nodes
located farther away are grouped into clusters of larger size (Figure 2). Compared to random mobility
and fixed mobility, handling the mobility of sinks in a controlled manner is much more challenging [22].
In this mode, the MDC needs to continuously analyze and optimize its movement path according to
the actual situation of the network. Although the random manner is relatively simple to implement,
it has great uncertainty and high complexity of path optimization. At present, the data collection in
WSNs is mostly periodic, so it is more appropriate to adopt the fixed mobility mode. However, fixed
mobility is not flexible enough because of the real-time variation of node’s residual energy and the
reconstruction of network topology. For this reason, the mobile data collection method with the help
of the fixed traversal points and the controllable path is adopted in this paper.
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A type of Data Gathering method based on one mobile sink moving along the Fixed traverse
Points (DGFP) has been proposed in our previous work [23]. With the help of the sensing and coverage
models, an optimal trajectory for the MS was built to achieve the balance of energy consumption
(Figure 3). In addition, a sleep scheduling strategy has also been introduced to further reduce energy
consumption. In [24], we have divided the network into several virtual regions and the leader of
each region was selected according to its residual energy as well as the distance to all of the other
nodes. A MS moves along the optimized path with a constant rate and communicated with each
leader periodically, as shown in Figure 4. Then, it sends the collected data to the base station at the
end of each data gathering cycle. However, the real-time of data collection in this method needs to be
improved. For this reason, a type of Low-latency Data Gathering method with Multi-Sink (LDGM)
has then been proposed in [25]. The leaders in each region communicated with several MSs which
effectively reduced energy consumption and the end-to-end delay. Moreover, with the help of the
sensing radius adjustment strategy, redundancy on network coverage was also effectively reduced.
In addition, to reduce energy consumption on data collection, Gao et al. [26] have divided the sensor
nodes into sub-sink nodes which were in a direct communication area or far-away nodes that were
within the distance of the multi-hop communication area. Sinks move along the fixed path to gather
data as much as possible.
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It is worth noting that most MS-based data collection methods adopt a multi-hop way to upload
data [3,4,7]. When the MS reaches a Cluster Header (CH) or rendezvous point, those data is upload
centrally, otherwise, it is temporarily cached in these CHs or rendezvous points. Although this type of
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method improves the data collection efficiency in a distributed way, it is clear that the CH has a heavier load
and higher energy consumption. In addition, the buffer overflow problem cannot be ignored. For example,
to meet the requirements of the packet transmission delay and minimize the energy consumption of the
whole network, a trajectory selection method based on priority of virtual points has been proposed in [27].
However, this method does not consider the buffer capacity of sensor node, so a high probability of buffer
overflow may be occurred in practical application. Therefore, Gu et al. have improved it by dividing the
network into multiple groups based on nodes’ locations and data generation rates [28]. In each group,
the MDC visited each node at a fixed frequency to avoid buffer overflow.

With the deepening of research, replenishing energy while collecting data has gradually become a
research hotspot. Zhao et al. [29] have proposed a standardized model for data collection and recharging
nodes at the same time, but it was only applicable to smaller networks. Therefore, Dasgupta et al. [30]
divided the network into multiple regions and used a MDC in each region to achieve data collection
and wireless recharging. However, the wireless recharging rate is generally low nowadays due to the
limitations of technology. For this reason, it is unreasonable to centralize data collection and recharging on
one mobile device, which would result in a higher data gathering delay, data packet loss as well as poor
network performance, especially in densely deployed network. Thus, in 2016 and 2017, Wang et al. [18] and
Zhong et al. [31] have respectively proposed two types of data collection models by employing multiple
MDCs and WCVs. Furthermore, Mehrabi et al. [20] and Khan et al. [32] have also put forward similar
methods to avoid high delay during data collection caused by low recharging efficiency.

On the other hand, WCVs’ energy consumption while moving and their limited battery capacity
are often ignored. For example, in the periodic mobile recharging scheme designed by Shi et al. [33],
a method that reduced the recharging frequency of WCV by prolonging the sojourn time at the base
station was proposed. However, it doesn’t make sense to assume that the energy carried by WCVs is
infinite. Similarly, in [34], a starvation avoidance mobile energy replenishment scheduling method has
been designed, which has effectively solved the energy starvation problem. However, the problem of
energy finiteness of WCV is also not taken into account. In addition, at what time the node should send
a recharging request to the WCV is also worth exploring. Many scholars believe that all nodes should
follow a universally identical recharging threshold, in other words, the residual energy is the same
when each node sends a request for recharging. However, the energy consumption rate is different
due to the unequal loads and distances between nodes. Therefore, it is not appropriate to set a uniform
recharging request threshold for all nodes. Also, for each node, the threshold can neither be too high
nor too low. If the threshold is too high, the recharging request may be sent frequently, which may
increase the time spend on moving and reduce the recharging efficiency of WCVs. On the contrary,
if the threshold is too low, some nodes may fail to be recharged in time. Thus, they are more likely to
die early, that affects the performance of the overall network.

2.2. Path Planning about the Wireless Charging Vehicle

In WRSNs, how to plan the WCVs’ moving path reasonably and efficiently is important to the
real-time and efficiency of recharging. Currently, there are three types of mobile path planning methods
for WCV.

Path Planning Based on Inquiring

At first, each node sends its own location information to the WCV, and then the WCV calculates
a shortest path through all the nodes. Next, the WCV moves along the shortest path and checks
the residual energy of each node. If it is lower than the preset recharging threshold, the node is
recharged. A periodic recharging method based on this model was proposed in [35]. It has studied an
optimization problem with the objective of maximizing the ratio of the WCV’s vacation time over the
whole period of the recharging time. Other typical path planning methods based on inquiring include
DPG-Scheme [36], RLT [37], etc. However, during its movement, if the residual energy of most nodes



Sensors 2018, 18, 2887 6 of 34

is higher, the WCV can only recharge a few nodes in one period, resulting in low recharging efficiency.
In addition, there is only one WCV traversing all the nodes, so high recharging delay is unavoidable.

Path Planning Based on Collaboration

The main idea is described as follows: low-energy nodes are selected as anchor nodes in the
network, and other nodes transmit data to these anchor nodes in a one-hop or multi-hop manner.
Subsequently, the WCV traverses these anchor nodes in turn and at the same time, recharges them
as well as collects data from them. Other typical path planning strategies based on collaboration
include ERDC [38], WerMDG [39], etc. However, in this type of schemes, the node with lower residual
energy is always selected as the anchor node and its actual location does not been considered in path
planning. This may cause uneven distribution of these anchor nodes. In addition, as mentioned above,
integrating recharging and data collecting into one mobile device will inevitably affect the real-time
performance of the network.

On-Demand Path Planning

When a node’s residual energy is lower than the recharging threshold, a recharging request is sent
to the WCV. This WCV then selects the most suitable node to recharge in sequence according to certain
scheduling rules. Based on this method, a type of Nearest-Job-Next with Preemption strategy (NJNP)
was proposed by He et al. in 2013 [40]. It achieves a high recharging efficiency by always selecting
the nearest request node as the next recharging node. However, if the node that first requests for
recharging is far away from the MCV, it is likely that this node will not be recharged during a long time
due to preemption. In order to solve this unfair recharging problem, Feng et al. [34] have proposed a
Starvation Avoidance Mobile Energy Replenishment scheme (SAMER) by calculating the maximum
tolerable latency of each recharging requirement. To a certain extent, it avoids the premature death of
nodes due to the failure of timely recharging. However, the battery capacity of WCV is considered to be
infinite, which is inconsistent with the actual application. Zhu et al. [41] have taken the limited power
of WCV into consideration and have proposed an Energy Starvation Avoidance Online Charging
scheme (ESAOC). By calculating the maximum tolerable recharging delay and the shortest waiting
time of nodes for recharging, the nodes which make the least number of other recharging-request
nodes suffer from energy starvation are selected as the recharging candidates. Unfortunately, it does
not further give a clear selection criterion when the number of the recharging candidate nodes is the
same. In addition, most relevant researches require the WCV to judge whether it can return to the base
station (BS) after each recharging. This is unwise because at the beginning of the recharging process,
the residual energy of WCV is enough, and it needs not to make such a judgment every time. On the
basis of analyzing all the above algorithms, a type of high-efficient Data Collection method based on
Maximum Recharging Benefit in Sensor Networks (DCMRB) is proposed in this paper.

