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Abstract: In this paper, we propose a robust adaptive cubature Kalman filter (CKF) to deal with
the problem of an inaccurately known system model and noise statistics. In order to overcome
the kinematic model error, we introduce an adaptive factor to adjust the covariance matrix of state
prediction, and process the influence introduced by dynamic disturbance error. Aiming at overcoming
the abnormality error, we propose the robust estimation theory to adjust the CKF algorithm online.
The proposed adaptive CKF can detect the degree of gross error and subsequently process it,
so the influence produced by the abnormality error can be solved. The paper also studies a typical
application system for the proposed method, which is the ultra-tightly coupled navigation system of
a hypersonic vehicle. Highly dynamical scene experimental results show that the proposed method
can effectively process errors aroused by the abnormality data and inaccurate model, and has better
tracking performance than UKF and CKF tracking methods. Simultaneously, the proposed method
is superior to the tracing method based on a single-modulating loop in the tracking performance.
Thus, the stable and high-precision tracking for GPS satellite signals are preferably achieved and the
applicability of the system is promoted under the circumstance of high dynamics and weak signals.
The effectiveness of the proposed method is verified by a highly dynamical scene experiment.

Keywords: cubature Kalman filter; adaptive filter; hypersonic; ultra-tightly coupled;
integrate navigation

1. Introduction

The state estimation of nonlinear systems is widely used in engineering applications, such as radar
target tracking, complex image processing, highly dynamical navigation and positioning, and signal
processing. In order to obtain the optimal estimation of a nonlinear system, the posterior probability
distribution of the system state needs to be obtained. However, a complete description of the posterior
probability distribution can be accurately known only in a few specific cases. In recent years, driven
by engineering applications, a large number of suboptimal filtering methods have been proposed,
which can be classified into two main categories: The first one is the linearization method such as the
extended Kalman filter (EKF). The second one is the sampling method, i.e., the unscented Kalman
filter (UKF) and particle filter (PF). EKF is a traditional approach to solving nonlinear problems,
such as navigation, target tracking, information fusion, monitoring state estimation [1,2], etc. However,
in a system with a higher degree of nonlinearity, the EKF will have a larger truncation error under a low
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carrier to noise ratio, which can easily cause the filter to diverge. In addition, the EKF implementation
needs to calculate the Jacobian matrix, which also limits its scope of applications. The second method
directly uses nonlinear filtering algorithms to process observation information, which can improve the
accuracy of state estimation. Among them, UKF approximates the distribution function of random
variables through a set of determined weighted sampling points [3]. When the sampling points are
propagated through a nonlinear function, the statistical properties of the non-linear functions are
captured, and the precision of UKF can reach the third-order [4,5]. However, UKF still has some
limitations. In high-dimensional systems (usually higher than three-dimensions), in order to avoid
the propagation of non-positive definite covariance matrices, it should choose the parameters of
UKF very carefully [6]. At this time, the UKF is prone to numerical instability, which can lead to
dimensional disasters or divergence, and limited their application in complex systems, such as high
dynamics, weak signals, and strong non-linearity. The PF is proposed based on the idea of the Monte
Carlo method [7,8], which uses a large number of randomly-generated particles to approximate the
posterior probability density. The PF is used to solve signal processing problems in nonlinear and
non-Gaussian systems. In recent years, it has been widely used for target tracking, state estimation
under low-dynamical conditions, and modality detection [9]. However, as the number of iterations
increases, there will be particle degradation and depletion when using PF [10]. In order to solve
the problem of particle degradation, many improved particle algorithms have emerged. However,
the generation of a large number of particles will still increase the computational burden, and the
reduction of degradation and depletion is at the cost of increasing the complexity of the PF algorithm.
Therefore, it is difficult for PF to meet real-time requirements, especially for state estimation under
highly dynamical conditions.

In [11], the authors proposed a new non-linear filtering method based on the cubature
transformation: the cubature Kalman filter (CKF). Once proposed, the method was used for
navigation [12–14], attitude estimation [15], continuous system [16], hybrid filtering [17], and so
on. The CKF is similar to the UKF filtering process, but its theoretical derivation is more rigorous [18].
It generates new points by converting 2n equal-valued cubature points through nonlinear functions
and is used to predict the system state at the next moment. The CKF also does not need to linearize the
non-linear dynamics and has all the features of the UKF. CKF uses a symmetrical sampling strategy
and has fewer sampling points than the UKF does. Compared with filtering algorithms, such as
EKF, UKF, and PF, CKF has better nonlinear performance, higher numerical accuracy, and better filter
stability, and it is relatively simple to implement.

However, when CKF is applied to a nonlinear system, it needs to know the mathematical model of
the object to be studied and the prior knowledge of noise statistical properties. In practice, it is difficult
to obtain the prior knowledge of the noises statistics. The inaccurate mathematical model and
inaccurate noise statistics may lead to large state estimation error, or even divergence. To solve
these problems, scholars further study the CKF technique combined with an adaptive filter. The typical
research results are mainly divided into two types. The first types of typical results proposed are
improved CKF algorithms based on the strong tracking filter (STF), which can be used to solve
the filter divergence problem caused by inaccurate system models. Aiming at the problem of CKF
precision degradation caused by model uncertainty, the literature [19] established a strong tracking CKF
algorithm (STCKF). The literature [20] proposed a strong tracking adaptive CKF algorithm viewing
STF as the basic theory framework and making D replace EKF, and the algorithm improved the filtering
performance of the existing system model uncertainty. To overcome the outliers caused by the model
uncertainties, the literature [21] designed a robust strong tracking CKF and developed a noise statistic
estimator based on the principle of maximum a posterior. The CKF used in the above method are all
three-degree algorithms. Further, to improve the estimation accuracy, Cui and Zhang [22] proposed an
improved high-degree CKF combined with the STF algorithm, named as the adaptive high-degree
CKF (AH-CKF). In the AH-CKF, by introducing the STF into the high-degree CKF and modifying the
predicted states’ error covariance with a fading factor, the residual sequence is forced to be orthogonal
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so that the robustness of the filter and the capability to deal with uncertainty factors are improved.
However, these results are only for research on low- and medium-dynamic applications.

