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Abstract: This paper considers the detection of fluctuating targets in heavy-tailed clutter through the
use of dynamic programming based on track-before-detect (DP–TBD) in radar systems. The clutter
is modeled in terms of K-distribution, which can be widely used to describe non-Gaussian clutter
received from high-resolution radars and radars working at small grazing angles. Swerling type
1 is considered to describe the target fluctuation between scans. Conventional TBD techniques
suffer from significant performance loss in heavy-tailed environments due to the more frequent
occurrences of target-like outliers. In this paper, we resort to a DP–TBD algorithm based on prior
information, which can enhance the detection performance by using the environment and target
fluctuating information during the integration process of TBD. Under non-Gaussian background,
the expressions of the likelihood ratio merit function for Swerling type 1 targets are derived first.
However, the closed-form of the merit function is difficult to obtain. In order to reduce the complexity
of evaluating the merit function and the computational load, an efficient approximation method
as well as a two-stage detection approach is proposed and used in the integration process. Finally,
several numerical simulations of the new strategy and the comparisons are presented to verify that
the proposed algorithm can improve the detection performance, especially for fluctuating targets in
heavy-tailed clutter.

Keywords: target detection; radar systems; K-distributed clutter; heavy-tailed; Swerling target;
track-before-detect (TBD)

1. Introduction

The detection of fluctuating targets with low signal-to-clutter ratio (SCR) is of significant
importance in radar systems. Conventional detecting and tracking algorithms use thresholded
detection as input. A target with low signal-to-clutter ratio is often lost due to information being
irreversibly discarded after thresholding. Multi-frame integration is an effective strategy used in radar
applications to detect dim targets by integrating signal returns over multiple consecutive scans. In the
presence of a moving target, multi-frame integration requires track-before-detect (TBD) techniques to
correctly correlate data over time.

Dynamic programming based on TBD (DP–TBD) is one of the TBD techniques [1,2], that has
attracted extensive attention for the advantages of simplicity and needing less information.
It transforms the integration into an optimal estimation of the physically admissible trajectory
by maximal integration value of the merit function, which is a kind of multi-frame test statistic.
DP–TBD can detect a target of arbitrary motion form and has been widely applied to several kinds of
sensors [3,4]. In order to solve the problem of high-dimensional maximization under a multi-target
environment, a novel partition method to cluster targets into well separated groups was proposed
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in [5]. In [6,7], the track formation procedure with successive track cancellation (STC) was described to
overcome the performance loss when targets are closely spaced. Meanwhile, research on the merit
function of DP–TBD has also been widely carried out in recent years. In [8,9], the expressions for
the log-likelihood ratio (LLR), which can better discriminate clutter-plus-target measurements from
clutter only measurements, were derived and used. In addition, a low-complexity power-efficient TBD
procedure, where the generalized likelihood ratio test (GLRT) [10–12] was solved using a Viterbi-like
tracking algorithm, was proposed in [13]. To reduce the big computational burden of DP–TBD,
computationally efficient DP–TBD algorithms were derived in [14,15] respectively.

The above quoted papers on DP–TBD techniques always assumed that the background is Gaussian
distributed with known power. However, for high-resolution radars and radars at small grazing angle,
the Gaussian assumption may not be adequate. In this case, more heavy-tailed background models
should be considered in the real world. Weibull distribution, log-normal distribution and K-distribution
are the commonly compound-Gaussian background models used in radar communities. This paper
is mainly concerned with K-distribution, which is widely used in high-resolution radar detection
systems. K-distribution [16,17] was derived from a paper by Eric Jakeman and Peter Pusey (1978)
who used it to model microwave sea echo. It has been found to be a suitable model for heavy-tailed
background in radar systems [18], since it provides an excellent agreement between theoretical and
experimental data. K-distribution also arised as the consequence of a statistical or probabilistic model
used in synthetic aperture radar (SAR) imagery.

As the signal strength may change from scan to scan, these fluctuations should be taken into
account when building the measurement-based model. A Swerling family of target amplitude
fluctuation models is commonly used to capture the radar-cross section (RCS) changes over time [19].
Swerling targets of type 0 can be used to model a target with constant RCS, while Swerling targets
of type 1 is used to model a target whose RCS fluctuates according to the exponential density in
radar systems.

