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Abstract: Large generators are the principal pieces of equipment in power systems, and their
operation reliability critically depends on the stator insulation. Damages in stator insulation will
gradually lead to the failure and breakdown of generator. Due to the advantages of Lamb waves in
Structural health monitoring (SHM), in this study, a distributed piezoelectric (PZT) sensor system
and hybrid features of the Lamb waves are introduced to identify stator insulation damage of large
generator. A hierarchical probability damage-imaging (PDI) algorithm is proposed to tackle the
material inhomogeneity and anisotropy of the stator insulation. The proposed method includes three
steps: global detection using correlation coefficients, local detection using Time of flight (ToF) along
with the amplitude of damage-scattered Lamb wave, and final images fusion. Wavelet Transform
was used to extract the ToF of Lamb wave in terms of the time-frequency domain. Finite Element
Modeling (FEM) simulation and experimental work were carried out to identify four typical stator
insulation damages for validation, including inner void, inner delamination, puncture, and crack.
Results show that the proposed method can precisely identify the location of stator insulation damage,
and the reconstruction image can be used to identify the size of stator insulation damage.

Keywords: rotating machine insulation; rotating machine insulation testing; crack detection;
acoustic signal processing; acoustic applications

1. Introduction

Stator winding insulation is the component most related to the reliability of a high voltage
(HV) rotating machines [1–3]. In long-term service, stator insulation is exposed to a combination of
thermal, electrical, and thermal-mechanical stresses. These multiple stresses cause insulation aging.
Previous research has shown that the invalidation of stator insulation in the aging progress is the root
cause for large generator breakdown [4,5]. Implementing condition monitoring (CM) technology on
stator insulation holds the promise of enhancing the safety and economic operation of a large generator.

There has been considerable effort over recent decades to identify the causes of stator
insulation degradation and find methods for assessing the condition of stator insulation [6].
Various non-destructive methods have been proposed for CM of stator insulation. Nearly all of
the previous works relied on electrical measurements [5], and a plurality of researchers centered on
partial discharge (PD) tests [6,7]. The aging condition of stator insulation can be indicated by means
of the presented aging-related electrical characteristics. These electrical indicators are well applied
for CM and fault diagnosis of stator insulation; however, currently, the relationship between these
electrical characteristics and the micro insulation damage is still not clear enough. In fact, the inception
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and development of insulation damages, such as void, crack, delamination, etc. are the primary factor
in the deterioration of stator insulation of large generators [8–12]. With existing CM methods, it is
difficult to detect the specific features of stator insulation damage, e.g., location, type, size, etc. From an
industrial application point of view, it is of great significance to detect stator insulation damage with
the identification of location and size characteristics. This valuable information would help us to better
understand the aging mechanisms of stator insulation. Meanwhile, it can provide an effective and
reliable reference for the diagnosis of insulation status and life assessment of large generators.

Guided waves show good sensitivity to structural damage during propagation [13]. The Lamb
wave, as a modality of the guided wave, has prominent advantages in both resolution, practicality,
and the ability to detect the composite structure [14]. Structure health monitoring (SHM) based on
the Lamb wave have been widely used to enhance the reliability of safety-critical and mission-critical
equipment. Recently, there has been an increasing interest in developing imaging techniques with
Lamb wave-based SHM [15–17]. The main concept behind this method is to detect damage graphically
and intuitively by integrating Lamb wave features that are damage-sensitive. Zhao [17] provided a
comprehensive review on state of art Lamb wave tomography methods for SHM, describing both
the advantages, drawbacks, and practicability. Out of them, probability damage imaging (PDI) is
flexible, with sparse transducers performing high quality and rapid image reconstruction. The Lamb
wave-based PDI methods can not only indicate the presence of damage, but can also locate [18] and
identify the severity of damage [19].