The second types of typical research results are improved CKF methods based on the robust
M-estimation technique. Huang [23] proposed a class of robust CKF algorithms with statistical
regression to solve the problem that the conventional CKF declines in accuracy and further diverges
when the noise is not Gaussian noise. Wu [24] proposed a robust CKF based on generalized
M-estimation to reduce the influence of measurement outliers on a target tracking system. Similarly,
in order to address the degradation of the standard CKF due to outliers in measurement, Li [25]
presented a robust version of CKF using Huber’s M-estimation methodology and square-root filtering
framework. Essentially, the above research results are all effective improvements to the standard CKF
or square-root CKF using he robust M-estimation technique. The solved problem is the degradation or
divergence of the standard CKF caused by the inaccuracy of measurement noise. However, these robust
M-estimation methods cannot adjust the noise covariance adaptively when it does not match with
the truth. The problem will become more severe in the case of significant outliers [26]. To overcome
this deficiency, Zhang and Zhi [26] came up with a new way and proposed an adaptive Huber’s
M-estimation-based CKF (AHCKF) which can automatically adjust the measurement noise and gain
adaptivity. The AHCKF has enhanced outlier robustness, reliability, and high estimate accuracy.
This method, however, does not consider the problem of when the model uncertainties exist.

The above two types of improved CKF methods are developed respectively for the uncertainty of
the model and the inaccuracy of measurement noise. However, these two kinds of problems often exist
in the actual system synchronously, such as a highly dynamical navigation system or high maneuvering
target tracking system, typically. To overcome this deficiency, we propose a novel, robust, adaptive
CKF compromising the robust M estimation and the adaptive adjustment factor. The contribution of
the paper can be summarized as follows:

1. The proposed algorithm could solve the problems of the model uncertainty and the measurement
noise statistics inaccuracy. To handle abnormal measurement noise, we adopt robust M-estimation
to automatically adjust the measurement noise covariance and gaining adaptivity. Compared
with the literature [23–26], we directly use innovation to calculate the equivalent weight matrix,
no-demand partial derivative operation, and iterative operation. To overcome model uncertainty,
we derive an adaptive adjustment factor to modify the model as a whole. Compared with STF in
the literature [19–22], the derived adaptive adjustment factor is simpler.

2. The proposed algorithm has lower computational complexity, and so it is suitable for dynamic
systems with high real-time requirements. Our algorithm is not simply a cumulative combination
of existing methods, but a derivation method considering the mathematical complexity and
real-time, which ensures the computational efficiency of the algorithm.

3. In the application of the algorithm, we designed a stable and reliable ultra-tightly coupled
structure based on a double-modulating loop. The effectiveness of the proposed method and the
designed structure is verified by a highly dynamical scene experiment.

The rest of the paper is organized as follows: Section 2 gives a brief introduction of the Bayesian
filter theory in the Gaussian domain and the cubature Kalman filter. Then, the improved robust
adaptive CKF, using robust estimation theory and adaptive filter techniques, is also derived in Section 3.
In Section 4, the hypersonic vehicle state estimation problem is studied using a SINS-aided GPS
ultra-tightly coupled system, and a SINS/GPS federated ultra-tightly coupled structure is designed
based on a double-modulating loop. In Section 4, we also give the nonlinear pre-filter tracking loop
model of the satellite signal. In Section 5, the proposed robust adaptive CKF is applied in the highly
dynamical nonlinear state estimation experiment. The conclusion of the paper is given in Section 6.
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2. CKF Algorithm

2.1. Bayesian Estimation Rule

In this paper, we consider the nonlinear dynamic system, whose state space model is defined by
the difference equation in discrete time [27]:

xk = f (xk−1, uk−1) + vk−1
zk = h(xk, uk) + wk

(1)

where xk and zk are the n-dimensional state and the m-dimensional measurement of the dynamic
system, respectively; uk is the n-dimensional control input; {vk−1} is a n-dimensional system noise
sequence with zero mean and covariance Qk−1; {wk} is an m-dimensional measurement noise sequence
with zero mean and covariance Rk; f (•) and h(•) are the nonlinear state function and measurement
function of the system, respectively.

When vk−1 and wk are independent, the posterior density of the state xk of the nonlinear dynamic
model (1) can be obtained based on the Bayesian estimation rule as follows:

(1) Time update, calculating the predictive density:

p(xk|Dk−1 ) =
∫

p(xk, xk−1|Dk−1 )dxk−1 =
∫

p(xk−1|Dk−1 )× p(xk|xk−1 , uk−1), dxk−1 (2)

where Dk−1 = {ui, zi}
(k−1)
i = 1 describes the history data up to time (k− 1); p(xk−1|Dk−1 ) is the

old posterior density at time (k− 1); the state transition density p(xk|xk−1 , uk−1) is calculated
by Equation (1).

(2) Measurement update The posterior density of the current state can be obtained by Bayesian rule:

p(xk|Dk ) =
1
ck

p(xk|Dk−1 , uk−1)p(zk|xk , uk) (3)

ck =
∫

p(xk|Dk−1 , uk)p(zk|xk , uk)dxk

where ck is a constant. However, for nonlinear/non-Gaussian cases, the computational complexity
of ck is typically prohibitive. A computationally feasible approximation is provided by PF [28].
Since the denominator is a normalizing constant, Equation (3) can be regarded as an unnormalized
density, the fact does not affect the following derivation.