Target detection in K-distributed background is more challenging than in Gaussian or Rayleigh
distributed background due to the higher likelihood of target-like outliers, especially for fluctuating
targets. Besides, it is inefficient and computationally costly to carry out an accurate search for all
the discrete states, as the surveillance region is much larger than the size of a target, such as radar
target detection. In this paper, attention is devoted to the detection of a Swerling target of type 1 in a
surveillance region characterized by K-distributed background through the use of DP–TBD. Moreover,
by employing a two-stage detection approach, the proposed algorithm is able to achieve further
computational reduction. The main contributions of this paper are given as below:

1. In order to limit complexity while still retaining the benefits of DP–TBD, we resort to a two-stage
detection process with different resolution cells.

2. For typical non-Gaussian distributed clutter (K-distribution) and a typical target amplitude
fluctuation model (Swerling 1), the DP–TBD algorithm based on prior information is proposed.
By using the likelihood ratio merit function in DP integration, the performance loss produced by
the “heavy-tailed” clutter measurements can be reduced.

3. An efficient but accurate approximation method is proposed to reduce the complexity of
evaluating the merit function.

The remainder of this paper is organized as follows: Section 2 presents the notations and system
models. In Section 3, a two-stage detection approach is proposed at first, and the expressions of the
likelihood ratio merit function are derived in K-distributed clutter background for Swerling target
of type 1; the implementation issues of the merit function are also discussed. Simulation results are
showed by comparing different DP–TBD strategies in Sections 4 and 5 provides some conclusions.

Mathematical notations used in this paper are described as follows. sn is the target kinematic state
at scan n; An denotes an amplitude from the Swerling 1 target and cn(i, j) denotes the K-distributed
clutter; an is the measurement amplitude in K-distributed clutter background. I(sn) is defined as the
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merit function at scan n; V(sn−1) is defined as the maximal integration value of all the admissible
trajectories; τ(sn) is the collection of states at scan n for which transition to sn is possible; Ψ(sn) is the
retracing function, indicating the best state of the previous scan.

2. Models and Notations

2.1. Kinematic Model

As shown in Figure 1, we assume that there is only one target in the surveillance region, whose
kinematic state at scan n is denoted by the vector sn. The kinematic vector sn is specified by:

sn = [rn, θn]
′ ∈ R2, 1 ≤ n ≤ N (1)

where ′ denotes matrix transpose, rn and θn denote the range and azimuth measurement, respectively,
R2 denotes the two-dimensional state space, and N denotes the number of consecutive frames
processed in a DP–TBD integration batch. The evolution of the target state is modeled by the linear
process as:

sn = Fsn−1 + wn (2)

The term wn is the process noise, F is the transition matrix.
Every real target must comply with some physical constraints on its kinematics, such as the

maximum target velocity considered in this paper. The radial and tangential velocity can be calculated
by two successive scans, which are given by:

vn−radial =
rn−[rn−1×cos(θn−θn−1)]

T

vn−tan gential =
rn−1×sin(θn−θn−1)

T

(3)

where T denotes the time interval between successive scans.
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2.2. Measurement-Based Model

The measurement data consists of Mr cells in the range-dimension and Mθ cells in the
azimuth-dimension. If no target exists (hypothesis H0), the (i, j)th recorded resolution cell,
zn(i, j) 1 ≤ i ≤ Mr, 1 ≤ j ≤ Mθ , at scan n can be expressed as [20]:

zn(i, j) = cn(i, j) (4)
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while in the presence of a target (hypothesis H1), the recorded resolution cell zn(i, j) can be expressed as:

zn(i, j) = An + cn(i, j) (5)

where An denotes a complex fluctuated amplitude measurement from the target, and cn(i, j) denotes
the K-distributed clutter, which is assumed in this paper.

A Swerling 1 fluctuation model supposes that returned signal power per pulse is constant during
a single scan, but fluctuates independently from scan to scan. The probability density function (PDF)
of the Swerling 1 target amplitude An is given by:

p(An) =
2An

σ
exp

(
−An

2

σ

)
(6)

with σ being the mean squared target amplitude.