3. Network Model

In this section, we construct the network architecture for distributed data collection and wireless
recharging with the help of multi-MDC and multi-MCV. On this basis, we also describe the method for
calculating the number of virtual traverse points.

3.1. Network Architecture

As mentioned before, if there is only one MDC and one WCV in the large-scale and densely
deployed sensor network, there is a great possibility that data collection and energy supplement may
be unable to be completed. On the one hand, both MDCs and WCVs move at a relatively slow speed,
and they need to stay at each node for some time during the process of data collection and wireless
recharging, which increases the time delay. Moreover, the wireless recharging rate of sensor node is
still slow. Although recharging one node does not need much time, a mass of node recharging requests
will inevitably affect the real time of the network. This may cause nodes death because some of them
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may not be recharged in time. Hence, it is also unrealistic to integrate MDC and WCV together. In view
of this, we divide the network into several regions, and a MDC as well as a WCV moves in each region
for data collection and wireless recharging. Moreover, in order to further enhance the efficiency of data
collection, each MDC only needs to stay at the Virtual Traverse Point (VTP) without having to traverse
each node.

Without loss of generality, it is assumed that N rechargeable nodes are uniformly and randomly
deployed in a rectangular region whose length and width are M and L, respectively. RS and Rt are
defined as the sensing and communication radius of each node, respectively, and a stationary BS is
located at the center of the network. To ensure completely coverage in an omni-directional sensor
network, the maximum and minimum density of nodes can be expressed as follows [23]:

ρmax = 2/
√

3R2
s (1)

ρmin = 2/3
√

3R2
s (2)

As shown in Figure 5a,b, when the density of nodes is higher than ρmax, redundant nodes exist
in the network [23]. On the contrary, if it is lower than ρmin, the coverage hole appears. In general,
the density of nodes (ñ) in this paper is set to (ρmax + ρmin)/2.
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The network is divided into k regions that are approximately equal in size. The principle of this
division is described in Section 4.2 and we call it “Network Partition Method based on Virtual Scan Line”
(VSL). In each region, a MDC (the red car in Figure 6) and a WCV (the blue car equipped with wireless
recharging device in Figure 6) moves in this field to collect data or recharge nodes. In addition to collecting,
processing and storing the sensing data of the entire network, the base station is also responsible for
replacing the battery of the MDC and the WCV. The overall network architecture is shown in Figure 6.

Let’s take a region as an example. At the beginning of each round of data collection, the MDC in
this region departs from BS. When it arrives at a VTP, it receives data uploaded from nodes around
it. The MDC won’t move to the next VTP until all data in those nodes has been completely collected.
To avoid increasing time delay on data collection, the nearest neighbor discovery algorithm [22] is
adopted to build the shortest moving path of MDC in each region, as indicated by the red dotted arrow
in Figure 6. After traversing all the VTP in the region, the MDC finally returns to BS and uploads the
data it collects. On the other hand, each node calculates a “Threshold of Recharging Request” (TRR)
based on its own energy consumption rate. When the residual energy of one node is below the TRR,
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the recharging request is sent to the WCV immediately. Then, according to the proposed wireless
recharging scheme, the WCV selects the most suitable recharging node to supplement its energy, so as
to avoid the death of the node and prolong the network lifetime. The moving path of the WCV is
shown by the blue dotted arrow in Figure 6.
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Based on this architecture, the key problems that need to be solved in this paper are described
as follows:

(1) How to get the minimum number of MDCs and how to design a reasonable and feasible data
collection scheme under the constraint of network size, number of nodes as well as time delay to
achieve real-time and efficient data collection with balanced energy consumption;

(2) How to properly divide the network into regions based on the minimum number of MDCs;
(3) How to set a reasonable recharging threshold for each node and formulate an optimal recharging

scheme under the condition of limited battery capacity of WCV, so as to recharge the requested
nodes in time and maximize the recharging efficiency.

Therefore, a type of high-efficient Data Collection method based on Maximum Recharging Benefit
(DCMRB) is proposed in this paper. Firstly, the complete coverage model in WSNs is adopted to
determine the number and specific distribution of VTPs. Secondly, the minimum number of MDCs is
calculated out under the constraints of time delay and buffer overflow. Based on these, the Virtual
Scan Line (VSL) method is proposed to evenly divide the network, and then, the moving speed of
MDCs is optimized in order to ensure the integrity of data collection. Moreover, in view of the fact
that the existing WCV recharging scheme cannot fully meet the recharging requirements of nodes
with different energy consumption rates, an adaptive calculation method of the recharging request
threshold is proposed. The definitions of parameters about the network are shown in Table 1.

Table 1. Definitions of parameters about the network.

Parameter Symbol Unit

Network size M × L m2

Number of nodes N -
Sensing radius of node Rs m

Communication radius of node Rt m
Number of regions k -
Number of VTPs m -
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3.2. Virtual Traverse Points

For WSNs that employing MDCs for data collection, the moving path of the MDC should be
firstly considered. Similar to [23], some uniformly distributed Virtual Traverse Points (VTPs) are set in
the network. During each round of data collection, the MDC receives data uploaded from the nearby
nodes only when it arrives at each VTP. Additionally, the following constraints need to be met:

(1) When the MDC arrives at the VTP, it can only receive data uploaded by nodes located in its
communication region.

(2) Each sensor node in the network should have the opportunity to upload data to the MDC within
one hop.

(3) In order to avoid repeated collection of redundant data and to enhance the real-time performance,
MDCs are only allowed to pass through each VTP once and only once during a round of data
gathering time.

Thus, the location of each VTP should firstly be calculated out. As shown in Figure 7, the network
is divided into a number of regular hexagons (RHs), whose side length is Rt. The center of each RH
(black dots in Figure 7) is defined as the Virtual Traverse Point (VTP). When the number of RHs is
fixed, the maximum and the minimum sizes of the network are shown in Figure 7a,b, respectively.
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Thus, according to the first and the second constraints mentioned above, the step length of MDC
is set to

√
3Rt. For the convenience of discussion, the total number of VTPs in the network is set to m.

Moreover, nx and ny are defined as the number of VTPs in one line and one column, respectively. It is
known from Figure 7 that, the value of nx can be calculated by Equation (3). Meanwhile, we define a
temporary variable qy in Equation (4), which is an important parameter for calculating the value of m:

nx = d(M/0.5Rt + 1)/3e (3)

qy =
⌈

2L/
√

3Rt

⌉
(4)

To ensure that the data can be uploaded to MDC within one hop, the network should be completely
covered by RHs. However, for the networks with the same number of VTPs, their sizes may be different,
as shown in Figure 7a,b. Based on the analysis above as well as the relationship between M, L and Rt,
the total number of VTPs can be calculated out in the following three cases.