If the p(xk|Dk ) can be calculated exactly, we obtain the state estimation and covariance matrix of
xk as follows:

x̂k =
∫

xk p(xk|Dk )dxk (4)

Pk+1 =
∫

(xk − x̂k)(xk − x̂k)
T p(xk|Dk )dxk (5)

In fact, the analytic solutions for p(xk|Dk ) is difficult to be obtained in the nonlinear system.
Therefore, we need to approximate the state estimation and covariance matrix.

2.2. CKF Algorithm Based on a Third-Order Spherical-Radial Cubature Rule

Here, we consider the Gaussian noise, and it is widely used in Bayesian filter theory. The key
approximation is p(xk|Dk−1 ) and p(zk|Dk ) are both Gaussian in the Bayesian filter, which deduces
a Gaussian p(xk|Dk ).

Suppose an n-dimensional random vector xk obeys the Gaussian distribution N(xk; x̂k, Px),
we can obtain:

x̂k|k−1 = E[ f (xk−1, uk−1)|Dk−1 ] =
∫

f (xk−1, uk−1)p(xk−1|Dk−1 )dxk−1 =
∫

f (xk−1, uk−1)N(xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1 (6)
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The error covariance is:

Pk|k−1 = E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)

T|z1:k−1

]
=
∫

f (xk−1, uk−1) f T(xk−1, uk−1)× N(xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1 − x̂k|k−1x̂T
k|k−1 + Qk−1

(7)

The predicted measurement can be obtained as follows:

ẑk|k−1 =
∫

h(xk, uk)N(xk; x̂k|k−1, Pk|k−1)dxk−1 (8)

The associated covariance and the cross-covariance are:

Pzz,k|k−1 =
∫

h(xk, uk)hT(xk, uk)× N(xk; x̂k|k−1, Pk|k−1)dxk − ẑk|k−1ẑT
k|k−1 + Rk−1 (9)

Pxz,k|k−1 =
∫

xkhT(xk, uk)× N(xk; x̂k|k−1, Pk|k−1)dxk − x̂k|k−1ẑT
k|k−1 (10)

We can see that Equations (6) to (10) have the unified integral form as:

I(g) =
∫

g(x)N(x; x̂, Px)dx (11)

It is difficult to obtain the analytic of the above multivariate integral, and the approximate
calculation is needed to be adopted.

The CKF algorithm is derived from the idea of approximate calculation. CKF uses the third-order
spherical-radial cubature rule to approximately compute the posterior mean and the covariance matrix
for the nonlinear Gaussian system. The key step is to select a series of cubature points. Then we
substitute these cubature points into a nonlinear function, calculate, and obtain some new cubature
points which are used to approximately compute the integral values through the weighting method.
The main steps of CKF are summarized as follows.

The CKF algorithm includes two processes: the time update and the measurement update [29].
The time updating is as follows:

(1) The posteriori probability distribution of a given k − 1 moment is assumed to be:

p(xk−1

∣∣∣{ui, zi}k−1
i = 1 ) = =(xk−1; x̂k−1|k−1, Pk−1|k−1)

Let:
Pk−1|k−1 = Sk−1|k−1ST

k−1|k−1 (12)

(2) Calculating state volume points:

X}
j,k−1|k−1 = Sk−1|k−1ξ j + x̂k−1|k−1 (13)

(3) Volume points transformed based on the state equation:

X∗j,k−1|k−1 = f (X}
j,k−1|k−1, uk−1) (14)

(4) Weighted mean to compute the state quantity prediction value:

x̂k|k−1 =
1

2n

2n

∑
j = 1

X∗j,k−1|k−1 (15)
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(5) Calculate the covariance matrix of state prediction:

Pk|k−1 =
1

2n

2n

∑
j = 1

X∗j,k−1|k−1X∗Tj,k−1|k−1 − x̂k|k−1x̂T
k|k−1 + Qk−1 (16)

Measurement updating:

(1) Matrix factorization:
Pk|k−1 = Sk|k−1ST

k|k−1 (17)

(2) Calculate volume points:
X}

j,k|k−1 = Sk|k−1ξ j + x̂k|k−1 (18)

(3) Transform volume points based on the measurement equation:

Z∗j,k−1|k−1 = h(Xj,k|k−1) (19)

(4) Forecast the measurement value:

ẑk|k−1 =
1

2n

2n

∑
j = 1

Z∗j,k|k−1 (20)

(5) Calculate the prediction residual covariance matrix:

Pzz,k|k−1 =
2n

∑
j = 1

wjZ∗j,k|k−1Z∗Tj,k|k−1 − ẑk|k−1ẑT
k|k−1 + Rk (21)

(6) Calculate the cross covariance matrix:

Pxz,k|k−1 =
2n

∑
j = 1

wjX}
j,k|k−1Z∗Tj,k|k−1 − x̂k|k−1ẑT

k|k−1 (22)

(7) Calculate the Kalman filter gain:

Wk = Pxz,k|k−1P−1
zz,k|k−1 (23)

(8) Update the state:
x̂k|k = x̂k|k−1 + Wk(zk − ẑk|k−1) (24)

(9) Update the state covariance matrix:

Pk|k = Pk|k−1 −WkPzz,k|k−1WT
k (25)