Due to the merits of Lamb wave on SHM of composite, the Lamb wave tomography method
shows a potential solution for intuitively detecting stator insulation damages [20]. However, the stator
insulation of large generators is mostly composed of mica tapes and epoxy resins, which can be
regarded as composite materials with bar-like structures [4]. Different from other homogenous and
isotropic structures, Lamb waves propagate more complexly on stator insulation. Many forms of
interference affect the target feature extraction for damage imaging. In summary, there are three
main challenges.

• Interference by wave dispersive and multi-modes. The inhomogeneous and anisotropy
property of mica-epoxy insulation material aggravate the dispersive and multi-modes of Lamb
wave [13,16].

• Interference by multi-interfaces wave reflection and attenuation. The boundaries of bar-like
structure and multi-interfaces of laminate stator insulation bring unwanted wave reflections and
attenuation for Lamb wave propagation.

• Environmental Interference. Noise interference from the on-site environment may reduce signal
to noise ratio (SNR) of the monitored Lamb wave signal.

As mentioned, these multiple interferences represent huge obstacles to effective and accurate
feature extraction in PDI procedures; as a result, they restrict the effectiveness of damage detection
performance of the Lamb wave-based PDI method. To address these problems, this paper proposes
an enhanced hierarchical PDI method by integrating multi-features of Lamb waves. The effects of
the insulation structure complexity, as well as the anisotropy of insulation material, is alleviated
by multi-feature fusion, and the anti-interference performance of the method is discussed. Finally,
identification of four typical insulation damages, i.e., void, delamination, puncture, and crack are
carried out by FEM simulations and experiments for validation.

2. Damage Identification Method of Stator Insulation Using Lamb Waves

2.1. Principle of Hierarchical PDI Method

To visualize the damage condition (both the damage location and size) of stator insulation in
an intuitive manner, the PDI method is used to represent a damage event in a 2-D binary color-scale
image. Each pixel corresponds exclusively to spatial point in the inspected structure area, and the field
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value is linked to the probability of damage presence at that spatial position [16]. The principle of the
proposed method for identification of stator insulation damage is shown in Figure 1.
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Figure 1. Schematic of the proposed PDI method based on hybrid features of the Lamb waves. 
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Figure 1. Schematic of the proposed PDI method based on hybrid features of the Lamb waves.

The portion marked (a) in Figure 1 is the sensor network configured on the surface of stator bar.
The sensor system consists of PZT wafers, where each PZT can act as both actuator and sensor for
excitation and measurement of Lamb wave signals, respectively. Hybrid features of Lamb waves
are extracted and integrated into a hierarchical PDI procedure. As shown in portion (b) of Figure 1,
the correlation coefficient between the health and damage state of the Lamb wave signal is first
extracted in global PDI to preliminarily determine damage level of stator insulation. Next, Time of
Flight (ToF) and peak amplitude of damage scattered Lamb wave are extracted for local PDI to further
locate the stator insulation damage. Finally, image fusion of the two above results is carried out for
enhanced reconstruction of stator insulation damage condition; the detailed hierarchical PDI method
is described in the following section.

2.2. Global PDI Method Using Correlation Coefficient as Damage Feature

The global PDI method uses a correlation coefficient as a damage feature to preliminarily
image the damage condition of stator insulation. When damage exists in the propagation path,
the Lamb wave signal will change: the higher the damage degree, the larger the signal variation.
Correlation coefficients can quantitatively describe the variation of Lamb wave signals between
health and damage states [21], which is widely used as a damage-sensitive feature to evaluate the
structure’s condition. Considering one actuator/sensor path, Lamb wave signals on health state is
H = {H1, H2, · · · , Hn} , and Lamb wave signals on the damaged state are D = {D1, D2, · · · , Dn} ,
respectively. Then, correlation coefficient of H and D is calculated as [21]:

ρH,D =
∑n

i=1 (Hi − µH)(Di − µD)√
∑n

i=1 (Hi − µH)
2 ∗
√

∑n
i=1 (Di − µD)