Case 1: When qy is odd, according to Figure 8, whether nx is odd or even, we have:

ny =
(
qy + 1

)/
2 (5)
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that is:

m = nx ×
(

qy + 1
2

)
=

⌈(
M

0.5Rt
+ 1
)/

3
⌉
× 1

2

(⌈
2L√
3Rt

⌉
+ 1
)

(6)
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Case 2: When qy and nx are all even, according to the above definitions and Figure 9, the number
of VTPs in each column can be described as follows:

ny =

{
qy/2 for the odd column
qy/2 + 1 for the even column

(7)

so:

m =
nx

2
×

qy

2
+

nx

2
×
( qy

2
+ 1
)

= nx ×
(

qy + 1
2

)
=

⌈(
M

0.5Rt
+ 1 )

/
3
⌉
× 1

2

(⌈
2L√
3Rt

⌉
+ 1
)

(8)

The value of m is equal to that in case 1.
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Case 3: When qy is an even number and nx is an odd number, according to Figure 10, the value
of ny is still in accordance with Equation (7). However, in this case, the number of VTPs in each odd
column is one more than that in each even column. Thus, it is obvious that the value of m is:

m =
(

nx+1
2

)
× qy

2 +
(

nx−1
2

)
×
(

qy
2 + 1

)
= nx ×

(
qy+1

2

)
− 1

2 =
⌈(

M
0.5Rt

+ 1 )
/

3
⌉
× 1

2

(⌈
2L√
3Rt

⌉
+ 1
)
− 1

2
(9)
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4. Multi-MDCs Based Data Collection Strategy with Maximum Delay Constraint

In this section, we describe how to calculate the number of required MDCs under the constraint
of maximum time delay on data transmission. On this basis, a network partitioning method based on
virtual scan line is then proposed. In addition, in order to avoid buffer overflow during data collection,
we also propose a speed adjustment scheme for MDC. The definitions of parameters in this section are
shown in Table 2.

Table 2. Definitions of parameters in multi-MDCs-based data collection.

Parameter Symbol Unit

Maximum time delay of packet uploading Td s
Speed of MDC vMDC m/s

The ith regular hexagons (i = 1, 2, . . . , m) RHi -
Number of nodes in RHi Num (RHi) -

Time for the MDC to stay at each VTP ts s
Sensing rate of node g bit/s

Data uploading rate of node u bit/s
A round of data gathering time of MDC Tr s

Buffer size of node C bit
Number of VTPs in the ith region (i = 1, 2, . . . , k) NumVTP

i -
Path length of MDC in the ith region (i = 1, 2, . . . , k) Di m

Virtual traverse points VTP -
Base station BS -

Maximum time delay of packet transmission Tmax
d s

Maximum number of VTPs that MDC can traverse during Tr m′ -
Euclidean distance between BS and the first VTP dBS to RHi m

Minimum number of MDCs required in the network k -
Euclidean distance between two adjacent VTPs in the ith region (i = 1, 2, . . . , k) D (j − 1, j) m

Unit data collection period of MDC in the ith region (i = 1, 2, . . . , k) T (j − 1, j) s
Speed of MDC from VTPj−1 to VTPj after adjustment in the ith region (i = 1, 2, . . . , k) vMDC (j − 1, j) m/s

4.1. The Minimum Number of MDCs that Meets the Delay Constraint

According to the network model and the characteristic about mobile data gathering, the following
constraints need to be met in DCMRB:

(1) Data collected from any node in the network must be transmitted to BS within the time period,
Td. In other words, the constraint of the maximum time delay needs to be met.

(2) Each VTP needs to be accessed by one MDC only once during the time period, Tr.
(3) During each round of data collection, the MDC needs to depart from BS and eventually return

to BS.
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(4) The MDC can only stay at the BS or the VTPs. Moreover, the regular hexagons where the MDC
stays at for two consecutive times must be adjacent.

(5) The MDC moves linearly between two consecutive VTPs, and its speed is vMDC.

It is known that, the density of nodes in the network is N/(M × L). Therefore, the number of
nodes in any RHi (i = 1, 2, . . . , m) can be approximately calculated as follows:

Num(RHi) =
(

3
√

3R2
t × N )

/
(2M× L) (10)

Without loss of generality, the time duration that the MDC stays at each VTP is defined as ts.
In addition, the sensing rate and the data uploading rate of each node are set to g bit/s and u bit/s.
Hence, in order to ensure the integrity of data collection, the minimum value of ts should be:

ts = Num(RHi)× g× Tr
/

u (11)

According to Equations (10) and (11) can be rewritten as follows:

ts =
(

3
√

3R2
t × N × g× Tr )

/
(2u×M× L

)
(12)

Furthermore, we discuss the maximum possible transmission delay in this data collection mode.
As shown in Figure 11, tj

i is defined as the time duration when the MDC stays at the ith VTP in
the jth round of data collection. ta is regarded as the moment when the MDC just left the first VTP.
Moreover, tb is defined as the moment when the MDC arrives at the base station at the end of the
(j + 1)th round of data collection, so if a node in the first RH generates a data packet at ta (at this
moment, the MDC has just left this RH), this packet can only be delivered to BS at tb.
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According to the analysis above, the maximum delay on data packet transmission (defined as
Tmax

d ) can be expressed by Equation (13). dBS to RHi /vMDC is the time spending on moving from BS to
the first VTP, and ts is the time for the MDC to stay at this VTP:

Tmax
d = 2Tr − dBS to RHi

/
vMDC − ts (13)

In Equation (13), dBS to RHi is the Euclidean distance between BS and the first VTP. Normally, it is
assumed that the value of it is

√
3Rt. To ensure the integrity of data collection, Tmax

d ) should not be
greater than Td. That is:

Tmax
d = 2Tr −

√
3Rt

/
vMDC − ts ≤ Td (14)

Combining Equations (12) and (14), the first condition that Tr needs to meet can be obtained
as follows:

Tr ≤
(

Td +

√
3Rt

vMDC

)/(
2− 3

√
3Rt

2 × N × g
2u×M× L

)
(15)



Sensors 2018, 18, 2887 13 of 34

Additionally, it is also necessary to ensure that the amount of data collected by a sensor node
during Tr does not exceed its buffer size (defined as C). Thus, the second constraint that Tr needs to
meet is:

Tr ≤ C/g (16)

To meet the constraint of time delay as well as to avoid buffer overflow, the maximum value of Tr

should be the smaller value of the two upper limits in Equations (15) and (16). That is:

Min

((
Td +

√
3Rt

vMDC

)/(
2− 3

√
3Rt

2Ng
2uML

)
, C/g

)
(17)

In this case, assuming a MDC traverses up to m′ VTPs during Tr. The time spending on data
collection and moving are (m′ − 1)ts and

(
(m′ − 1)

√
3Rt + dRHm to BS

)/
vMDC , respectively. So:

Tr +
(
m′ − 1

)
ts +

((
m′ − 1

)√
3Rt + dRHm to BS

)/
vMDC ≤ Td (18)

Here, dRHm to BS is defined as the Euclidean distance between the m′th VTP and the base station.
In the worst case, we have:

dRHm′ to BS =

√
(M/2)2 + (L/2)2 (19)

By combining Equations (14), (18) and (19), it is known that:

m′ ≤
vMDC(Tr + ts)− ts −

√
(M/2)2 + (L/2)2

vMDCts +
√

3Rt
(20)

So, the minimum number of MDCs required in the network is:

k =
⌈ m

m′
⌉

=


m
(

vMDCts +
√

3Rt

)
vMDC(Tr + ts)− ts −

√
(M/2)2 + (L/2)2

 (21)