3. Novel Robust Adaptive CKF

When CKF is applied to a nonlinear system, it needs to know the mathematical model of the
object to be studied and the prior knowledge of the noise statistics. However, if the filter is solved
based on an inaccurate mathematical model and inaccurate noise statistics, it may result in a large state
estimation error or even divergence. To solve this problem, it is necessary to study the adaptive filtering.
For typical dynamic application systems, we focus on the study of adaptive filtering technology under
the influence of two types of errors, that is, measuring abnormal errors and dynamic model errors.
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It is inevitable to produce the gross error in the observations for a dynamic system. For example,
when tracking a satellite signal, it is shown that the occurrence of gross errors accounts for 1% to 10% of
the total number of observations [30]. To a certain extent, the uncertainty factors are introduced into the
statistical characteristics of the measurement noise. Therefore, it should be adjusted on line adaptively.
In addition, in the condition of high dynamics and low SNR, the satellite signal tracking of the observed
information is very easy to be influenced by a poor environment, and there is a large proportion of
noise, so that the noise statistics deviate from the prior statistical characteristics. In serious cases,
an abnormal perturbation error may exist. The above problem limits the application of CKF, so it is
necessary to adjust the measurement noise in real-time to enhance the ability of the algorithm to resist
gross and abnormal errors.

In view of the gross error, robust M estimation in robust estimation theory is applied to the CKF
algorithm, which can detect the influence degree of gross error, and then the model is adaptively
adjusted and corrected, so as to eliminate the influence of the abnormal observation error on the
algorithm. The improved CKF algorithm is called the robust CKF algorithm. In what follows, we will
derive the algorithm. Since the measurement information only affects the updating process of the
measurement, compared with the standard CKF algorithm, the robust CKF algorithm only adjusts and
modifies the relevant expressions in the measurement updating equation as follows:

Pzz,k|k−1 =
2n

∑
j = 1

wjZ∗j,k|k−1Z∗Tj,k|k−1 − ẑk|k−1ẑT
k|k−1 + Rk (26)

where Rk is an equivalent measurement noise variance matrix corresponding to Rk, and it can be
obtained by obtaining an equivalent weight matrix P in an anti-difference M estimation method.
That is:

Rk = P−1 (27)

For the calculation of the equivalent weight matrix, the common methods are the IGGIII method,
Andrew method, Tukey method, and Huber method [31]. Considering that the first three methods
can make the diagonal elements of the p matrix 0, the Huber method can guarantee that the diagonal
elements of P matrices are positive. The expression of equivalent is as follows:

ptii
=

{
1/σii |ri/σri | =

∣∣r′i∣∣ ≤ c
c/σii

∣∣r′i∣∣ ∣∣r′i∣∣ > c
(28)

ptij
=


1/σij

∣∣r′i∣∣ ≤ c and
∣∣∣r′j∣∣∣ ≤ c

c
σijmax

{
|r′i |,

∣∣∣r′j∣∣∣}
∣∣r′i∣∣ > c or

∣∣∣r′j∣∣∣ > c
(29)

where ptii
and ptij

are diagonal elements and non-diagonal elements of P, respectively; σii and σij are
diagonal elements and non-diagonal elements of the original Rk array; ri is a residual component
corresponding to the observation quantity Zi, r′i is a corresponding standard residual component,
and σri is a mean square error of ri; and c is a given constant, usually taken from 1.3 to 2.0.

The above operation involves that σri and ri are deterministic. In practice, because the covariance
matrix of the measurement residuals is obtained from Equation (21), that is, the variable quantity
Pzz,k|k−1 before being modified, the expressions σri and ri are:

σri = (Pzz,k|k−1)ii
(30)

ri = (zk − ẑk|k−1)i
(31)

Then, Pzz,k|k−1 is substituted for Pzz,k|k−1 in Equation (15), and the gain matrix is modified.
Furthermore, the subsequent filtering solution is continued. The robust CKF algorithm is actually
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based on the standard CKF filter and modifies the noise covariance matrix Rk, so as to adjust the filter
gain matrix, and ultimately enhance the performance of algorithm against observation errors consisting
in satellite signal to restrain the divergence of Kalman filter. Therefore, robust CKF algorithm is more
suitable for the near space environment, in which satellite signals are unstable and measurement noise
statistical characteristics deviate considerably from the prior information.

The robust CKF algorithm solves the influence of the observation abnormal errors in the system.
In other words, aiming at the inaccurate measurement noise, the CKF algorithm was improved,
and then completing the improvement of the CKF algorithm when there are errors in the dynamic
model. It is notable that the inaccuracy of system noise statistical characteristics is also an inducement
of dynamic model errors.

The dynamic equations established for the satellite signal link may deviate greatly from the real
model of the system when a nearby space vehicle makes a highly dynamic maneuvering flight, that is
to say, a large dynamic disturbance error may exist in the state equation of the system, and the CKF
filter algorithm fixed by the model cannot estimate the state parameters of the system. Therefore,
based on the above robust CKF algorithm, a robust adaptive CKF algorithm is proposed for dynamic
model errors.

It is pointed out in [13] that the error of the dynamic model usually destroys the effect of parameter
estimation as a whole; in other words, the errors of the dynamic model will affect the estimation of all
state parameter components. Therefore, we consider using an adaptive adjustment factor to modify
the model as a whole, which also ensures the computational efficiency of the algorithm. The specific
algorithm is that adaptive regulator ϑk modify Pk|k−1, obtaining:

_
Pk|k−1 = ϑ−1

k Pk|k−1 = ϑ−1
k

[
1

2n

2n

∑
j = 1

X∗j,k−1|k−1X∗Tj,k−1|k−1 − x̂k|k−1x̂T
k|k−1 + Qk−1

]
(32)

where the optimal value of ϑk may be obtained from the residual covariance matrix after predicting
and updating, where ϑk is given by the following theorem.