2.3. K-Distributed Clutter Model

The K-distributed model is proposed as a model for radar clutter in this paper, which has the
probability density function as:

p(an) =
4an

α

β(α+1)/2Γ(α)
Kα−1

(
2an

β1/2

)
(7)

In formula, Γ(·) denotes the Gamma function and Kα−1(·) denotes the modified Bessel function
of the second kind, an is the measurement amplitude, β is scale parameter which describes the
intensity of the clutter, and α is the shape parameter which determines the shape of the distribution
function. For α→ ∞ , the K-distribution turns into the Rayleigh distribution. PDFs of K- and Rayleigh-
distributions are shown in Figure 2a while the K-distributed clutter (α = 2, β = 1) is shown in
Figure 2b.
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Figure 2. K-distribution (a) probability density functions (PDFs) of K and Rayleigh distribution for
various shape and scale parameters; (b) K-distributed clutter including real part and imaginary part.

Meanwhile, K-distribution can also be viewed as a Rayleigh distribution modulated by a Gamma
distribution for convenience:

p(an) =
∫ +∞

0
p(an|η )p(η)dη (8)
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where

p(an|η ) =
2an

η
exp

(
− an

2

η

)
(9)

p(η) =
ηα−1

βαΓ(α)
exp

(
−η

β

)
(10)

3. Development of the Proposed Strategies

The DP–TBD algorithm decomposes the integration among N successive scans into N
sub-processes. The nth sub-process contains all the measurements up to scan n. The target can
be detected and tracked by calculating the maximum of the energy integration value through a
recursive model, which could be expressed as:

V(sn) =
√

I(sn) + max
sn−1∈τ(sn−1)

[V(sn−1)] (11)

Ψ(sn) = arg max
sn−1∈τ(sn)

[V(sn−1)] (12)

where I(sn) is defined as the merit function at scan n; V(sn−1) is defined as the maximal integration
value of all the admissible trajectories; τ(sn) is a collection of states at scan n for which a transition to
sn is possible, and it can be obtained by the location and maximum velocity of the target; Ψ(sn) is the
retracing function, indicating the best state of the previous scan, which makes the integration value
reach its maximum.

In summary, DP–TBD implements the equivalent of an exhaustive search in an efficient manner by
enumerating and valuing all physical admissible state sequences, finally returning the state sequences
whose final maximal integration value V(sN) exceeds a given detection threshold γ, i.e.,:

V(sN) > γ (13)

There are mainly two problems throughout the process. Firstly, the computational complexity
of DP–TBD is unaffordable in the presence of a high-mobility target when the number of resolution
elements is large. The discretization of state space is always based on the sensor’s resolution so
as to make full use of the measurements and achieve possibly accurate estimates. In this situation,
strategies hardly lead to real-time implementable schemes, even resorting to a dynamic programming
algorithm. In order to reduce the burden of computation, a two-stage detection approach is proposed in
this work. Secondly, most of the previous work on DP–TBD assumed that the background model would
be Rayleigh or Gaussian distribution with a known power. Such assumptions may not be adequate,
as in the real world a more heavy-tailed background model than expected is often encountered.
To improve the detection performance, we propose a novel DP–TBD algorithm based on the prior
information to solve the aforementioned problem. In this paper, the merit function is set to be the
likelihood ratio under both target-present hypothesis and null-target hypothesis in a surveillance
region which is characterized by K-distributed background, and the simulated data would be tested
for presenting the performance.

3.1. Two-Stage Detection Approach

Generally, DP–TBD is a grid-based method that estimates target trajectory by means of searching
all the admissible paths in a discrete state space and the discretization of state space is based on
the sensor’s resolution. It is inefficient and computationally costly to carry out an accurate search
(i.e., the search grid is exactly divided based on the sensor’s resolution) since only a fraction of
measurements are related to the actual target when the surveillance region is large. In order to reduce
the computational load, while still retaining the benefits of TBD, here we resort to a two-stage detection
approach which is illustrated in Figure 3.
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At stage 1, we first obtain the raw data at scan n, and roughly calculate the measurement zn
′

under the condition of low grid resolution. The target states are estimated by searching discrete grids
with larger cell size based on the DP integration. After N times loop, the maximum of the energy
integration value V(sN)

′ at scan N could be obtained by the process. For a single target model, the
maximum integration value V(sN)

′ which exceeds detection threshold γ1 is used to determine the
existence of the target. If there is a target presented in the surveillance region, we could refine the
target trajectory in stage 2.

In order to obtain a more accurate estimate, stage 2 is employed to recalculate the measurements
under the high grid resolution condition. Once the maximum integration value V(sN) exceeds the
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detection threshold γ2, the estimation of the final target trajectory can be obtained by backtracking.
For each estimated state ŝn, we have:

ŝn−1 = ψ(ŝn), f or n = N, . . . 1 (14)

So the recovered trajectory estimate is ŜN = {ŝ1, . . . , ŝN}. The algorithmic description of the
proposed two-stage TBD approach is shown in Table 1.

