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Abstract: This paper presents a nondestructive test method to evaluate the residual bending strength
of corroded reinforced concrete beam by analyzing the self-magnetic flux leakage (SMFL) signals. The
automatic scanning device was equipped with a micromagnetic sensor and sensor-based experimental
details were introduced. Next, the theoretical formula of the normal component HS(z) of the SMFL
signal that originated from the corroded region was derived based on the magnetic dipole model and
the experimental results were discussed. The results indicate that the experimental data of HS(z) are
consistent with the theoretical calculations, both location and extent of the steel bars corrosion can be
qualitatively determined by using HS(z). The gradient K of HS(z) is approximately linearly related to
the loss rate, S, of the bending strength, which can be used to evaluate the residual bending strength
of the corroded reinforced concrete beam. This work lays the foundation for evaluating the residual
bending strength of corroded reinforced concrete beams using the SMFL signal; the micromagnetic
sensor is further applied to the civil engineering.

Keywords: corroded reinforced concrete beam; bending strength; micromagnetic sensor;
self-magnetic flux leakage; magnetic dipole model

1. Introduction

Reinforced concrete structures are widely used in civil engineering due to their high bearing
capacity, low cost, and easy construction. However, long-term exposure to the external aggressive
environment, means that the reinforcement steel bars of the reinforced concrete structure will be
corroded inevitably. The steel corrosion will lead to reduction of the steel bar cross-section, failure of
the bond between the steel bar and the concrete, and deterioration of the concrete, which will ultimately
weaken the bearing capacity and durability of the reinforced concrete structure [1–3]. Therefore, the
measurement of corroded steel bar is crucial to determine the bearing capacity and durability of the
reinforced concrete structures.

In the past, traditional electrochemical methods were used to measure corrosion of steel bars,
but there are many limitations with these methods. In recent years, smart sensor-based methods that
are useful to measure different defects (corrosion, cracks, etc.) of ferromagnetic materials (steel bars,
etc.) and other materials have become increasingly popular, such as fiber optic coil winding [4], fiber
Bragg grating [5,6], laser scanning technology [7], line scanning thermography (LST) [8,9], inductive
thermography [10,11], optical excitation thermography [12], and other thermographic methods [13]
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such as acoustic emission and ultrasound testing using traditional and novel transducers [14,15].
Especially, the electromagnetic nondestructive test (NDT) including magnetic flux leakage (MFL) [16],
metal magnetic memory (MMM) [17], magnetic acoustic emission (MAE) [18], magnetic Barkhausen
noise (MBN) [19], and self-magnetic flux leakage (SMFL) [20] are widely used to measure corrosion
and defects of ferromagnetic materials.

Based on the magnetic mechanical effect in the weak magnetic field, factors such as stress and
defects within the ferromagnetic material will cause SMFL on its surface by orienting the magnetic
domains, dislocating the lattices, and distorting the magnetic field lines [20,21]. Steel bars are a typical
kind of ferromagnetic material; the corrosion of steel bars will reduce the bearing capacity and change
the SMFL signals of the reinforced concrete structure at the same time. Based on this unified change,
the relationship between the bearing capacity and the SMFL signals of corroded reinforced concrete
structure can be established. Compared with MFL, SMFL has the advantages of rapid, effective,
and simpler operation without any external excitation magnetic field required [22]. Liu [23–25]
established a full electronic potential magneto-mechanical model of the ferromagnetic material and
explored the relationship between magnetic memory signal and the stress concentration defects.
Zhang [26,27] studied the relationship between the SMFL signals and the corrosion extent of corroded
reinforced concrete. Zhang [28] investigated the fundamental relationship between corrosion rate
and magnetic induction surrounding steel reinforcement. N. Polydorides [29] realized the magnetic
induction tomography scanning of corroded reinforced concrete columns. Sun [30] had quantitatively
studied the magnetic anomalies of reinforcement rods in bored in situ concrete piles for the first
time and summarized their magnetic anomaly character. A. Orbe [31] proposed a magnetic scanning
methodology to infer, nondestructively, the spatial dispersion of mechanical properties throughout
the steel fiber reinforced concrete (SFRC) structure. H.-J Krause [32] developed a four-channel SQUID
system based on magnetometers for detection of tendon ruptures in prestressed members of bridges.
B.T. Fernandes [33] described a method of extracting positional information from images of steel bars
embedded in concrete using a set of image preprocessing algorithms combined with a modified Hough
transform. Chen [34] studied the corrosion of steel bars in reinforced concrete columns based on MFL.
However, experimental study of the relationship between the bending strength and SMFL signals of
corroded reinforced concrete beam is rarely reported.