2
(1)

where µH and µD are the average value of H and D respectively. The higher the damage degree, the
lower correlation between signals H and D, leading to a smaller values of ρH,D. Then, a model of the
distribution of DPP P(x, y) in stator insulation can be established [21]:

P(x, y) = (1− ρk)·[
β− R(x, y)

β− 1
] (2)
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R(x, y) =

{
Rk(x, y), Rk(x, y) < β

β, Rk(x, y) ≥ β

}
(3)

Rk(x, y) =
Dak + Dsk

Dk
(4)

where ρk is the calculated correlation coefficient; β is a scaling parameter controlling the size of damage
sensitive zone; Rk(x, y) is the relative distance between the position (x, y) to the Lamb wave sensing
path, Dk is the distance between actuator and sensor, Dak and Dsk are the distance between position
(x, y) to the actuator and the sensor, respectively. A damage reconstruction image can then be obtained
by Equation (2).

2.3. Local PDI Method Using Temporal Features of Scattered Waves

In order to further obtain the insulation damage location, local PDI based on the temporal features
of scattered Lamb wave is used to enhance the image quality. According to the Huygens’ Principle,
the Lamb wave scatters if it encounters damage during propagation, forming the so-called scattered
Lamb wave [22]. Time of flight (ToF) of scattered Lamb wave is an effective feature to represent damage
information. The principle of damage localization based on ToF is shown in Figure 2.
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Considering one pair of actuator/sensor path, as shown in Figure 2, the Lamb wave is excited by
actuator A(xA, yA) and received by sensor R(xR, yR). The ToF of scattered Lamb wave after interacting
with damage D(xD, yD) is

TA−D−R = (LA−D + LD−R)/Vg (5)

where LA−D is the distance from A to the D, LD−R is the distance from D to R, and Vg is the group
velocity of Lamb wave. For a determined TA−D−R, an ellipse with the actuator A and the sensor R as
the two foci and major axis of LA−D + LD−R = TA−D−R ∗Vg can be formed (see Figure 2). The ellipse
indicates the possible loci of damage. Obviously, A node closed to the ellipse trajectory possesses
higher DPP value. For an optional node M (xm, ym), the ToF of Lamb wave spread from actuator A to M
and from M to sensor R can be calculated as TM = (LA−M + LR−M)/Vg. When M is right located at the
ellipse, then TM = TA−D−R. With a larger deviation between TA−D−R and TM(Tij = |TA−D−R − TM| ),
the relative distance that the node away from actual damage location is larger. Tij can thus model the
distribution of DPP in the stator insulation by the Gaussian distribution [22].

F(Tij) =
∫ Tij

−∞
f (Tij)dTij (6)
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where, f (Ti j) =
1

σ
√

2π
exp(− Ti j

2

2σ2 ) is the probability density function, and σ is the standard deviation,
defined as:

σ = w ∗ Ascatter

Ahealth
(7)

where w is weight coefficient, Ascatter and Ahealth are the envelope peak of damage-scattered Lamb
wave and Lamb wave received in health state, respectively. The envelope peak can used to reflect
insulation damage degree. If damage degree becomes more serious, the envelope peak of scatter Lamb
wave is larger [23]. For a specific Tij and σ, the DPP [22] of that position is defined as:

P(Tij) = 1−
∣∣F(Tij)− F(−Tij)

∣∣ (8)

Using Equation (8), the DPP values at all spatial locations can be calculated, and then an image
reflecting the damage condition in stator insulation is reconstructed.

2.4. ToF Extraction Based on Wavelet Transform

As mentioned, the ToF of a damage scattered wave component is key to triangulating the
insulation damage in a stator bar. However, the inherent property of multiple modes and the dispersion
of Lamb waves make extracting ToF a huge challenge [24]. Additionally, the multi-interfaces of the
laminated composite structure of stator insulation may bring massive reflection and wave attenuation
in interpreting the received Lamb wave signals.