4.2. Network Partition Method Based on Virtual Scan Line

According to the minimum number of MDCs under the constraints of maximum transmission
delay and no packet loss, the network can be further divided into k regions. In each region, there is
only one MDC for data collection. Some related studies have been carried out. Dasgupta et al. [30]
have proposed a type of Delay-Constrained Energy Minimization based data gathering algorithm
(DCEM). A circular network was divided into four regions, and in each region, the moving paths of
the mobile data collectors were built in a balanced way, as shown in Figure 12. However, DCEM does
not consider the possibility of buffer overflow, and it is only applicable to the network where nodes
are uniformly deployed. According to the node’s dynamic variability of sensing rate, Wang et al. [18]
have regarded the data generation process as a Poisson process to estimate the required number of
MDCs. Then, the network has been divided into several regions with the help of the k-means method
that greatly balances energy consumption and reduces data collection latency. Nevertheless, when
the sensing mode changes, this method is not fully applicable. In [31], the rectangular network has
been divided into several parts according to the number of MDCs. Subsequently, a twice-partition
algorithm based on center points and an Anchor Selection algorithm based on the tradeoff between
Neighbor Amount and residual Energy (AS-NAE) have been proposed respectively to handle the
complex scheduling problem of multiple vehicles. As a result, the data transmission delay and energy
consumption of MDCs were reduced. Although this network partition strategy is more reasonable,
the time complexity of it is still higher.
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So, how to divide the network into regions to balance the workload of each MDC as much as
possible is an important factor that determines the effect of distributed mobile collection. As mentioned
before, in DCMRB, VTPs are uniformly distributed in the network, and the MDC traverses each of
them in turn. Therefore, a partition method based on Virtual Scan Line (VSL) is proposed.

Firstly, we discuss the most suitable number of VTPs in each partition. As mentioned earlier,
assuming that the total number of VTPs in the network is m and the network is divided into k areas.
So, the following two cases are considered:

Case 1: If mod (m/k) == 0, it is considered that the distributed data collection will show better
balance when the number of VTPs in each partition is m/k.

Case 2: If mod (m/k) 6= 0, it is considered that the balance of DCMRB will be better when each of
the mod (m/k) partitions contain m/k + 1 VTPs, and each other partition contains m/k VTPs.

The process of the partition method based on Virtual Scan Line is shown in Figure 13. It is worth
mentioning that this method is not affected by the network size and the values of nx and qy. There are
49 VTPs in the network, and we assume that the number of MDCs is three (calculated by Equation (21)).
That is, the network needs to be divided into three regions. Due to the fact that mod (49/3) = 1 and
49/3 = 16, the number of VTPs in these three regions should be 17, 16 and 16, respectively. The base
station is located at the center of the network (denoted as O) and overlaps with the location of one VTP.
It is worth mentioning that, whether or not the location of BS overlaps with that of VTP, the effect of
DCMRB is not affected.

Initially, O is the starting point of the red dotted line, and this line (named as “Virtual Scan
Line”, VSL) intersects the boundary of the rectangular network vertically. VSL is centered at point O
and rotates clockwise to scan the VTPs in the network. All VTPs are initially “unscanned”. When a
VTP is scanned by this VSL, its status is changed to “scanned”. When the number of VTPs newly
scanned by this VSL is greater than or equal to the expected number of VTPs in the corresponding
region, the scanning process is paused and a region is generated according to the following two cases.
Then, the VSL starts from the paused position of the last scan and carries out the next scan until the
same pause condition is encountered. When all the regions of the network are formed, the scanning
process is completely over.
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There are two cases in the process of network partition:
Case 1: During one scanning process, if the number of VTPs scanned by the VSL is exactly equal

to expected in the corresponding partition, those RHs that the scanned VTPs located in are divided into
the same region. For example, in Figure 13a, when the 17th VTP is scanned by the green dotted line,
the number of the scanned VTPs during this scan is equal to the expected value. Therefore, the RHs that
those 17 VTPs located in form the first region of the network, as the yellow area shows in Figure 13a.

Case 2: If the number of VTPs scanned is greater than expected in the corresponding region,
the scan is paused immediately. At the same time, based on the distance from the base station, the VTPs
on the VSL now are marked as “unscanned” successively from far to near, until the number of VTPs
marked as “scanned” meets the expected requirement. For example, in Figure 13b, the VSL scans
from the green dotted line to the blue dotted line, and 18 new VTPs are scanned during this period.
What needs to be pointed out is that the VTPs at the green dotted line have been scanned in the
previous scanning process, so they are not regarded as the new VTPs this time. However, the most
appropriate number of VTPs in this region is 16. Therefore, at the current location of VSL, the two
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VTPs farthest from the base station (the white dots) are remarked as “unscanned”. Thus, the second
region is formed, as the pink area shows in Figure 13b.

Finally, the network is divided into k regions after finishing the scanning process (Figure 13c),
and the number of VTPs in each region is almost the same.

4.3. Region Size Adjustment

Although the network is approximately evenly divided into several regions with the help of the
VSL, it is also necessary to ensure that Tr is not greater than the value described in Equation (17).
To solve this problem, the nearest neighbor discovery algorithm [22] is first adopted to build the
shortest path of MDC in each region, as shown in Figure 14.
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Di and NumVTP
i represent the path length of MDC and the number of VTPs in the ith region

(i = 1, 2, . . . , k), respectively. Therefore, the data collection cycle (denoted as Ti) of this region after
adjustment can be expressed as follows:

Ti = Di/vMDC + NumVTP
i × ts (22)

Then, by considering the relationship between the maximum value (i.e., Tj) that taken from T1,
T2, . . . , Tk and Equation (17), we get:

(1) If Tj ≤ Min
( (

Td +
√

3Rt
vMDC

)/(
2− 3

√
3Rt

2 Ng
2uML

)
, C/g

)
, the current network partitions need not

to be changed. Thus, k is the final number of the regions as well as the number of the MDCs.

(2) If Tj > Min
( (

Td +
√

3Rt
vMDC

)/(
2− 3

√
3Rt

2 Ng
2uML

)
, C/g

)
, there is at least one region cannot meet

the constraints described in Section 4.1. That is to say, the network partition is not reasonable.
Hence, let k = k + 1 and carry out the VSL based partitioning method again until the first condition
is met.

4.4. Speed Adjustment Scheme for Ensuring Data Integrity

As mentioned before, we assume that the sojourn time for MDC at each VTP is ts.
However, in DCMRB, the number of nodes in each RH is not exactly equal to each other because they
are uniformly and randomly distributed, especially for those RHs that are located at the boundary
of network. Therefore, if the value of ts is calculated by Equation (12), packet loss may be happened
because sensing data generated in some RHs cannot be completely transmitted to MDC in ts. In this
case, the moving speed of MDC should be increased.
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For the ith region, let D (j− 1, j) denote the Euclidean distance between two adjacent VTPs (VTPj−1

and VTPj) in the MDC’s moving path. In particular, the base station is assumed to be VTP0. Thus:

t(j− 1, j) = D(j− 1, j)
/

vMDC + ts (23)

Here, t (j − 1, j) is referred to “Unit Data Collection Period (UDCP)” of MDC, as shown in
Figure 15. According to Equation (23), it is not difficult to know that:

Ti = ∑NumVTP
i

j = 1 t(j− 1, j) + D(j, 0)
/

vMDC (24)

As mentioned above, it is not completely reasonable that the sojourn time for the MDC to stay
at each VTP be the same. However, the time length of a round of data collection and the number of
regions have been calculated out based on this assumption. In order to ensure the integrity of the
collected data, the sojourn time and moving speed of MDC are further adjusted while keeping the
value of UDCP unchanged.