In this paper, by detecting and analyzing the bending strength and SMFL signals of the corroded
reinforced concrete beam, not only the location and extent of corrosion can be determined, but also the
relationship between the bending strength and the SMFL signals. It will provide a rapid, effective, and
simpler operation NDT method for the bending strength of corroded reinforced concrete beams.

2. Experimental Details and Theoretical Background

2.1. Experimental Details Based on Micromagnetic Sensor

To carry out the experiment, 10 identical reinforced concrete tested beams, numbered 1–10, were
prepared. In order to explore the relationship between the bending strength and the SMFL signals of
the corroded reinforced concrete tested beams more intuitively, central sections (corrosion region) of
the tested beams were only reinforced with two tensile steel bars. Ordinary Portland cement, coarse
aggregate (stone), with a maximum size of 22 mm, water, and sand were used to mix concrete, the
detailed material parameters and dimensional drawings of the tested beam are shown in Table 1 and
Figure 1. An electrochemical method [35] was used to corrode steel bars of the tested beams, and
the amount of corroded iron could be calculated according to the Faraday’s 1st Law, as expressed in
Equation (1):

∆m =
M
nF

∆Q =
M
nF

I∆t (1)

where ∆m is the amount of corroded iron, M is the molar mass of iron (Fe), n is the valence state of Fe2+,
F is the Faraday constant, ∆Q is the quantity of electric charge, I is the direct current flow through steel



Sensors 2018, 18, 2635 3 of 13

bars, and ∆t is the corrosion time. The corrosion region is located at the midpoint of the tested beam
with a width of approximately 15 cm, wrapped with a towel impregnated with a 5% sodium chloride
solution and kept moist by the capillary action. The carbon rod placed in the solution is connected to
the negative pole of the current source, and the steel bars are connected to the positive pole, forming
a closed circuit for corrosion. Corrosion parameters of all tested beams are presented in Table 2, the
layout of the corroding device is shown in Figure 2.

Table 1. Material parameters of tested beam.

Item Label Material Cement Water Sand Stone
Standard
Strength

(Mpa)

Design
Strength

(Mpa)

Concrete C30

Unit
dosage

(kg/m3)
461 175 512 1252 fck = 20.1 fcd = 14.3

weight
ratio 1 0.38 1.11 2.72 ftk = 2.01 ftd = 1.43

Item Reinforcement
Yield

Strength
(Mpa)

Design
Strength

(Mpa)

Steel bars Tensile bars: 2Φ14; Stirrup: Φ8@100 fyk = 335 fyd = 300

Table 2. Corrosion parameters of all tested beams.

Parameter
No.

1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

Corrosion current/A 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05
Corrosion time/h 0 12 24 36 48 72 96 120 156 504

∆m/g 0 13.1 26.3 39.4 52.5 78.8 96.9 121.2 157.5 206.0
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Each tested beam was corroded in a periodic manner until the corrosion was completed. After each
period of corrosion was completed, the SMFL signals of the tested beam were measured and collected.
The self-designed 3-dimensional (3D) device for SMFL signals acquisition based on the 3D mechanical
displacement system and the high-precision micromagnetic sensor is shown in Figure 3. HMR2300
magnetometer (Honeywell International, Morristown, NJ, USA) was used as the micromagnetic sensor
with a resolution to less than 70 µGs. The device was connected to a computer and can measure the 3D
spatial magnetic signal with a controllable scanning speed and path, and then output a data file that
contains X, Y, and Z coordinates and its corresponding magnetic signals components HP(y), HP(x),
HP(z). The top surface midline of the tested beam is defined as the scanning path for SMFL signals
measurement using the 3D scanning device, which is shown in Figure 4. In addition, Figure 4 also
shows the different scanning lift-off heights (LFH) from 5 mm to 810 mm.