The wavelet transform (WT) is a time-frequency domain analysis method. With WT analysis,
a dynamic Lamb wave signal can be interrogated using a localized fragment to display hidden
characteristics fully, such as trends, breakdown points or discontinuities, and self-similarity. Hence,
WT is particularly effective to extract the objective damage-sensitive features from Lamb wave signals.
The WT of a signal f (t) is expressed as:

W(a, b) =
1√
a

∫ +∞

−∞
f (t) ∗Ψ∗

(
t− b

a

)
dt (9)

where a and b are the two constants determining the scale and time axes, respectively. Ψ∗(t) is the
complex conjugate of the orthogonal wavelet function Ψ(t). Daubechies wavelet (db10) is selected as
wavelet function in this paper. W(a, b) is termed the WT coefficient. It depicts the energy distribution
of f (t) over the time-scale domain, and the energy spectrum is given as:

E =
∫ +∞

b≥0

∫ +∞

a≥0
|W(a, b)|

2
·da·db (10)

The Lamb wave propagation can be regarded as the transportation of the energy contained in the
wave packet. Thus, the ToF should be ascertained in terms of the time difference between the moments
at which the wave packet reaches its maximum in the energy spectrum over the time-frequency
domain. The time corresponding to the peak of the energy packet determined in terms of Equation (10)
can be used to determine the actual ToF of the wave packet.

2.5. Image Fusion Scheme

In the above global and local PDI methods, each actuator/sensor path can provide a damage
source image. However, the information contained in one source image is very limited, and the image
is easily interfered by noise. Therefore, an image fusion scheme is used to improve the signal-to-noise
ratio, thereby enhancing the imaging quality of the final imaging result [25].
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In detail, assuming there exist N pairs of actuator/sensor paths in stator bar, the compromised
fusion [25] is used for global PDI result P1, which can be expressed as:

P1 =
1
N

N

∑
i=1

P1(i) (11)

where P1(i) is the DPP values of an individual sensing path that is calculated from Equation (2).
The conjunctive fusion [25] is then used for the local PDI result P2, defined as:

P2 =
N

∏
i=1

P2(i) (12)

where P2(i) is the DPP values of an individual sensing path that is calculated from Equation (8).
The two above results P1 and P2 are normalized as P1 and P2, and the final imaging result P is
given as:

P =
√

P1 ∗ P2 (13)

The image fusion schemes averages all probability contributions, balancing the smallest and
greatest probabilities and giving an intermediate measure of the existence of damage. It is beneficial
for the suppression of noise interference.

3. Stator Insulation Damage Identification Experiment and Results

3.1. Experimental Setup

To validate the feasibility and performance of the proposed method, experimental work was
carried out on real stator bar for insulation damage identification. The picture of test rig is shown
in Figure 3. The specimens of stator bars are taken from a large generator rated 18 kV/300 MW.
The cross sectional dimensions of stator bar is 60 mm × 30 mm and the thickness of ground wall
insulation is 6 mm. The material parameters of stator insulation were tested as: Young’s modulus of
35 Gpa, density of 1720 kg/m3 and Poisson’s ratio of 0.2. Based on these parameters, the dispersive
curves for Lamb wave propagation in stator insulation can be acquired by solving the Rayleigh-Lamb
Equations [20,26]. In accordance with [20], the excitation signal in the experiment adopted a five-cycle
Hanning-windowed sinusoidal toneburst with a central frequency of 15 kHz. The AFG3022B generates
the preset toneburst excitation signal, followed by the 7602 M for power amplification. Such an
amplified electrical signal can drive a PZT wafer to excite Lamb wave propagating in stator insulation.
The PZT wafers (PIC161, PI) are adhered to the surface of stator insulation by using an epoxy adhesive.
PZT wafers can serve as both the actuator and sensor of Lamb wave, respectively. The Lamb wave
signal is then acquired by the DPO3014 with a sampling rate of 5 MS/s.
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3.2. Performance Evaluation of ToF Extraction Methods