Let tj
s denote the shortest time duration during which the MDC stays at VTPj without losing

packets. It is not difficult to know that:

tj
s = Num

(
RHi

j

)
× g× Ti

/
u (25)

In the ith region, Num(RHi
j) is regarded as the total number of nodes in the RH where VTPj is

located at. If tj
s ≤ ts, let tj

s = ts, and we do not change the speed of MDC. If tj
s > ts, the moving speed of

the MDC from VTPj−1 to VTPj (defined as vMDC (j − 1, j)) is modified by the following equation:

vMDC(j− 1, j) = D(j− 1, j)
/(

t(j− 1, j)− tj
s

)
(26)

That is to say, by accelerating its moving speed, the MDC has enough time to collect data.
In summary, the sequence diagram of a MDC (located in the ith region) in one round of data collection
time is shown in Figure 15.
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5. An Adaptive Recharging Scheme Based on Maximum Benefit

With the help of the MDCs in each region, the problems of uneven load and the large difference in
energy consumption among nodes are greatly alleviated. However, continuous sensing and periodic
data uploading still accelerate the energy consumption rate of nodes, especially for those nodes that
need to collect multimedia data. Thus, to ensure that the network runs steadily for a long time, several
Wireless Charging Vehicles (WCVs) are assigned into the network. After receiving the recharging
requests, the WCV will select the most suitable nodes for recharging according to certain rules to avoid
node death due to energy depletion. Definitions of the related parameters are listed in Table 3.
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Table 3. Definitions of parameters about the adaptive recharging scheme.

Symbol Definition Unit

Eelec Energy consumption of the sending and receiving circuit nJ/bit
εfs Energy consumption of the amplifier in free-space model pJ × (b/m2)−1

Pi Energy consumption rate of node i J/s
di to VTP Single-hop transmission distance of node i m

es Energy consumption rate of sensing J/s
Nj Number of nodes in the jth region -
Cb Battery capacity of sensor node J
Ch Battery Capacity of WCV J
em Energy consumption of WCV on travelling one meter J/m
η Wireless recharging rate J/s

vWCV Speed of WCV m/s
γ Residual energy threshold of WCV J
Φ Recharging request queue -
Ψ Queue of nodes waiting for recharging -

5.1. Energy Threshold of the Recharging Request

In WRSN, when the residual energy of one node is below the “Threshold of the Recharging
Request (TRR)”, the recharging request is sent to the WCV immediately. In many studies, the value of
TRR is equal for each node. However, this is a little unreasonable. On one hand, the distances between
nodes and VTPs may be different from each other, so are the energy consumption on transmission.
On the other hand, if the threshold is too high, the recharging request may be sent frequently, which
will prolong the time on moving and reduce the recharging efficiency of WCV. On the contrary, if the
threshold is too low, some nodes may fail to be recharged in time and die, thus affects the overall
network performance.

To solve this problem, Wang et al. [18] have proposed a type of solution method about the adaptive
TRR. According to the distance between nodes and BS, the network was divided into several coronas.
Then, the value of TRR was proportional to the average energy consumption rate of nodes in each
corona. Although the difference on energy consumption between coronas is fully considered in this
method, it is still a little unreasonable that the TRRs are set to the same value in the same corona.
Even for nodes in the same corona, the load on them is also likely to be different from each other.

In DCMRB, although the nodes only need to send data to the MDC within one hop,
the transmission distance may also be different due to their uniformly and randomly distribution,
which causes the unbalanced energy consumption. Therefore, a calculation method about the adaptive
value of TRR is proposed in this paper:

(1) Energy Consumption Rate

There are two types of attenuation models of wireless signal, that are free-space model and
multi-path fading model. In Wireless Sensor Networks, the most commonly used method to calculate
energy consumption on communication is Equation (27), which was proposed by Heinzeman [42]:

Esend(q, d) =

{
qEelec + qε f sd2 d < d0

qEelec + qε f sd4 d ≥ d0
(27)

Here, Eelec is the unit energy consumption of the sending and receiving circuit. εfs is the energy
consumption of amplifier in free-space model, and q is the amount of data that need to be sent. Let d0

denote the threshold of distance, which is generally equivalent to the value of Rt. Therefore, the energy
consumption rate of node i can be expressed as follows:

Pi = es + g×
(

Eelect + ε f s × d2
i to VTP

)
(28)
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In Equation (28), di to VTP is the Euclidean distance between node i and the VTP nearest to it.
In addition, es is defined as the energy consumption rate on sensing.

(2) The Number of Nodes that a WCV can Recharge during a Round of Recharging Time

Without loss of generality, in DCMRB, the WCV needs to arrive to the node to recharge it “one-to-one”,
until the node’s energy reaches to Cb again. For simplicity, the effect of distance on recharging efficiency is
ignored. Let Nj denote the total number of nodes in the jth region and their IDs are noted as 1, 2, 3, . . . , Nj,
respectively. Besides, the ID of the base station is defined as 0. So, the average distance between any two
nodes (including the base station) in this region (denoted as dj) is:

dj =
1

Nj ×
(

Nj + 1
) Nj

∑
x = 0

Nj

∑
y = 0,y 6=x

dxy (29)

Here, dxy is the distance between node x and node y. Therefore, the number of nodes that can be
recharged in a round of recharging time is:

N′j =
⌊(

Ch −
(

N′j + 1
)
× dj × em

)/
Cb

⌋
(30)

em is defined as the energy consumption of WCV on travelling one meter. Cb and Ch are the battery
capacities of a sensor node and the WCV, respectively.

(3) The Value of TRR

According to the analysis above, the time duration during which the WCV finishes a round
of recharging is expressed as (Cb/η)× N′j +

(
N′j + 1

)
× dj

/
vWCV . η and vWCV are defined as the

wireless recharging rate and the moving speed of WCV, respectively. To meet all the recharging requests
in this region, the WCV needs to carry out at least

⌈
Nj

/
N′j
⌉

rounds of recharging. Hence, in the worst
case, the duration from when a node sends a recharging request to the time it is recharged is:

Tj =
⌈

Nj

/
N′j
⌉
×
(

Cb/η × N′j +
(

N′j + 1
)
× dj

/
vWCV

)
(31)

In summary, the threshold of recharging request for node i is Pi × Tj. That is to say, if the
residual energy of node i reaches or falls below this value, a recharging request should be sent to WCV
immediately, otherwise it may die because of untimely recharging.

5.2. Wireless Recharging Scheme Based on Limited Battery Capacity and the Maximum Recharging Benefit

At the beginning, the WCV is located at BS. When it receives the recharging requests from
nodes, their IDs are added to the “Recharging Request Queue” (denoted as Φ). For the WCV,
the simplest recharging scheme is called “Greedy Mobile Scheme based on Maximum Recharging
Benefit (GMS-MRB)”. To be specific, if the residual energy of WCV is sufficient for it to return to BS,
the node with the highest recharging benefit will always be recharged. The recharging benefit of node
i is defined as Ri/EWCV to i, where Ri indicates the amount of energy that node i needs to be recharged.
Obviously, the maximum value of Ri is Cb. Besides, the energy consumption of WCV on moving from
the current position to node i is EWCV to i.