Theorem 1. If P̂zz,k|k−1 is the residual covariance matrix estimated after the introduction of new measurement
information, it is defined as the updating residual covariance matrix; P̃zz,k|k−1 is a theoretical residual covariance
matrix obtained by adaptive filtering, and Pzz,k|k−1 is a residual covariance matrix obtained by the covariance
propagation law. The selection of the optimal adaptive factor shall ensure that the following equation holds:

P̃zz,k|k−1 = P̂zz,k|k−1 (33)

Then, the optimal adaptive factor is:

ϑk =
tr(Pzz,k|k−1 −Rk)

tr(P̂zz,k|k−1 −Rk)
(34)

Proof of Theorem 1. Let x̃k|k−1 a step-by-step prediction error, then:

x̂k|k−1 = xk − x̃k|k−1 (35)

Thus, the filtered residual is:

rk = zk − h(x̂k|k−1) = zk − h(xk − x̃k|k−1) (36)
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A first-order Taylor expansion of the second term on the right-hand side of the equation:

h(xk − x̃k|k−1) ≈ h(xk)−
∂h
∂x

∣∣∣x = x̂k|k−1
× x̃k|k−1 = h(xk)−Dk × x̃k|k−1 (37)

Bringing the above equation into the following equation:

rk = zk − h(xk) + Dkx̃k|k−1 = vk + Dkx̃k|k−1 (38)

Then the residual covariance matrix A is:

Pzz,k|k−1 = E
{

rkrT
k
}

= E
{(

vk + Dkx̃k|k−1

)(
vk + Dkx̃k|k−1

)T
}

= E
(

Dkx̃k|k−1x̃T
k|k−1DT

k

)
+ E

(
vkvT

k
)
= DkPk|k−1DT

k + Rk (39)

Note the equation using the measurement noise covariance matrix after being modified by robust
CKF. Furthermore, in adaptive filtering, Pk|k−1 is modified to ϑ−1

k Pk|k−1, and then the theoretical
residual covariance matrix obtained by adaptive filtering is:

P̃zz,k|k−1 = ϑ−1
k DkPk|k−1DT

k + Rk (40)

From the equation:

P̂zz,k|k−1 = P̃zz,k|k−1 = ϑ−1
k DkPk|k−1DT

k + Rk (41)

Multiply the two sides of the upper form by A and move the item to obtain

ϑk(P̂zz,k|k−1 −Rk) = DkPk|k−1DT
k (42)

Further derivation:

ϑk(P̂zz,k|k−1 −Rk) = DkPk|k−1DT
k = Pzz,k|k−1 −Rk (43)

Take the traces of the matrices on both sides of the expressions. Then, the expression of the
optimal adaptive factor can be obtained by the migration transformation. �

In practical application, the regulatory factor in adaptive filtering algorithm is usually not greater
than 1 [32,33], so we further determine the optimal adaptive factor as follows:

ϑk =

 1 tr(P̂zz,k|k−1) ≤ tr(Pzz,k|k−1)
tr(Pzz,k|k−1−Rk)

tr(P̂zz,k|k−1−Rk)
tr(P̂zz,k|k−1) > tr(Pzz,k|k−1)

(44)

Taking into account the fact that the numerator and the denominator in the upper equation all
contain the variance term of measurement noises. The approximate optimal adaptive factor expression
can also be obtained by using the common polynomial.

ϑk ≈

 1 tr(P̂zz,k|k−1) ≤ tr(Pzz,k|k−1)
tr(Pzz,k|k−1)

tr(P̂zz,k|k−1)
tr(P̂zz,k|k−1) > tr(Pzz,k|k−1)

(45)

P̂zz,k|k−1 can be obtained by the residual error estimation of the observations. The sliding window
method is adopted, namely:

tr(P̂zz,k|k−1) = tr(rkrT
k ) = rT

k rk =
m

∑
i = 1

(zk − ẑk|k−1)i
(46)
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In order to further clarify the robust adaptive CKF algorithm, the following steps are given:

Step 1. Set the initial condition.

x̂0 = E(x0) P0 = E[(x0 − x̂0)(x0 − x̂0)]
T (47)

Step 2. Forecast the update.

For a given A and B, according to Equations (12)–(26), the state prediction value C and its
prediction covariance matrix D are obtained.

Step 3. Calculate the state volume points in the measurement updating.

The matrix decomposition of the state prediction covariance matrix is completed by using
Equation (17), and replacing Equation (18) with the following equation, adaptive adjustment
of the model will be complete:

X}
j,k|k−1 =

√
ϑ−1

k Sk|k−1ξ j + x̂k|k−1 (48)

Step 4. Calculate the predicted values and the residual covariance matrix.

Computational observational prediction ẑk|k−1 and predictive residual covariance matrix
Pzz,k|k−1 are calculated by Equations (19)~(21).

Step 5. Robust correction.

The robust correction of the algorithm is completed according to the Equations (26)–(29).

Step 6. Adaptive factor regulation model.

Use the approximate expression Equation (45) to calculate the optimal adaptive factor,
if the value is 1, then continue the following steps; if the value is less than 1, the value is
substituted into Equation (48), and then by the Equations (19), (20) and (26) calculate the
adaptive factor to adjust the revised prediction residual covariance matrix.

Step 7. Update the measurement.

According to Equations (22)–(25), the update calculation of the state variable and its
corresponding state covariance matrix is completed.