Table 1. Algorithmic description of the proposed two-stage TBD.

Stage 1

Mearsurement: get zn
′(i, j), 1 ≤ i ≤ M′r, 1 ≤ j ≤ M′θ , f or n = 1, . . . N

Integration:
V(sn)

′ =
√

I(sn)
′ + max

sn−1∈τ(sn−1)

[
V(sn−1)

′
]
, f or n = 1, . . . N

integration calculates under the condition of low grid resolution

Determination: V(sN)′ > γ1

Stage 2

Mearsurement: get zn(i, j), 1 ≤ i ≤ Mr, 1 ≤ j ≤ Mθ , f or n = 1, . . . N

Integration:
V(sn) =

√
I(sn) + max

sn−1∈τ(sn−1)
[V(sn−1)], f or n = 1, . . . N

integration concentrates on the part of states which are indicated by stage 1

Determination: V(sN) > γ2

Backtracking: ŜN = {ŝ1, . . . , ŝN} = arg max
sn−1∈τ(sn)

[V(sn−1)], f or n = N, . . . 1

The surveillance region is divided into Mr ×Mθ grid cells based on the resolution of the radar
system, i.e., ∆r and ∆θ, where Mr and Mθ denote the number of cells in range and azimuth, respectively.
To realize the target search with larger cell size, the state space is re-discretized by ∆r′ and ∆θ′ to
obtain M′r ×M′θ grid cells at first. As shown in Figure 4, all the measurements and DP integrations are
processed in stage 1 based on the new state space, which may obtain a rough target trajectory by less
computation. Then in stage 2, DP integration concentrates on the part of states which are indicated
by stage 1. As calculations of less meaningful states could be avoided, the computational costs will
become more reasonable.

Sensors 2018, 18, x FOR PEER REVIEW  7 of 13 

 

energy integration value  NV s   at scan N could be obtained by the process. For a single target 

model, the maximum integration value  NV s   which exceeds detection threshold 1  is used to 
determine the existence of the target. If there is a target presented in the surveillance region, we 
could refine the target trajectory in stage 2. 

In order to obtain a more accurate estimate, stage 2 is employed to recalculate the 
measurements under the high grid resolution condition. Once the maximum integration value 
 NV s  exceeds the detection threshold 2 , the estimation of the final target trajectory can be 

obtained by backtracking. For each estimated state n̂s , we have : 

 1ˆ ˆ , ,...1  n ns s for n N    (14)

So the recovered trajectory estimate is  1
ˆ ˆ ˆ,...,N NS s s . The algorithmic description of the 

proposed two-stage TBD approach is shown in Table 1.  

Table 1. Algorithmic description of the proposed two-stage TBD. 

 Stage 1 

Mearsurement: get  , ,1 ,1 , 1,...n rz i j i M j M for n N
        

Integration:    
 

 
1 1

1max ,  1,...
n n

n n n
s s

V s I s V s for n N
 




       
 

integration calculates under the condition of low grid resolution 

Determination:   1NV s    

 Stage 2 

Mearsurement: get  , ,1 ,1 , 1,...n rz i j i M j M for n N      

Integration: 
   

 
 

1 1
1max ,  1,...

n n
n n n

s s
V s I s V s for n N

 



      

integration concentrates on the part of states which are indicated by stage 1 

Determination:   2NV s   

Backtracking:  
 

 
1

1 1
ˆ ˆ ˆ,..., arg max ,  ,...1

n n
N N n

s s
S s s V s for n N





      

The surveillance region is divided into rM M  grid cells based on the resolution of the radar 
system, i.e., r  and  , where rM  and M   denote the number of cells in range and azimuth, 
respectively. To realize the target search with larger cell size, the state space is re-discretized by r   
and    to obtain rM M   grid cells at first. As shown in Figure 4, all the measurements and DP 
integrations are processed in stage 1 based on the new state space, which may obtain a rough target 
trajectory by less computation. Then in stage 2, DP integration concentrates on the part of states 
which are indicated by stage 1. As calculations of less meaningful states could be avoided, the 
computational costs will become more reasonable. 

ns

1ns 

stage 1

stage 2

9q 

states of interest

 

Figure 4. Illustration of possible transition state collection during the two-stage DP integration.