However, GMS-MRB has some limitations. On the one hand, the WCV may stay away from BS in
pursuit of high recharging efficiency only and it needs to return to BS in advance for replenishing its
energy, which results in a greater energy consumption for moving. On the other hand, the relatively
simple selection criterion ignores the possibility of recharging more other nodes. For example,
in Figure 16a, it is assumed that the nodes’ ID in Φ are 1, 2, 3, 4, 5 at this moment, and the moving path
of WCV is the blue arrow. According to GMS-MRB, the WCV is assumed to firstly recharge node 1,
2 and 3 in turn. After recharging node 3, it finds that its residual energy is not enough to recharge other
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nodes. At this moment, it will return to BS immediately, which probably causes node 4 and node 5 die
because of untimely recharging. On the contrary, after recharging node 2, if node 3 with the maximum
recharging benefit is not selected, there is a great chance for the WCV to recharge node 4 and node
5, and also, it may return to BS successfully, as shown in Figure 16b. At this time, only node 3 in the
network may die, which is better than the situation shown in Figure 16a.
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Thus, we propose a wireless recharging scheme based on limited battery capacity and the
maximum recharging benefit. When the recharging requests are received from nodes, the WCV
firstly examines its residual energy:

Case 1: If the residual energy is no less than γ (calculated by Equation (35)), the WCV calculates
out the remaining lifetime of each node (denoted as Li) in Φ by the following Equation, where ER

i (t)
represents the current residual energy of node i:

Li = ER
i (t)/Pi (32)

Then, the shortest waiting time for all the other nodes is calculated in advance. For example,
if node i is selected as the next node for recharging, the waiting time of node i′ (denoted as Wii ′ ) is:

Wii′ = TWCV to i +
(
Cb −

(
Pi × Tj − Pi × TWCV to i

))/
η + Ti to i′ (33)

TWCV to i and Ti to i′ represent the time taken for WCV to move from its current position to node
i and from node i to node i′, respectively. If Li ′ ≥Wii′ , it means that node i′ will not die because its
remaining lifetime is longer than the time on waiting for recharging when node i is chosen as the next
node. Furthermore, if all the other nodes in Φ can meet the above constraint, node i will be added to
the candidate node set (denoted as Ψ) for recharging.

If Ψ is not empty, the node with the maximum recharging benefit will be selected as the next node
for recharging. Then, its ID is removed from Φ, and Ψ is set to empty. Otherwise, the WCV inspects
each node (i.e., node i) in Φ separately and calculates the number of nodes i′ (denoted as Q) that meets
Li ′ ≥Wii ′ when node i is assumed to be the next node for recharging. Then, the node with the maximal
value of Q is regarded as the next node for recharging, which minimizes the number of dead nodes.
If there is more than one node has the same largest value of Q, the node with the maximum recharging
benefit of them is selected as the next node for recharging. At last, its ID is removed from Φ.

After recharging the selected node, the WCV judges again whether its residual energy is still no
less than γ. If so, it continues recharging nodes according to the strategy proposed in case 1, until Φ is
empty, otherwise, the scheme described in case 2 is executed.



Sensors 2018, 18, 2887 21 of 34

Case 2: If the residual energy of WCV is less than γ, nodes in Φ are examined in turn to judge
whether they meet Equation (34).

ER
WCV(t)− em × dWCV to i −

(
Cb − ER

i (t + TWCV to i)
)
≥ em × di to BS (34)

Here, ER
WCV(t) is the residual energy of WCV at the current time, and ER

i (t + TWCV to i) represents
the residual energy of node i at the moment when the WCV arrives at it. di to BS is defined as the
Euclidean distance between node i and BS. Similarly, dWCV to i is defined as the Euclidean distance
between the current location of WCV and node i. That is to say, the WCV must firstly judge whether it
has enough energy to return to BS after recharging the next node.

Nodes that do not meet the above condition are removed from Φ. Then, if Φ is not empty, the next
node for recharging is selected out according to the method described in case 1, otherwise, the WCV
will no longer respond to any recharging request and it immediately returns to BS to replace its battery.
The time spending on battery replacement is ignored in this paper.

From the previous analysis, it is known that, under the minimum value of γ, the WCV should
be able to return to BS, no matter where it is. In Section 4.2, we know that the theoretical longest

distance between WCV and BS is
√
(M/2)2 + (L/2)2. Therefore, the value of γ only needs to meet

the following Equation:

γ ≥ em ×
√
(M/2)2 + (L/2)2 (35)

It is worth mentioning that, the WCV can respond to the recharging requests at any time and
update the contents of Φ constantly.

We take Figure 17 as an example to show a specific implementation process of DCMRB. The initial
position of the WCV is shown in Figure 17a and its residual energy is no less than γ. We assume that
the nodes’ ID in Φ now is {1, 3, 4, 5, 6, 7}. In addition, according to Equations (32) and (33), the values
of Li ′ and Wii ′ are calculated out respectively. It is assumed that when node 1, 3, or 7 is set as the first
node for recharging, the rest of nodes will not die for the time being. Then, their IDs are added to Ψ.
If node 1 has the maximum recharging benefit, it becomes the first node for recharging, and its ID is
removed from Φ after it being recharged. At the same time, Ψ is also set to empty. After node 1 being
recharged, if the residual energy of WCV is still no less than γ, the next node for recharging is selected
out, i.e., node 3 (Figure 17b).

It is assumed that Ψ is empty after node 3 being recharged. Then, the node with the maximal
value of Q is selected as the next node for recharging according to the scheme proposed in case 1.
It supposes that the value of Q of both node 4 and node 7 are the maximum value among the remaining
nodes in Φ at this moment. In other words, whether node 4 or node 7 is chosen as the next node for
recharging, the number of dead nodes can be minimized. However, it is not possible for WCV to
recharge both node 4 and node 7 at the same time. Therefore, the node with the maximal recharging
benefit among them is selected out (i.e., node 4), as shown in Figure 17c.
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Assuming that the residual energy of the WCV is less than γ after recharging node 4, the WCV
needs to determine whether it has enough energy to return to BS after finishing the next recharging
process on the basis of Equation (34). Without loss of generality, we assume that the WCV receives two
other recharging requests from node 2 and node 8 before this judgment. So, at this time, Φ = {5, 6, 7, 2,
8}. Afterwards, the WCV finds that only the next node for recharging is node 6, 7, or 8, there is enough
energy for it to return to BS. Thus, it selects one of these three nodes as the next node for recharging
(i.e., node 6), and removes its ID from Φ.

After finishing recharging node 6, WCV finds that no node meets the requirement of Equation (34).
That is to say, no matter which node is recharged next, the WCV cannot return to BS. Therefore, it is no
longer ready to recharge any other nodes, but immediately returns to BS, as shown in Figure 17d.

6. Simulation Results and Analysis

To evaluate the performance of DCMRB on multiple-MDCs based data collection strategy as well
as the adaptive recharging scheme, a series of simulations are carried out with the help of Eclipse
4.5 and Matlab 8.5. Simulation results of DCMRB are also compared with some typical recharging
methods, e.g., Energy Starvation Avoidance Online Charging Scheme (ESAOC), Greedy Mobile Scheme
based on Maximum Recharging Benefit (GMS-MRB) and First-Come First-Served (FCFS) method.
Values of the parameters in those experiments are shown in Table 4.
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Table 4. Parameter values.

Parameter Symbol Value

Network size M × L 300 m × 300 m–400 m × 400 m
Number of nodes N 923

Length of the sensing radius Rs 10 m
Length of the communication radius Rt 10 m–30 m

Speed of MDC vMDC 5 m/s
Speed of WCV vWCV 5 m/s

Buffer size of one node C 12.7 KB
Data collection rate of one node g 130 bps
Data uploading rate of one node u 100 kbps

Maximum battery capacity of one node Cb 5 J
Maximum battery capacity of the WCV Ch 1 KJ

Energy consumption of the WCV on travelling one meter em 0.2 J
Wireless recharging rate η 0.1 J/s–0.5 J/s

Energy consumption of the sending and receiving circuit Eelec 50 nJ/bit
Energy consumption of the amplifier in free-space model εfs 10 pJ·(b/m2)−1

Maximum delay for packet uploading Td 900 s–1700 s

6.1. The Minimum Number of MDCs

As mentioned in Section 4, a reasonable network partition mode will greatly affect the performance
of data collection and wireless recharging. Moreover, in this paper, the number of regions is relevant to the
number of MDCs. Without loss of generality, the length and width of the network are set to 400 m and
300 m respectively.