As discussed in Section 2.4, the ToF of damage scatter wave is a vital feature to indicate damage
position, but it is prone to pollution by many factors. To evaluate the proposed WT-based ToF
extraction method, the procedure of extracting ToF from Lamb wave signals by WT and Hilbert
transform (HT) [20] method are first described. Figure 4a shows the time domain waveforms of Lamb
wave signals in healthy and damaged states, respectively. The damaged signal appears different from
its counterpart’s healthy signal, which indicates that the propagation of the Lamb wave on the stator
bar has been impacted by the insulation damage. The difference between a healthy and damaged
signal can be regarded as the damage-scatter wave [21,23], as plotted in Figure 4b. HT is carried out to
acquire the damage-scatter wave envelope, and result is shown in Figure 4c. The ToF of scatter wave
is then determined to be 1.509 ms, that is, the time delay between the envelope peak of scatter wave
(1.709 ms) and the envelope peak of excitation wave (0.5 ms).
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Figure 5 shows the wavelet energy spectrum of a series of Lamb wave signals after using WT.
Db10 is adopted as wavelet function. The time-frequency distribution of the arrival wave and
damage-scatter wave can be clearly seen in Figure 5b,c. The ToF of scatter wave is sensitive to
the insulation damage position. In detail, the procedure to extract ToF of scatter wave is: at a center
frequency of 15 kHz, the time at which the wavelet spectrum of scattered wave in Figure 5c reaches
the maximum value is determined as the arrival time (1.716 ms). The beginning time of the excitation
wave is derived as 0.500 ms from Figure 5a, similarly. The corresponding ToF (1.216 ms) is the time
delay between the arrival time (1.716 ms) and the beginning time (0.5 ms).

Then, noise robustness of the WT and HT method for ToF extraction is compared in the experiment.
Figures 6 and 7 show the ToF extraction results when the scatter wave is added with additive Gaussian
white noise (AGWN) and factory noise (FN), respectively. The SNR in the two cases is both 5 db.
In Figure 6, the arrival time of scatter wave determined by the HT method is 1.482 ms, while it is
1.714 ms by WT method. In Figure 7, the arrival time of scatter wave by HT and WT method are
1.460 ms and 1.712 ms, respectively. The HT method shows a nearly 0.2 ms deviation of ToF extraction
under a noisy environment. In contrast, the WT method presents quite a high consistency even though
the scattered wave signals are severely polluted.



Sensors 2018, 18, 2745 8 of 14
Sensors 2018, 18, x FOR PEER REVIEW  8 of 14 

 

Excitation signal

A0 mode arrival wave 

Damage scatter wave

1.716ms

（a）

（b）

（c）

 
Figure 5. Wavelet energy spectrum for ToF extraction by WT method: (a) excitation signal; (b) incident 
wave; (c) scatter wave. 

-0.02

0.00

0.02

0.00

0.01

0.02

0 2 4

0.00

0.04

0.08

 

A
m

pl
itu

de
(m

V
)

Scatter wave with white noise (SNR of 5db)(a)

(b)

WT coefficients of scatter wave at fequency of 15kHz 

Hilbert envelop of scatter wave 

Scatter wave with noise

 

A
m

pl
itu

de
(m

V
)

1.482ms

(c)

1.714ms

 

W
T 

co
ef

fic
ie

nt
s

Time(ms)  
Figure 6. ToF extraction after adding white noise: (a) scatter wave with AGWN (SNR is 5 db); (b) ToF 
extracted by HT; (c) ToF extracted by WT. 

-0.02

0.00

0.02

0.00

0.01

0.02

0.000 0.002 0.004

0.00

0.04

0.08

(a)
 

A
m

pl
itu

de
(m

V
)

(b)

WT coefficients of scatter wave at fequency of 15kHz 

Scatter wave with factory noise (SNR of 5db)

 

A
m

pl
itu

de
(m

V
)

1.46ms

(c)

Hilbert envelop of scatter wave

 

W
T 

co
ef

fic
ie

nt
s

Time(ms)

1.712ms

 
Figure 7. ToF extraction under FN environment: (a) scatter wave with FN (SNR: 5 db); (b) HT-based 
ToF extraction; (c) WT-based ToF extraction. 