3.2. Derivation and Implementation of the Merit Function

Combined (6), PDF for the Swerling 1 target in K-distributed clutter is given by:

p(an|η, sn ) =
2an

η + σ
exp

(
− an

2

η + σ

)
(15)
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and p(an|sn ) can be derived by marginalizing over η since η is random, i.e.,

p(an|sn ) =
∫ ∞

0 p(an|η, sn )p(η)dη

=
∫ ∞

0
2an
η+σ exp

(
− an

2

η+σ

)
ηα−1

βαΓ(α) exp
(
− η

β

)
dη

= 2an
βαΓ(α)

∫ ∞
0

ηα−1

η+σ exp
(
− an

2

η+σ

)
exp

(
− η

β

)
dη

= 2an
βαΓ(α)

∫ ∞
0 f (η)dη

(16)

where the integrand f (η) is given by:

f (η) =
ηα−1

η + σ
exp

(
− an

2

η + σ
− η

β

)
(17)

Substituting (7) and (16) into the expression of merit function I(sn) at scan n, I(sn) can be
written as:

I(sn) = ln
(

p(an |sn )
p(an)

)
= ln

(
an
−α+1β(−α+1)/2∫ ∞

0 f (η)dη

Kα−1(2an/β1/2)

) (18)

Although the integrand f (η) in (17) has no closed-form solution, it can be evaluated with
reasonable accuracy by using the trapezoidal rule, i.e.,

∫ ∞

0
f (η) =

Nsa

∑
i=1

f (ηi) + f (ηi+1)

2
δi (19)

where f (ηi) is sample point drawn from the time interval δi, δi is a sampling interval which is short
enough to cover the effective support of f (η), and Nsa denotes the number of sample points.

The sample points can be obtained by either deterministic sampling with a uniform grid or
stochastic importance sampling. Since the integrand f (η) may tend quickly towards ∞ when η → 0 ,
while tending slowly towards 0 when η → ∞ . A reasonable approximation obtained by deterministic
uniform grid sampling or stochastic importance sampling is difficult to carry out. A grid with a
variable resolution method was proposed in [21] to approximate the merit function, which also leads
to high computational complexity.

In order to reduce the complexity of approximation, we could possibly circumvent these problems
by generating a lookup table offline with sample points using a uniform grid. The number of sample
points with uniform grid is large enough to approximate the integrand f (η) accurately. Based on
the lookup table, this calculating method trades little cost of precision and memory space for a great
improvement on running speed in the calculation. The histograms of generation data and theory PDF
are shown in Figure 5 for the Swerling targets type 1 with different parameters. According to Figure 5,
we conclude that the approximation error is negligible.

Note that the K-distribution shape parameter α and the scale parameter β are supposed to
be known in the derivation of merit function. In the case where the background is significantly
heavy-tailed and the parameters are unknown, we should estimate the parameters first, which can be
obtained through a numerical maximization of the likelihood function. Since the maximum likelihood
techniques require numerical optimization routines and evaluation of Bessel functions, they are
computationally intensive and, therefore, inappropriate for evaluation of large data sets. Abraham [22]
recommended moment estimators based on the first and second moments, which can be used as our
estimator in this work.
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4. Simulation

In this paper, the detection performances of conventional DP–TBD and the proposed strategy for
a Swerling type 1 target are assessed. We assume that the measurement noise satisfies K-distribution,
and each measurement frame consists of Mr ×Mθ = 180 × 90 resolution cells. The number of frames
processed in a DP batch is N = 6, while the number of possible state transitions in a scan is q = 9.
This scenario is run 1000 times for various SCR and shape parameters while the false alarm is fixed as
PFA = 10−3.

4.1. Performance Analysis

We assess the performances of different strategies via the probability of track detection Pd, which
is a performance metric for both detection and tracking performance. Pd is defined as the probability
of the maximum integration value exceeding the detection threshold, and its final position is within
a certain range of the actual target position. In addition, the root-mean square error (RMSE) on the
estimation of the target position is also considered, which is defined as:

RMSE =
√

E[e2(sn)|H1 ] (20)

where H1 is the event that the target is confirmed, and e2(sn) is the Euclidean distance between the
true and estimated target position.