It is known from Equation (21) that, the number of MDCs is mainly affected by the value of Tr. On the
other hand, according to the node’s buffer size and its sensing rate, we can know that the buffer overflow
will occur when its data cannot be uploaded to the MDC within 800 s. Thus, if the values of Td and Rt can
avoid buffer overflow, Tr is calculated by the right part of Equation (15), otherwise, Tr is set to 800 s.

It is not difficult to know from Table 5 that when the value of Td is constant, Tr is less affected by
the value of Rt. However, when Rt remains unchanged, Tr increases significantly as the value of Td
increases. Let the right parts of Equations (15) and (16) be equal, we get:

Td =

(
2− 3

√
3× g× N

2u×M× L
× R2

t

)
× C

g
−
√

3Rt

vDGV
(36)

After calculating, it is known that the threshold value of Td is 1538 s. That is, when Td is greater
than this value, in order to avoid buffer overflow, Tr should not increase anymore. Therefore, in Table 5,
no matter Td is 1600 s or 1700 s, the value of Tr is still 800 s.

Table 5. The value of Tr under different values of Td and Rt.

Td Tr

Rt
10 m 20 m 25 m 30 m

900 s 452 s 455 s 458 s 460 s
1000 s 502 s 506 s 508 s 511 s
1200 s 602 s 606 s 609 s 612 s
1400 s 702 s 707 s 710 s 713 s
1500 s 752 s 757 s 760 s 764 s
1600 s 800 s 800 s 800 s 800 s
1700 s 800 s 800 s 800 s 800 s
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Figure 18 show the number of MDCs in the network with different sizes. As can be seen from
this figure, under the same value of Rt and Td, the number of MDCs increases with the expansion
of the network size. This is because once Rt and Td remain unchanged, the time length of the data
collection period will be fixed. Hence, the number of VTPs that one MDC can traverse in Tr is also a
fixed value. In this case, with the expansion of the network size, the number of VTPs increases as well,
which inevitably requires more MDCs to participate in data collection.
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On the other hand, under the same network size, when the value of Rt or Td increases (the value
of Td cannot exceed 1583 s), the number of MDCs will decrease accordingly. The reason is that the
value of Tr rises when Rt or Td increases, and more VTPs can be traversed by WCV in Tr. As a result,
the demand for MDCs is reduced in the network. However, as mentioned before, in order to avoid
buffer overflow, the value of Tr cannot be unrestricted increased. In other words, the number of MDCs
has a lower limit value. For example, in a 400 m× 400 m network, when Rt is set to 25 m, the minimum
number of MDCs needed is 4, as shown in Figure 18c. In Figure 18b, we can find that in the 400 m
× 300 m network, the value of Rt is rised from 25 m to 30 m when Td is up to 1200 s. At the same
time, the number of MDCs required in this network increases from 3 to 4. It can be concluded that,
although the number of VTPs decreases with the increase of Rt, the Euclidean distance between two
adjacent VTPs becomes longer, which prolongs the travel time of the MDC. In addition, another result
of increasing the length of Rt is that more nodes are contained in each RH. This results in more time
needed for MDC to collect data. In this case, a MDC can only traverse less VTPs in Tr, and thus more
MDCs are required in the network.

6.2. The Amount of Data Collected before and after Speed Adjustment

In this section, the values of Td and Rt are set to 1200 s and 30 m respectively. Thus, it is known from
Table 5 that, Tr = 612 s. According to Figure 19, under the same network size, the amount of collected
data is increased after implementing the MDC’s speed adjustment scheme. Moreover, the larger the
network size is, the greater the improvement is. For example, in a 300 m × 300 m network, the amount
of the collected data is increased by 5.2%, while in a 400 m × 400 m network, the increase reaches
to 11.2%. Similarly, in Figure 20, no matter how many nodes are in the network, the amount of the
collected data after adjusting the speed of MDC is higher than that before adjusting. These experimental
results demonstrate that after implementing the speed adjustment scheme, the packet loss rate of the
whole network decreases significantly.
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6.3. Effect of Recharging Rate on the Performance of WRSN

The performance of WRSN is mainly affected by the following two factors:

• The Proportion of the Dead Nodes (PDN): The ratio of the number of dead nodes to the total
number of nodes deployed in the network.

• The Average Recharging Delay (ARD): The average time interval from the moment when a node
sending a recharging request to the moment when it being recharged.

Without loss of generality, the values of Td and Rt are set to 1200 s and 20 m respectively in the
following sections. Figure 21 shows the simulation result of the PDN under different recharging rates.
We can observe that with the increase of η, the PDN of all the four methods drops significantly. In this
case, more and more nodes can be recharged in the same time period, which prevents the node from
dying due to energy exhaustion.
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However, it should be pointed out that the PDN of FIFS is always the highest among the four
methods. Even when η = 500 mJ/s, its value is still higher than 20%. This is because FIFS simply
follows the principle of “first-come, first-served” to recharge the requesting node. This easily causes
the WCV moving back and forth between nodes farther away, which not only consumes more energy,
but also increases the waiting time of nodes to be recharged. Therefore, the number of nodes that can
be recharged in FIFS is small.

On the other hand, in GMS-MRB, the recharging benefit is regarded as the only criterion to select
the next recharging node. This may make the WCV keep away from the BS due to the pursuit of high
recharging efficiency. In this case, the WCV consumes much energy on moving, and it may have to
return to BS in advance, as shown in Figure 16a. In summary, the PDN of GMS-MRB is also higher
than that of DCMRB.

Although the PDN of ESAOC is close to that of DCMRB, it is still slightly higher. The main reason
is that in ESAOC, when the WCV finishes recharging a node, it judges whether or not it has enough
energy to return to BS, which undoubtedly increases its computation overhead. It is even more so in a
WRSN where nodes are densely deployed. In addition, due to falling into local optimum, the number
of nodes to be served by WCV tends to be reduced. For example, in Figure 22, five nodes have sent the
recharging requests. It is assumed that the WCV is now at node 1 and has just finished recharging it.
Subsequently, node 2 is selected as the next node for recharging according to the strategy of ESAOC.
However, after judgment, it finds that if the WCV moves to node 2 and recharges it, it doesn’t have
enough power to return to BS. Hence, the WCV reselects node 3, which is closest to node 2, as the next
recharging target. Unfortunately, by judging again, the WCV finds that it still cannot return to BS if
recharging node 3. Therefore, the WCV has no choice but to give up recharging all the other nodes and
return to BS. Since node 5 is very close to BS, it is possible for the WCV to recharge it and then return
to BS. However, ESAOC fails to do this. In contrast, DCMRB has established a recharging request
queue and it has also forecasted the situation after recharging each node in this queue, so that the most
suitable node can be selected out for each recharging.
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enough energy to return to BS, which undoubtedly increases its computation overhead. It is even 

more so in a WRSN where nodes are densely deployed. In addition, due to falling into local 

optimum, the number of nodes to be served by WCV tends to be reduced. For example, in Figure 
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As shown in Figure 23, the ARD of all the four methods shows a decreasing trend with the
increase of the recharging rate. However, in FIFS, when the recharging rate rises from 0.1 J/s to 0.2 J/s,
the average recharging delay increases slightly. This is because FIFS only relies on the sequence of the
recharging requests issued by nodes for recharging, and it fails to plan a reasonable moving path for
the WCV, which may cause the WCV moving back and forth between nodes farther apart. When the
recharging rate increases, the WCV can recharge more nodes. So, the movement situation mentioned
above may be more frequent, resulting in a certain rise of the ARD. However, when the recharging
rate further increases (e.g., η = 0.2 J/s), the ARD of FIFS keeps falling due to the improvement of the
recharging performance (but it is still the highest of the four methods).