Remark 1. The proposed robust adaptive cubature Kalman filter (CKF) could deal with the problem of
inaccurately known system model and noises statistics simultaneously. The proposed method includes two
steps of improvement for the basic CKF. First, in order to overcome the kinematic model error, we introduce
an adaptive factor to adjust the covariance matrix of state prediction, and process the influence introduced by the
dynamic disturbance error. Second, aiming at overcoming the abnormality error, we adopt the robust estimation
theory to adjust the CKF algorithm online. Our algorithm is not simply a cumulative combination of existing
methods, but a derivation method considering the mathematical complexity and real-time, which ensures the
computational efficiency of the algorithm and is more suitable for highly dynamical application scenarios.

4. SINS/GPS Ultra-Tightly Coupling Structure Based on a Double Loop

4.1. Design of SINS/GPS Ultra-Tightly Coupling Structure Based on a Double Loop

In this section, we present a typical application of the proposed method, that is, the application to
an ultra-tightly coupled SINS/GPS navigation system of a hypersonic vehicle.

In the literature [34], the federated ultra-tightly coupled structure is divided into three types.
In essence, three kinds of structures are implemented only in signal tracking error estimation, which use
three different ways to estimate code and carrier correlation error. Other parts are essentially identical.
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The realization of satellite signal tracking uses a closed loop mode of an external loop, which is a typical
vector tracking structure, and this kind of structure enhances the mutual assistance of satellite signal
tracking between channels. However, at the same time, there is a problem that when the number of
unstable channels is large, if the carrier to noise ratio of multiple satellite signals is reduced due to
strong interference, the unstable channel dominates in the signal tracking process. The accuracy of the
integrated navigation filter will be reduced, and using this single information to adjust the local signal
generator of all channels, the tracking performance of a few normal channels will be affected, and the
performance of integrated navigation system will further deteriorate. Therefore, the design of this kind
of single regulating loop has a certain “inverse” effect on the tracking process of the satellite signal
under special circumstances. In addition, the GPS tracking loop of this kind of structure is an open
loop [35,36]. If the integrated navigation filter, for some reason, such as failure, cannot work normally,
the entire system will be paralyzed, and the reliability of the system will reduce.

In order to reduce the influence of the “inverse” action mentioned above, we take the advantages
of the conventional scalar tracking structure and design the ultra-tightly coupled structure based on
the double loop adjustment method shown in Figure 1. One path is aimed at the internal loop of each
channel, which is like the channel tracking of the conventional receiver. We use the method of mutual
auxiliary tracking between the code and carrier closed loop, and the tracking error that is estimated
by the pre-filter of each channel to adjust the code/carrier NCO in real-time, in which the pre-filter
adopts a non-linear filtering model. The other path is the external loop described above, which uses
the position and velocity information output by the corrected SINS and per the ephemeris information
to update and correct, so as to adjust the code phase and the carrier frequency information of the NCO.
The structure design of the double loop determines the code/carrier NCO adjustment in two ways,
one of which achieves a single internal loop adjusting mode through the pre-filter, and the other way
is a combined adjustment mode of external loop supporting internal loop with SINS participating.
The strategy of adjustment is to read the corrected inertial navigation information in the program
design. If the information meets the accuracy level requirement of NCO adjustment, the combination
adjustment method will be adopted. If not, it will depend on the internal loop to adjust. This strategy
can reduce the influence of the “inverse” function existing in the common vector tracking method and
improve the reliability of the integrated navigation system.

Figure 1. SINS/GPS federated ultra-tightly coupled structure based on double loop.



Sensors 2018, 18, 2352 12 of 19

4.2. Pre-Filter Tracking Modeling

The above pointed out that the pre-filter tracking algorithm is one of the key points of ultra-tightly
coupled systems. Thus, this section gives the nonlinear pre-filter tracking loop model of the
satellite signal.

(1) Pre-filter state equation establishment

State variables take:
X = [ A δτ δφ δ f δa ]

T
(49)

where A denotes the normalized amplitude of the received signal, the code phase error; δ f the
carrier wave frequency error, and δa the carrier phase acceleration error. The equation of state of
the system is:

.
X = [

.
A δ

.
τ δ

.
φ0 δ

.
f 0 δ

.
a0 ]

T
= FX + Gw

=


0 0 0 0 0
0 0 0 β 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0




A
δτ

δφ0

δ f0

δa0

+


1 0 0 0 0
0 1 β 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




wA
wτ

wφ0

w f0

wa0


(50)

where β is the transformation coefficient that converts the radian to the chip, and the components
of w are the amount of the process noise corresponding to the state variables.

(2) Pre-filter measurement equation establishment

The system’s observation is obtained by in-phase signal I and quadrature signal Q outputting by
the correlator. I and Q include the early (E) signal, the present (P) signal and the later (L) signal.
The expression of the measurement equation is as follows:

IP
IE
IL

QP
QE
QL


=



ATD(tk − τ)R(δτ) sin c(δ f T/2) cos(δ f T/2 + δφ)

ATD(tk − τ)R(δτ − 0.5∆) sin c(δ f T/2) cos(δ f T/2 + δφ)

ATD(tk − τ)R(δτ + 0.5∆) sin c(δ f T/2) cos(δ f T/2 + δφ)

ATD(tk − τ)R(δτ) sin c(δ f T/2) sin(δ f T/2 + δφ)

ATD(tk − τ)R(δτ − 0.5∆) sin c(δ f T/2) sin(δ f T/2 + δφ)

ATD(tk − τ)R(δτ + 0.5∆) sin c(δ f T/2) sin(δ f T/2 + δφ)


+



nIP

nIE

nIL

nQP

nQE

nQL


(51)

where T is the cumulative sum of time; D(tk − τ) is the navigation message modulation; ∆ is the
difference number of code between the early and the later codes, R(∗) respectively correspond
with the results of the received C/A code sequence and the locally-generated code in E code,
P code, and L code after being relative to each other.