Performance and RMSE comparison of the conventional DP method and the proposed method
based on prior information is shown in Figure 6. For K-distributed clutter and a Swerling 1
target, the proposed method performs better than the traditional integration method. It can also
be concluded that the proposed method, which is processed with only one stage (blue solid line) or
two stages (red solid line), could achieve almost identical performance while the latter obtains further
computational reduction.
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Figure 6. Performance and root-mean square error (RMSE) comparison of different DP–TBD integration
method with α = 0.5 and β = 1 against signal-to-noise ratios (SNRs) from 2 dB to 20 dB. (a) The
detection probability Pd; (b) the RMSE on estimated position.

For different parameters of K-distributed clutter, detection performances are shown in Figure 7.
With an increase of shape parameter α, both conventional DP and the proposed method on prior
information achieve significant performance improvement. That is because when α is increasing,
the K-distributed clutter is smoother and the frequency of target-like outliers is lower. Note that when
α = 50, since K distribution almost degenerates to Rayleigh distribution in this case, the detection
performances are nearly identical.
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Figure 7. Performance comparison of DP–TBD integration method (red solid line with diamond) and
the proposed method in this paper (blue solid line with cross) for K-distributed clutter and a Swerling
1 target (a) α = 2 and β = 2; (b) α = 5 and β = 2; (c) α = 10 and β = 2; (d) α = 50 and β = 2.
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4.2. Computational Complexity Analysis

The complexity of the conventional DP–TBD method is O(Mr MθqN), where Mr and Mθ are the
number of range and azimuth resolution elements, q is the number of possible state transitions in a
scan, and N is the number of the integration scans. In comparison with the conventional method,
the two-stage detection approach schemed in Figure 3 has low computational complexity.

For a different number of frames and different number of state transitions, detection performances
are shown in Figure 8. With the increase of frames and state transitions, the proposed method achieves
a performance improvement, but not very much. However, the computational cost increases rapidly.
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Figure 8. Performance comparison of DP–TBD integration method. (a) Performance with different
number of frames N = 4, N = 6 and N = 8; (b) performance with different number of state transitions
q = 4 and q = 9.

The computational cost in stage 1 isO
(

M′r M′θqN
)
, where M′r×M′θ denotes grid cells re-discretized

by ∆r′ and ∆θ′ to realize the target search with larger cell size. Since the DP integration in stage 2
is concentrated on the part of states, which are indicated by stage 1, the computational cost is small
enough not to care.

The computational cost of the strategies is listed in Table 2 for different parameters. It can be seen
that the computational cost depends on the number of a possible state transition q and the resolution
elements. For the same resolution cells, the scenario at q = 9 costs almost three times as long as the
scenario q = 4. Meanwhile, the computational cost reduces rapidly as the number of resolution elements
decreases. For example, when q = 4, the CPU times for Mr ×Mθ = 180× 90, M′r ×M′θ = 90× 45 and
M′r ×M′θ = 60× 30 are 308 ms, 224 ms and 146 ms, respectively.

Table 2. Computational cost with different parameters.

Parameters Mr × Mθ = 180× 90 M′r × M′θ = 90× 45 M′r × M′θ = 60× 30

q = 4, N = 6 308 ms 224 ms 146 ms
q = 9, N = 6 935 ms 684 ms 370 ms

5. Conclusions

This paper has presented the systematic treatment of heavy-tailed clutter from a target detection
and tracking perspective. Target detection in K-distributed clutter is more challenging than in Gaussian-
or Rayleigh-distributed clutter due to the higher likelihood of target-like outliers, especially for a
fluctuating target. In this work, we dealt with the fluctuating target detection and tracking problem
using a modified DP–TBD method. The contributions are as follows: first we have solved the target
detection problem using two-stage detection architecture to avoid calculations of less meaningful
states. Secondly, for a Swerling 1 target in a K-distributed background, the merit function was derived



Sensors 2018, 18, 2241 12 of 13

and implemented in the integration process of DP–TBD to enhance radar detection performance.
In order to reduce the complexity of integral calculation, we also resorted to the trapezoidal rule with
a generating lookup table.

Numerical analysis demonstrated that performance improvement could be applied via the
proposed DP–TBD algorithm based on prior information, especially for heavy-tailed K-distributed
clutter. Moreover, simulation results suggested that a trade-off between performance and
computational complexity exists. Further research may investigate the performance of the proposed
DP–TBD method experimentally. It may also be of interest to investigate other background models
than the K-distribution.
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