When η is small, the average recharging delay of GMS-MRB is higher than that of ESAOC and
DCMRB. In this case, the large value of PDN leads to the decrease of node’s density in the network,
which increases the average distance between two consecutive rechargeable nodes. So, the recharging
delay is higher. When η is large, it is most possible to select the node that closest to WCV as the next
recharging node. Although this node may not be the best option, it can greatly reduce the recharging
delay. Therefore, it can be seen from Figure 23 that the average recharging delay of GMS-MRB is even
lower than that of DCMRB when η > 0.32 J/s.
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In order to reduce the recharging time, ESAOC preferentially selects nodes with more residual
energy to recharge so as to respond more requests. Thus, the average recharging delay of ESAOC is
always the lowest of the four methods. However, it is worth mentioning that this may overlook the
urgency of recharging, making some nodes with low residual energy more likely to die.

Different from the other three methods, the path length and the number of nodes that can be served
are taken into account in DCMRB. On this basis, it always selects the node with the maximum benefit as the
next recharging target, and the WCV recharges each node to the full power (Cb) every time. In summary,
its average recharging delay is basically the same as that of ESAOC and GMS-MRB, but much lower
than FIFS.

6.4. Effect of the Moving Speed of WCV on the Performance of WRSN

Figure 24 shows the PDN of the four methods under different moving speeds of WCV. It is obvious
that the largest range of change appears in FIFS. When the WCV’s moving speed gradually varies from
1 m/s to 8 m/s, the value of PDN drops by about 54%. This is still because FIFS only recharges nodes
by sequence based on their request times, easily resulting in excessive time consumption on moving.
After increasing the moving speed of WCV, the waiting time of nodes for recharging decreases and the
value of PDN goes down. However, since the movement mode of WCV does not change, it still wastes
much energy on moving. Therefore, under the same value of the moving speed, the PDN of FIFS is
still the highest among the four methods.

Although the PDN of GMS-MRB is lower than that of FIFS, it is always higher than DCMRB and
ESAOC. The reason is that the WCV may stay away from BS in pursuit of high recharging efficiency
only and it also needs to return to BS in advance for replenishing energy, which causes a greater
reduction on the number of nodes being recharged. Even if the moving speed increases, it is impossible
to fully compensate for the time and energy costs due to long-distance movement.

Obviously, the PDN of DCMRB or ESAOC is relatively lower, especially when the speed is greater
than or equal to 5 m/s. Unlike the uniform recharging threshold used in ESAOC, DCMRB adopts
a more flexible mechanism to adapt different energy consumption rates of nodes. So, the PDN of
DCMRB is the lowest among the four methods.
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Figure 25 shows the average recharging delay under different moving speeds of WCV. As expected,
in all the four methods, the value of ARD decreases with the increase of vWCV. However, in FIFS, when
vWCV increases from 1 m/s to 2 m/s, the average recharging delay goes up slightly. The reason of this
is similar to the case in Figure 23.
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From Figure 25, we can also see that the average recharging delay in ESAOC is still the lowest
among the four methods. The experimental results of DCMRB are close to ESAOC, which is similar to
the conclusion of Figure 23.Sensors 2018, 18, 2887 30 of 34 
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Figure 25. Average recharging delay under different moving speeds. 
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Figure 26. The average value of TRR under different number of nodes and different moving speeds. 

Figure 25. Average recharging delay under different moving speeds.

It is worth mentioning that the average recharging delay of GMS-MRB is higher than that of
DCMRB and ESAOC when the WCV moves at a slower speed. However, when vWCV ≥ 5 m/s,
the average recharging delay of GMS-MRB is slightly lower than that of DCMRB. In this case, there are
few dead nodes in the network and the WCV can easily find a rechargeable node that is close to its
current location, which effectively shortens the waiting time of nodes for recharging. However, DCMRB
aims to find “the most suitable node for recharging”, so its path length may be longer than that of
GMS-MRB, resulting in a higher latency (but the number of dead nodes in DCMRB is the lowest).

6.5. Effect of the Threshold of Recharging Request on the Performance of WRSN

Figure 26 shows the energy Threshold of Recharging Request (TRR) under different number of nodes
and different moving speeds in one region of DCMRB. As described in Section 5.1, an adaptive TRR is set
for each node in our algorithm. For ease of analysis, in Figure 26, the algorithm performance is measured
by the average value of TRR. It is not difficult to see that, under the same value of vWCV, this average
threshold goes up with the increase of the number of nodes in the network, and almost a linear growth.
The reason is that the waiting time of nodes for recharging increases as the number of nodes increases,
according to Equation (31). Moreover, when the number of nodes in one region is unchanged, the faster
the WCV moves, the more nodes it serves, and the lower the average value of TRR is.
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The value of PDN under different TRRs in the four methods is shown in Figure 27.
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Figure 28. The amount of the collected data under different recharging rates. 

Figure 27. Proportion of the dead nodes under different recharging thresholds.

As the recharging threshold increases, the PDN in all the four methods decreases. Obviously, higher
recharging threshold means that nodes would send the requests more frequently. Thus, the WCV can
optimize the moving path more efficiently. On the other hand, when the value of TRR is raised, the WCV
can complete each recharging task in a shorter time, so more nodes would be recharged and the PDN is
further reduced. Among the four methods, the performance of DCMRB is the best.

6.6. Effect of the Recharging Rate on the Amount of the Collected Data

At last, we comprehensively consider the implementation effects of WCV and MDC to verify the
effect of the recharging rate on the amount of the collected data. The simulation results are shown in
Figure 28. It is obvious that, with the increase of η, the amount of data collected in these four methods
increases significantly. Combined with Figure 21, we can see that in all the four methods, PDN drops
rapidly when η rises. That is to say, more and more active nodes exist in the network. Thus, the amount
of data collected by MDC increases. In addition, when η ≥ 300 mJ/s, the PDN of GMS-MRB, ESAOC
and DCMRB are almost unchanged any more, so is the amount of the collected data, which is also
confirmed by Figure 28.
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Moreover, Figure 28 also illustrates that the amount of collected data goes up dramatically when
the recharging rate increases from 200 mJ/s to 250 mJ/s in ESAOC. From Figure 21, it is known that
during this period, the PDN of ESAOC drops sharply from 28% to 12%. That is to say, the proportion
of the surviving nodes is largely increased. Therefore, the amount of the collected data rapidly rises in
the period.

7. Conclusions

In order to prolong the lifetime of the self-organized Wireless Sensor Networks, both a distributed
data collection method and a high efficient energy supplement strategy are described in this paper.
Through the virtual scan line based network partition method and the moving speed adjustment
scheme, the efficiency of data collection is improved to a certain extent. Moreover, with the help of the
adaptive recharging scheme based on maximum benefit, the energy is reasonably supplemented to the
most needed nodes, that indirectly ensures the balance of energy consumption.

However, due to the slow moving speed and the low recharging rate of the WCV, it may not
recharge all nodes timely when a mass of nodes send recharging requests during a short time.
Thus, how to effectively meet the frequent recharging and data uploading requirements of the nodes
in a large scale network in real time is one of our future research points. In addition, the one-to-more
recharging mode may also be considered in our future work. That is, within a certain range, the WCV
can recharge two or more nodes simultaneously, which can further increase the recharging efficiency.
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