5. Experimental Analysis of a Highly Dynamical Scene

A near space vehicle often flies at high speed. This section of the experiment will focus on the
carrier of high maneuverability factors on the impact of signal tracking, while considering that the
lower the signal carrier noise ratio, the more difficult the stable tracking of the signal, and the more
able to assess the performance of the research method. To this end, a lower signal to noise ratio is set
to verify the tracking performance of the proposed robust adaptive CKF method under the condition
of a highly dynamic, and low carrier, noise ratio.

5.1. Experimental Scheme

The NS300 multimode satellite signal simulator generates a highly dynamical GPS RF signal,
and the RF signal is received by the GN0204 satellite signal receiving device, converted into
an intermediate frequency signal and stored. Then we use the SINS/GPS ultra-tight coupling software
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to receive the intermediate frequency signal processed by the system platform so that it is convenient
for further testing of the proposed coupling structure and the adaptive performance of the algorithm
for highly dynamical conditions. In the experiment, the SINS information is generated by the digital
emulator, and the information of SINS and GPS is generated according to the pre-established standard
track, so as to ensure the information equivalence between them at the same time. The structure of the
scheme is shown in Figure 2.

Figure 2. Structure of the highly-dynamical scene experiment scheme.

The signal tracking experiment is compared based on the generated data with five algorithm
combinations: The first method is the designed ultra-tightly coupled structure based on the double
loops, and the proposed robust adaptive CKF algorithm is used to estimate and track parameters,
which is abbreviated as DLB-RACKF. The structures of the second method and third method are
the same as the first method. The difference is that the algorithms used in the filtering algorithms
are CKF and UKF, respectively, similarly, the corresponding methods are abbreviated to DLB-CKF
and DLB-UKF. To prove the superiority of the proposed algorithm, we have further completed the
comparison between similar algorithms. The fourth and fifth algorithms are respectively selected from
two typical improved CKFs mentioned in the introduction, namely the STCKF algorithm proposed
by [19] and the AHCKF algorithm proposed by [26]. Similarly, the corresponding methods are
abbreviated to DLB-STCKF and DLB-AHCKF.

5.2. Setup of the Experimental Conditions

Major parameter settings of flight path: the initial position is 102.0266 ◦E, 28.2460 ◦N, height:
50 km, and the initial velocity (in the geographical coordinate system) is 0 m/s in the east, 0 m/s in the
north, and 0 m/s in the sky.

Select 60 s flight data of variable acceleration motion. The specific geographical coordinates are
set as follows: the acceleration in the north direction and in the sky direction is constant between
0 s to 60 s, which is AN = 4 m/s2 in the north direction acceleration and AU = 0 m/s2 in the day
direction acceleration, respectively. Eastward is variable acceleration motion, in which 0–20 s, 21–40 s,
and 41–60 s are all constant acceleration motion, and eastward accelerations are AE = 100 m/s2,
AE = 200 m/s2, and AE = −200 m/s2, respectively. 20–21 s and 40–41 s are the constant jerk motions,
the numerical value of which are 100 m/s3 and −400 m/s3, respectively. As a result, the maximum
absolute speed is about 6000 m/s, the maximum absolute acceleration is about 20 g, and the maximum
jerk is about 40 g/s, which is fully in line with the highly dynamical characteristics.
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The satellite signal simulator is used to generate the satellite signal which can be received by
the highly dynamic moving carrier at the current time, and the carrier to noise ratio (C/N0) of all
the satellite signals is set to 20 dB-Hz. There are currently 13 visible satellites in the sky. In addition,
in order to verify the proposed method of adaptive adjusting performance, the measurement noise
parameters are expanded by 20 times among 5–10 s, so that gross error of observations are simulated
equivalently; on the other hand, the high maneuvering scenario set in this section can evaluate the
adaptive performance of the algorithm when the dynamic model is imprecise, so it is not necessary to
set the dynamic model error.

5.3. Experimental Results and Analysis

Since the performance of each tracking channel is the same and the satellite signal index is
consistent, the results of one of the satellite channels is selected here in order to analyze the results.

The comparison results of DLB-RACKF, DLB-CKF, and DLB-UKF tracking errors are shown
in Figures 3 and 4. Figures 5 and 6 show the comparison results of DLB-RACKF, DLB-AHCKF,
and DLB-STCKF. Table 1 shows the RMS statistics of the tracking error of the five methods in each
period. The runtime performance of five filters is summarized in Table 2.

Table 1. Satellite Doppler frequency shift and code phase tracking error RMS.

Satellite Signal Tracking Error Terms Corresponded to Four Methods 0–20 s 20–40 s 40–60 s

Doppler shift errors (Hz)

DLB-UKF 0.9153 1.0574
DLB-CKF 0.5345 0.7375 1.5053

DLB-AHCKF 0.2483 0.6547 1.3267
DLB-STCKF 0.4755 0.3003 0.5004
DLB-RACKF 0.1125 0.1220 0.2455

Code phase errors (chips)
DLB-UKF 0.0128 0.0277 0.2413
DLB-CKF 0.0123 0.0245 0.0474

DLB-RACKF 0.0091 0.0060 0.0077

Table 2. Runtime of five tracking algorithms.

Algorithms DLB-UKF DLB-CKF DLB-AHCKF DLB-STCKF DLB-RACKF

Runtime (s) 1.832600 0.7332 1.2109 1.2973 0.9368
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Figure 4. Comparison of the code phase tracking error among DLB-UKF, DLB-CKF, and DLB-RACKF.
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Figure 5. Comparison of code phase tracking error among DLB-AHCKF and DLB-RACKF.