Figure 5. Wavelet energy spectrum for ToF extraction by WT method: (a) excitation signal; (b) incident
wave; (c) scatter wave.

Sensors 2018, 18, x FOR PEER REVIEW  8 of 14 

 

Excitation signal

A0 mode arrival wave 

Damage scatter wave

1.716ms

（a）

（b）

（c）

 
Figure 5. Wavelet energy spectrum for ToF extraction by WT method: (a) excitation signal; (b) incident 
wave; (c) scatter wave. 

-0.02

0.00

0.02

0.00

0.01

0.02

0 2 4

0.00

0.04

0.08

 

A
m

pl
itu

de
(m

V
)

Scatter wave with white noise (SNR of 5db)(a)

(b)

WT coefficients of scatter wave at fequency of 15kHz 

Hilbert envelop of scatter wave 

Scatter wave with noise

 

A
m

pl
itu

de
(m

V
)

1.482ms

(c)

1.714ms

 

W
T 

co
ef

fic
ie

nt
s

Time(ms)  
Figure 6. ToF extraction after adding white noise: (a) scatter wave with AGWN (SNR is 5 db); (b) ToF 
extracted by HT; (c) ToF extracted by WT. 

-0.02

0.00

0.02

0.00

0.01

0.02

0.000 0.002 0.004

0.00

0.04

0.08

(a)
 

A
m

pl
itu

de
(m

V
)

(b)

WT coefficients of scatter wave at fequency of 15kHz 

Scatter wave with factory noise (SNR of 5db)

 

A
m

pl
itu

de
(m

V
)

1.46ms

(c)

Hilbert envelop of scatter wave

 

W
T 

co
ef

fic
ie

nt
s

Time(ms)

1.712ms

 
Figure 7. ToF extraction under FN environment: (a) scatter wave with FN (SNR: 5 db); (b) HT-based 
ToF extraction; (c) WT-based ToF extraction. 

Figure 6. ToF extraction after adding white noise: (a) scatter wave with AGWN (SNR is 5 db); (b) ToF
extracted by HT; (c) ToF extracted by WT.

Sensors 2018, 18, x FOR PEER REVIEW  8 of 14 

 

Excitation signal

A0 mode arrival wave 

Damage scatter wave

1.716ms

（a）

（b）

（c）

 
Figure 5. Wavelet energy spectrum for ToF extraction by WT method: (a) excitation signal; (b) incident 
wave; (c) scatter wave. 

-0.02

0.00

0.02

0.00

0.01

0.02

0 2 4

0.00

0.04

0.08

 

A
m

pl
itu

de
(m

V
)

Scatter wave with white noise (SNR of 5db)(a)

(b)

WT coefficients of scatter wave at fequency of 15kHz 

Hilbert envelop of scatter wave 

Scatter wave with noise

 

A
m

pl
itu

de
(m

V
)

1.482ms

(c)

1.714ms

 

W
T 

co
ef

fic
ie

nt
s

Time(ms)  
Figure 6. ToF extraction after adding white noise: (a) scatter wave with AGWN (SNR is 5 db); (b) ToF 
extracted by HT; (c) ToF extracted by WT. 

-0.02

0.00

0.02

0.00

0.01

0.02

0.000 0.002 0.004

0.00

0.04

0.08

(a)
 

A
m

pl
itu

de
(m

V
)

(b)

WT coefficients of scatter wave at fequency of 15kHz 

Scatter wave with factory noise (SNR of 5db)

 

A
m

pl
itu

de
(m

V
)

1.46ms

(c)

Hilbert envelop of scatter wave

 

W
T 

co
ef

fic
ie

nt
s

Time(ms)

1.712ms

 
Figure 7. ToF extraction under FN environment: (a) scatter wave with FN (SNR: 5 db); (b) HT-based 
ToF extraction; (c) WT-based ToF extraction. 