All the tested beams were subjected to the “4-point” bending test after the corrosion and SMFL
signals acquisition were all completed. The layout of the “4-point” bending test is shown in Figure 5.
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2.2. Theoretical Background Based on Magnetic Dipole Model

The equivalent magnetic dipole is a physical model commonly used in the theoretical study of
the mechanism of SMFL signal of the ferromagnet [22,27,36]. According to the equivalent magnetic
charge theory, the exterior magnetic field including SMFL would be considered to originated from the
magnetic charge: ρ =−∇M. M is the magnetization satisfying M = (µr − 1) HmL, where µr is the relative
magnetic permeability and the Weiss field HmL is the effective field producing self-magnetization in
the ferromgnet. Figure 6 shows the calculated diagram of the corroded steel bars of the tested beam
based on the magnetic dipole model. The corrosion notch of the steel bar is assumed to a rectangular
pit with dimensions of 2b × h and the distribution of charge density ±ρms at the edges of the corroded
region is considered as uniform for simplicity.

Based on the calculated diagram shown in Figure 6, the surface SMFL signal at point P(x, y, z) due
to these concentrated magnetic charges can be expressed as in Equation (2), and its normal component
dHp(z) can be expressed as in Equation (3):

→
dHP =

4

∑
i = 1

→
dHPi =

4

∑
i = 1

±ρms · dh
2πµ0r2

i

→
ri (2)



dHP1(z) = (−ρms)·(z+h)dh
2πµ0[(x+a)2+(y−b)2+(z+h)2]

dHP2(z) = (+ρms)·(z+h)dh
2πµ0[(x+a)2+(y+b)2+(z+h)2]

dHP3(z) = (−ρms)·(z+h)dh
2πµ0[(x−a)2+(y−b)2+(z+h)2]

dHP4(z) = (+ρms)·(z+h)dh
2πµ0[(x−a)2+(y+b)2+(z+h)2]

(3)

where ri is the space vector from the magnetic charge element to the space point P(x, y, z); µ0 = 1.0 is
the vacuum magnetic permeability; a is half of the spacing of the two parallel steel bars, and z is the
lift-off height (LFH). Then, the normal component Hp(z), expressed in Equation (4), can be obtained by
the integral of Equation (3). The theoretical calculation results of Equation (4) are shown in Figure 7.

It can be seen from Figure 7 that as the corrosion extent increases (h increases), the amplitude
of Hp(z) increases continuously. While the Hp(z) amplitude decreases with increasing z when the
corrosion amount ∆m is constant. The Hp(z) curves has a zero-crossing intersection at the midpoint of
the corroded region, and the peak-valley spacing equals the corrosion width 2b.

HP(z) =
4
∑

i = 1

∫ 0
−h dHPi(z)

= ρms
4πµ0

(
ln (x+a)2+(y−b)2+(z−h)2

(x+a)2+(y−b)2+z2 + ln (x+a)2+(y+b)2+z2

(x+a)2+(y+b)2+(z−h)2

+ ln (x−a)2+(y−b)2+(z−h)2

(x−a)2+(y−b)2+z2 + ln (x−a)2+(y+b)2+z2

(x−a)2+(y+b)2+(z−h)2

)
= A ρms

4πµ0

(4)
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3. Results and Discussion

3.1. Experimental Measurement Results of SMFL Signal

Figure 8 shows the normal component HP(z) curves of the nine tested beam SMFL signals with
different corrosion amounts ∆m, where Y = 400~550 mm corresponds to the corrosion region. The big
spikes of amplitude outside of the corrosion region in Figure 8 are due to the effect of stirrups. As the
corrosion amount ∆m increased, the amplitude of the HP(z) curves in the corroded region increased,
and then developed obvious peak-to-valley values and intersection; the smaller the LFH is, the larger
the amplitude of HP(z) in the corroded region of the same ∆m. The location and extent of the steel bars
corrosion can be qualitatively determined by HP(z), apparently. All the experimental phenomena are
consistent with the results of theoretical analysis, apparently.
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Figure 8. HP(z) curves of the nine tested beams with different ∆m.

In fact, the HP(z) shown in Figure 8 is a superposition of HB, HS, and HE. HB is the demagnetizing
field of the steel bars, HS is the SMFL field originated from the corrosion region, and HE is the
environmental magnetic field. HB and HE can be considered constant because the steel bars’
magnetization condition and the environment had not changed during the whole experimental process,
which can be confirmed by the fact the HP(z) curves shown in Figure 8 did not significantly change
within the uncorroded region. Therefore, the changes of HP(z) within the corroded region are mainly
caused by the normal component HS(z) of the SMFL field that originated from the corrosion.