Figures 3 and 4 are essentially based on the comparison results of tracking errors among three
different algorithms with the same coupling structure. From Figures 3 and 4 and Table 1, we can
see that the accuracy of DLB-CKF is slightly better than that of DLB-UKF in tracking error accuracy.
The precision of DLB-RACKF is better than that of DLB-CKF and DLB-UKF. In the tracking stability
of the algorithm, due to the lack of adaptive adjustment performance, both DLB-CKF and DLB-UKF
show the condition of changing errors when the measurement noise increases and the vehicle moves
with high maneuverability, such as when the 5th second measurement noise parameter continues to
expand, the phase frequency and code tracking error of DLB-CKF and DLB-UKF immediately change.
Eventually it will lead to a decline in the precision of navigation. When the noise of the 10th second
measurement returns to normal, the PB-KF-UTC does not return to the initial accuracy immediately,
but after about 1000 ms, it gradually converges to the normal precision range. In the 20th second,
when the carrier performs variable acceleration motion in the range of about 10 g/s, the tracking error
of PB-KF-UTC suddenly increases. This is due to the fact that the dynamic model no longer meets
the basic situation of the actual motion, there is a large deviation, and when the variable acceleration
motion is finished, the error of DLB-CKF and DLB-UKF is converged to the normal precision range
again, with the process lasting for 2 s to 3 s. In the same way, in the 40th second, when the carrier
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performs variable acceleration motion at the range of about 10 g/s, the tracking error of DLB-CKF
and DLB-UKF changes again, but because the maneuverability is too large, with the result that it
is difficult for PB-KF-UTC to converge again when the motion of variable acceleration is finished,
the phenomenon of divergence appears. However, in the whole tracking process, DLB-RACKF has
maintained a good tracking accuracy and stability. The DLB-CKF converges gradually after the end of
the variable acceleration motion, which ensures continuous tracking, which indicates that the stability
of CKF is better than that of UKF. Compared with DLB-CKF and DLB-UKF, DLB-RACKF is relatively
stable in the whole tracking process. When the measurement noise is abnormal and the dynamic model
error increases due to the high maneuvering motion of the carrier, the DLB-RACKF can maintain
better adaptive regulation performance. Its tracking stability is much better than that of DLB-CKF
and DLB-UKF.

Figures 5 and 6 compare the tracking errors among the improved CKF algorithms with the same
adaptive adjustment function. As shown in Figure 5 and Table 1, DLB-AHCKF and DLB-RACKF exhibit
good adaptive performance when the kinematic model is accurate and the measurement error increases.
Since the 5th second of measurement noise continues to increase, the DLB-AHCKF accurately estimates
the noise changes after about 800 ms, and adjusts the algorithm to the normal range of precision.
In the 20th and 40th seconds, when the carrier is highly maneuvering for two times, the dynamic
model is no longer accurate, and the tracking error of DLB-AHCKF increases suddenly. The change
rule is similar to that of DLB-CKF. After the first maneuver, the tracking error of the DLB-AHCKF
gradually converges to the normal range. However, the tracking error of the second maneuver fails
to converge normally, and the trend of the divergence of the algorithm appears. The result of this
experiment is determined by the fundamental principles of the DLB-AHCKF algorithm, and it has its
own specific application background. On the contrary, as shown in Figure 6 and Table 1, the DLB-CKF
algorithm is essentially proposed for the motion state mutation of the carrier or the inaccurate model.
Thus, when the highly dynamical variable acceleration takes place twice, the DLB-STCKF shows good
tracking performance similar to that of the DLB-RACKF. However, when the system model is accurate
and the measurement noise exists, the tracking error of DLB-STCKF is always greater than the normal
mean for the duration of abnormal noise, which is similar to DLB-RACKF. When the noise returns to
normal, there is a convergence delay of about 1300 ms. In general, compared with DLB-AHCKF and
DLB-STCKF, the DLB-RACKF algorithm can deal with abnormal measurement noise and inaccurate
motion models simultaneously. Within the normal range, the precision of the three algorithms is
roughly equivalent, and the DLB-RACKF is slightly better than the other two algorithms.Sensors 2018, 18, x FOR PEER REVIEW  16 of 18 
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As shown in Table 2, the running time of the CKF algorithm is lower than that of the UKF under
the same software operation conditions. The running time of the improved RACKF algorithm is about
1/2 of UKF. The computational efficiency of DLB-RACKF is better than that of DLB-AHCKF and
DLB-STCKF, which is especially important for state estimation under highly dynamical conditions.
Therefore, RACKF is an effective nonlinear state estimator.

6. Conclusions

The design of an ultra-tight coupling structure realized by a single regulating loop has a certain
“inverse” effect on tracking satellite signals under special circumstances. In this paper, a cascade
super-tight coupling structure based on double loop adjustment was designed, which reduces the
“inverse” effect of the common vector tracking method and improves the reliability of the integrated
navigation system.

At the same time, in order to improve tracking accuracy, a new nonlinear filtering algorithm
called CKF was studied. The robust M estimation in robust estimation theory is used to improve the
CKF, which solves the influence of the abnormal error of the observed quantity. On the other hand,
an adaptive adjustment factor was used to modify the algorithm, which can effectively deal with the
influence of the dynamic disturbance error. The simulation results of highly dynamical scenes based
on the satellite signal simulator show that the proposed structure and the proposed robust adaptive
CKF algorithm effectively improve the tracking accuracy and tracking stability of the GPS satellite
signal so that the navigation system has better dynamic adaptability.
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