Figure 7. ToF extraction under FN environment: (a) scatter wave with FN (SNR: 5 db); (b) HT-based
ToF extraction; (c) WT-based ToF extraction.



Sensors 2018, 18, 2745 9 of 14

The comparative ToF extraction results between the HT and WT methods under different noise
conditions are shown in Table 1. The results indicate that the difference of HT and WT methods are
small when the scatter waves have not been polluted by noise. However, the HT method is prone to
being affected by noise with a decrease in SNR. The WT method outperforms than the HT method
in anti-noise performance for ToF extraction, which can further improve the accuracy of damage
localization, as exhibited in following section.

Table 1. ToF extraction results under different noise conditions.

Noise Condition (SNR)
ToF Extraction Method

WT Method HT Method

Without noise 1.216 ms 1.209 ms
FN (10 db) 1.218 ms 1.052 ms

AGWN (10 db) 1.212 ms 1.070 ms
FN (5 db) 1.212 ms 0.940 ms

AGWN (5 db) 1.214 ms 0.982 ms

3.3. Identification of Puncture Damage in Stator Insulation

Previous research indicated that electric sparks might occur within air pockets in insulation by
PD. These sparks contain electrons and ions that bombard mica-epoxy insulation. With enough time,
the PD will erode a hole through the organic parts of the groundwall, leading to insulation puncture
and causing catastrophic outcomes. Even a single insulation puncture will bring a very large circuiting
current due to AC induction, and this high current will soon melt the copper conductors and adjacent
insulation [5].

To identify punctures in stator insulation by the proposed method, an insulation puncture damage
with a depth of 6 mm and diameter of less than 1 mm was artificially made at coordinate (375, 30) of a
1200 mm length stator bar, as shown in Figure 8.
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Figure 8. The puncture damage in ground-wall insulation.

Multi features of a Lamb wave related to the insulation damage were extracted from the PZT
sensor network for probability imaging. Firstly, correlation coefficients between the healthy and
damaged signal were extracted according to Equation (1); then, the DPP values were calculated by
Equation (8), forming a color-scale image, and the global PDI result (Figure 9a) shows a preliminary
area of damage distribution.

To further acquire the insulation damage location, local PDI is conducted based on the features
of the damage scattered wave, including the maximum amplitude of scatter wave and ToF, which is
extracted by WT method. In the PZT sensor network, the A0 mode scatter wave features are extracted
for local PDI. The damage identification result is shown in Figure 9b. The global and local PDI result are
fused according to Equation (13), and the ultimate imaging result is shown in Figure 9c. The puncture
damage was identified at (402, 30) and the deviation between the identified damage location with
actual damage location (375, 30) in x-direction is 27 mm. This shows that the position of puncture
damage in stator insulation can be accurately located by the proposed hierarchical PDI method.
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Figure 9. Identification results of puncture insulation damage using hierarchical PDI method. (a) PDI
identification result; (b) Local PDI identification result; (c) Ultimate imaging result of stator insulation
puncture damage.

3.4. Identification of Crack Damage on Stator Insulation

Electromagnetic forces and mechanical strain may cause mechanical fatigue, leading to cracks
in the mica crystals and epoxy areas. On the other hand, thermal cycles can cause the tape layers
to be separated radially (girth cracking) [4]. To evaluate the ability of the presented method in the
identification of insulation crack damage, a 10 mm length crack (see Figure 10), was artificially made
at coordinate (1280, 30) on a 2680 mm length stator bar.
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Figure 10. Crack damage on the groundwall insulation surface.