For further analysis, HP(z) curves of each tested beam with the smallest LFH = 5 mm but different
∆m were extracted from original HP(z) curves shown in Figure 8. The HP(z) curve with ∆m = 0 g is
defined as the background magnetic field (HB + HE), which is subtracted from each of the HP(z) curves
to obtain the HS(z) curves originated from the corrosion region. Figure 9 shows the HS(z) curves of
2–10 tested beams (a small number of meaningless curves that do not affect the analysis results were
deleted) and the ∆L (peak-valley spacing, unit: cm) corresponding to each HS(z) curve. As can be seen
from Figure 9, the HS(z) curves are consistent with the theoretical analysis results, especially tested
beam number four.
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3.2. Analysis of SMFL Signal

In order to analyze the relationship between bending strength and SMFL signals of the corroded
tested beams, the gradient K is defined. K is a direct and effective criterion for further description of
the variation of SMFL signals, which is given by Equation (5):

K =

∣∣∣∣∆HS(z)
∆L

∣∣∣∣ (5)

where ∆HS(z) is the difference in the values of peak and valley HS(z) of the corroded area and ∆L is the
peak-valley spacing of HS(z) curves, which are shown in Figure 9.

Table 3 shows the calculation parameters of gradient K of all tested beams. ∆HS(z)Ea refers to
the average value of the experimental ∆HS(z) with the same corrosion amount ∆m; ∆LEa is that of the
experimental ∆L with the same corrosion amount ∆m. R is the calculation cross-section remaining
percentage of the corroded steel bars based on the uniform corrosion assumption, and the corrosion
width 2b is assumed to be 15 cm when R is calculated. The conversion model corrosion depth h, integral
value A, and magnetic charge density ρms are the theoretical calculation parameters of Equation (4).
Depth h is calculated according to R, and the calculation parameters of A are x = 0 cm, y = 7.5 cm,
z = 3 cm, a = 2.5 cm, and b = 7.5 cm. Each ρms is calculated according to its corresponding experimental
∆HS(z)Ea. ∆HS(z)T is the theoretical value of ∆HS(z). K1 and K2 refer to the theoretical gradient and the
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experimental gradient, respectively. The calculation formulas for all parameters are summarized in
Equation (6): 

R = 100 15×π×0.72×7.9×2−∆m
15×π×0.72×7.9×2 = 100− ∆m

3.648
h = 1.4(1− 0.01R)
ρms = 1

2 ∆HS(z)Ea
4πµ0

A =
2πµ0∆HS(z)Ea

A
∆HS(z)T = 2 ρms ·A

4πµ0
= ρms ·A

2πµ0

K1 =
∆HS(z)T

2b = ρms ·A
0.3πµ0

K2 =
∆HS(z)Ea

∆LEa

(6)

Table 3. The calculation parameters of gradient K.

Parameter
∆m/g

0 13.1 26.3 39.4 52.5 78.8 96.9 121.2 157.5 206.2

∆HS(z)Ea/mGs
∆LEa/cm

R/%
h/cm

A
ρms/mGs

∆HS(z)T/mGs
K1/mGs·m−1

K2/mGs·m−1

0
-

100
0
0
-
0
0
0

44.6
9.1

96.4
0.050
0.037
7574
40.4

269.5
490.1

84.1
11.5
92.80
0.101
0.075
7046
81.0
540.0
731.3

120.4
13.2
89.2
0.151
0.112
6754
121.7
811.6
912.1

159.5
15.0
85.6
0.202
0.150
6681
162.6
1084
1063

230.0
17.2
78.4

0.302
0.225
6423
244.8
1632
1337

313.0
19.6
73.4

0.372
0.278
7074
302.1
2014
1597

350.6
22.5
66.8
0.465
0.348
6330
377.9
2520
1558

501.8
24.7
56.8

0.605
0.454
6945
493.2
3288
2032

623.4
29.6
43.5
0.791
0.595
6583
646.5
4310
2106

Figure 10 shows the relationship diagram between K and ∆m according to Table 3. K1 is linearly
related to ∆m, the linear fitting equation is K1 = 20.8∆m with an R-squared value of 0.999. K2 is
exponentially related to ∆m, the exponential fitting equation is K2 = 2204 (1 − 0.985∆m) with an
R-squared value of 0.946. The difference between K1 and K2 is mainly caused by the fact that the
calculation of K1 is based on the constant assumed corrosion width, but the calculation of K2 is based
on the continuous increasing actual corrosion width measured in the experiment.
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3.3. Analysis of Bending Strength

Table 4 shows the bending strength M and its corresponding loss rate S of all tested beams,
where the theoretical bending strength M1 and the experimental bending strength M2 are calculated
according to the reinforced concrete structure design principle expressed in Equation (7):

α1 fcbx = fyAs

M1 = α1 fcbx(h0 − x
2 )

As = 0.01AR
M2 = 1

2 Fd

(7)

where α1 = 1.0 is the simplified calculation factor, fc = 14.3 MPa is the axial compressive design strength
of the concrete, b = 100 mm is the section width of tested beams, x is the height of the concrete
pressured zone, fy = 300 MPa is the tensile strength of the steel bar, for structure design, As is the total
cross-sectional area of corroded steel bars, h0 = 175 mm is the effective section height, A = 308 mm2 is
the total cross-sectional area of uncorroded steel bars, F is the loading force measured in the experiment,
and d = 0.62 m is the arm length of the force couple.

Figure 11 shows the relationship diagram between M and ∆m according to Table 4. It can be seen
that both M1 and M2 decrease approximately linearly with the increase of ∆m, especially M1. The
values of M2 are not much different from that of M1, which indicates that the results of the experiment
are consistent with that of the theoretical calculation. As for the loss rate S, S1 is positive linearly
related to ∆m, but S2 is more inclined to increase exponentially with the increase of ∆m. The difference,
mainly caused by the continuous increasing actual corrosion width in the experiment, leads to the
cross-section of the steel bar being reduced more and more slowly with the same increment of ∆m.
Then, M2 decreased more and more slowly and S2 increased more and more slowly with the increase
of ∆m, which led to S2 increasing more and more slowly.

Table 4. The bending strength M of all tested beams.

Parameter
No.

1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

∆m/g
M1/(KN·m)

S1/%
F/kN

M2/(KN·m)
S2/%

0
13.2

0
48.7
15.1

0

13.1
12.8
3.0
42.6
13.2
12.6

26.3
12.3
6.8

40.0
12.4
17.9

39.4
12.0
9.1

39.4
12.2
19.2

52.5
11.6
12.1
38.4
11.9
21.2

78.8
10.8
18.2
35.8
11.1
26.5

96.9
10.2
22.7
32.3
10.0
33.8

121.2
9.5

28.0
27.7
8.6

40.0

157.5
8.2

37.9
24.5
7.6

49.7

206.0
6.5

50.8
23.2
7.2

52.3
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3.4. Analysis of Relationship Between SMFL Signal and Bending Strength

According to the above analysis, both K and S increase monotonically with the increase of ∆m. For
evaluating the relationship between SMFL signals and the bending strength of the corroded reinforced
concrete beams, scatters and the linear fitting line of S-K are shown in Figure 12. It can be seen that
with the increase of S1 and S2, both K1 and K2 increase approximately linearly. The fitting function of
the theoretical data is K1 = 86.7S1, with an R-squared value of 0.998, and that of the experimental data
is K2 = 42.4S2, with an R-square value of 0.964.

Compared with the theoretical data, the experimental data is more discrete and its gradient grows
more slowly. In addition to being affected by the corrosion width, this difference may originate from
the fact that some factors are ignored in the idealized theoretical analysis. Such as the magnitude and
the distribution of magnetic charge, meaning that the shape of the corrosion notch will be affected by
nonuniform corrosion or corrosion expansion stress.

However, in general, the variation and distribution laws of S-K obtained from the experiment
are consistent with that of the theoretical analysis, which shows that the gradient K is a reliable and
effective indicator for evaluating the residual bending strength of corroded reinforced concrete beams.
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4. Conclusions 
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4. Conclusions

In this work, the experiment details of 10 corroded reinforced concrete tested beams based on
micromagnetic sensors are introduced, followed by the derivation of the formulas of HP(z) (HS(z))
based on the magnetic dipole model. Finally, both the experimental data and theoretical data were
analyzed. The following conclusions can be drawn:

(1) The experimental HS(z) curves of all tested beams are consistent with the theoretical calculation
results of the magnetic dipole model, both the location and extent of the steel bars’ corrosion can be
qualitatively determined using HS(z);

(2) The bending strength loss rate S of all the tested beams are approximately linearly related to
the gradient K of HS(z), thus the residual bending strength of the corroded reinforced concrete beams
can be evaluated based on the gradient K of HS(z).

This paper lays the foundation for the experimental study of the relationship between the bending
strength and the SMFL signals of corroded reinforced concrete beams. A simpler, low-cost, and more
efficient new method for evaluating the residual bending strength of corroded reinforced concrete
beams based on the micromagnetic sensor is also proposed.
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