Similar with the damage imaging procedure of puncture damage described above, the global
PDI was first applied, and the corresponding imaging result is shown in Figure 11a. Then local PDI
was conducted, and the imaging result is shown in Figure 11b. Image fusion was performed and the
ultimate imaging result is shown in Figure 11c. From the image construction results, crack insulation
damage was identified at coordinate (1293, 29). Compared to the actual damage position of (1280, 30),
the location error in x-direction is 13 mm, presenting good damage location precision. The identification
result of crack insulation damage in Figure 11 shows that not only the insulation damage location,
but also the geometrical shape of the crack insulation damage can be identified in an intuitive and
graphical manner.
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4. Stator Insulation Inner Damage Identification Results

The inception of inner micro damage plays an important role in the final deterioration of
stator insulation [10]. High electric stress may cause electrical breakdown in the insulation voids.
Thermal aging accompanied with electrical force may cause molecular decomposition and oxidation
of epoxy and mica in stator insulation [4]. As a consequence, delamination between layers of
insulation is a common form of insulation damage [5], which would reduce the thermal conductivity
of insulation and accelerate aging. Thus, to be of practical interest, it must be able to detect void
and delamination damage in stator insulation. However, the inner insulation damage is difficult to
simulate in experiment conditions.

The FEM software ABAQUS is a powerful tool to simulate the propagation property of Lamb
wave in structure. The three-dimensional FEM model of a stator bar was established with geometry of
1200 mm in length (x direction), 60 mm width (y direction) and 30 mm height (z direction). An inner
void (shown in Figure 12a) of 2 mm diameter and 1 mm height (z direction) inside stator insulation
was simulated and configured at (825, 30). Similarly, an inner delamination (shown in Figure 12b) of
5 mm (x direction), 10 mm (y direction) and 1mm height (z direction) inside the stator bar insulation
was made at coordinate (825, 30).
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Figure 13 shows the imaging results of the inner void and delamination damage in FEM simulation
by the proposed hierarchical PDI method. The existence and location of inner void and delamination
damage in stator insulation can easily be identified. The identified inner void and delamination
damage was located at (780, 29) and (800, 27), respectively. Location identification errors of void and
delamination damage are 45 mm and 25 mm in x-direction, respectively. Considering the length of
stator bar (1200 mm), these identification errors are quite acceptable.Sensors 2018, 18, x FOR PEER REVIEW  12 of 14 
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To compare the proposed hierarchical PDI method using hybrid features of Lamb wave with the
basic PDI method in [20], the location identification errors of the two methods are compared under
a noisy environment (noise type: factory noise, SNR: 20 db). According to the comparative results,
as listed in Table 2, the proposed PDI method shows a higher location identification precision of
insulation damage under noise environment. In contrast, the basic PDI method in [20] is prone to
be affected by noise interference; also, it is observed that the basic PDI method may fail to focalize
the insulation damage with the decrease of SNR. Therefore, the proposed hierarchical PDI method
presents good noise robustness with high localization precision.

Table 2. Comparative results of insulation damage localization error by different PDI methods under
noise environment (Factory noise, SNR is 20 db).

Insulation Damage Type
Insulation Location Error of Different PDI Methods

PDI Method in [20] The Proposed PDI Method

Puncture 84 mm 38 mm
Crack 121 mm 16 mm

Inner void failed to focalize 54 mm
Delamination 152 mm 35 mm

5. Conclusions

In this paper, a hierarchical PDI method using hybrid features of Lamb wave is proposed to
identify stator insulation damage of large generators with enhanced noise robustness and precision.
The following conclusions can be drawn from the FEM simulation and experimental results:

• Using correlation coefficients as damage features, global PDI method can preliminarily determine
the distribution area of groundwall insulation damage.
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• Using the ToF and peak amplitude of the A0 mode damage-scattered Lamb wave as damage
features, the local PDI method would further reflect the damage location in stator insulation.

• In contrast to the basic PDI method in [20], the proposed hierarchical PDI method shows a better
anti-interference for feature extraction, which is more suitable for the field environment. Finally,
the proposed PDI method is more accurate in graphically identifying both the location and
geometrical shape of stator insulation damage. Therefore, it may provide a new detection method
for CM method of large generator stator insulation.
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