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Abstract: Attenuation and group delay effects on millimeter wave (MMW) propagation in clouds
and fog are studied theoretically and verified experimentally using high resolution radar in an indoor
space filled with artificial fog. In the theoretical analysis, the frequency-dependent attenuation and
group delay were derived via the permittivity of the medium. The results are applied to modify the
millimeter-wave propagation model (MPM) and employed to study the effect of fog and cloud on
the accuracy of the Frequency-Modulated Continuous-Wave (FMCW) radar operating in millimeter
wavelengths. Artificial fog was generated in the experimental study to demonstrate ultra-low
visibility in a confined space. The resulted attenuation and group delay were measured using FMCW
radar operating at 320-330 GHz. It was found that apart from the attenuation, the incremental
group delay caused by the fog also played a role in the accuracy of the radar. The results were
compared to the analytical model. It was shown that although the artificial fog has slight different
characteristics compare to the natural fog and clouds, in particle composition, size, and density,
the model predictions were good, pointing out that the dispersive effects should be considered in the
design of remote sensing radars operating in millimeter and sub-millimeter wavelengths.

Keywords: extremely high frequencies; FMCW radar; atmosphere; millimeter waves;
Tera-Hertz frequencies

1. Introduction

The extremely high frequencies above 30 GHz, known as millimeter waves, cover a wide range of
the electromagnetic spectrum. Many applications, such as mobile wireless communications [1,2],
satellite communications [3] mobile communication, road traffic safety radars [4,5], and remote
(imaging and non-imaging) sensing, as well as wireless power transfer (WPT), are all being considered
to use this relatively free frequency regime. Wide frequency bands in millimeter waves allows a high
bit rate in digital communication links and high distance resolution in radar systems to be obtained [6].

However, when millimeter-wave radiation propagates through the atmosphere, it suffers from
molecular absorption and refraction [7-9]. The gas composition and meteorological conditions
of the atmosphere have frequency-dependent effects on the millimeter wave propagation [10-12].
In particular, the presence of suspended water droplets, like in fog and clouds, may be one of the major
factors for attenuation and dispersion effects on millimeter wave signals [13-15]. In radar systems that
operate in millimeter and sub-millimeter wavelengths, atmospheric dispersion plays an important
role in the accuracy of distance measurements, as discussed in [16].

The atmospheric frequency response is being studied intensively both theoretically and
experimentally. However, vast majority of the works refer to the attenuation effect only. The signal
phase shift and time delay effects are usually ignored, although they can be significant in extreme
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conditions. Furthermore, works on the propagation in dielectric media sometimes using equivalent but
different terms to describe the problem, such as medium permittivity, refractivity, and susceptibility.

In the present work, the effect of suspended droplets was studied theoretically and experimentally
to demonstrate the effect of extremely low visibility conditions on the signal strength and time delay.
First, the propagation factors are presented as analytic expressions of the permittivity and refractivity,
and the relation between them. Second, a modified millimeter-wave propagation model (MPM)
is employed for the prediction of the suspended water droplets effect. Finally, an experimental
verification of the effect on an MMW radar signal strength and time delay is presented. We used a
dense artificial fog, created by a fog machine, to demonstrate the effects quantitatively. The results
are compared to the analytical model predictions. In order to set the definitions employed along the
paper, we start from a short review of field propagation in dielectrics in general and then focus on the
atmospheric medium.

2. Propagation in Dielectric Media

An electromagnetic wave propagating in a dielectric medium such as the atmosphere is being
affected by losses and time delay. These effects are described by the propagation expression for the
electric field in the frequency domain. Propagating a distance d in a homogeneous, linear medium, the
resulted field is:

Eout(f) = Ein(f)e ()4 6))

where Ej, (f) and Eyt(f) are the transmitted and received fields respectively, presented as phasors in
the frequency domain and:

k(f) = —ja(f) + B(f) €
is a frequency-dependent propagation factor, composed of the attenuation per unit length
a(f) = —Im{k(f)} and the wavenumber B(f) = Re{k(f)}. The group delay at a distance d can
be found from the derivative of the wavenumber:

f) = g = 5+ Au(f) ®

where ¢ &~ 2.997 x 108 m/s is the speed of light in a vacuum. The group delay can be described
as a summation of the constant delay 19 = d/c in vacuum and a frequency-dependent incremental
part Aty(f).

In the first stage of the model description, the properties of the atmosphere as a dielectric medium
are presented in terms of its permittivity. In the second stage, the permittivity of a suspended droplets
atmospheric medium as in foggy or cloudy conditions is discussed. Finally, we derive the parameters
of millimeter wave propagation in such conditions.

The propagation factor is commonly expressed via the dielectric medium properties, either relative
permittivity e, (f) or index of refraction n(f):

k() = 2L Ja () @)

where ¢ & 2.997 x 108 m/s is the speed of light in a vacuum. The relative permittivity of the medium
is a complex, frequency dependent quantity:

er(f) =€ (f) —je" () )

with real ¢ (f) and imaginary ¢’ (f) parts. The attenuation «( f) and the wavenumber B(f) are related
to the permittivity via two coupled equations:
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(6)

The last equations have two pairs of solutions:

X1234 = i’ﬁ (22f> \/—5' + 4/ &)+ ()
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Since the attenuation a( f) and the wavenumber B(f) are real and positive numbers, the physical
solution should be [17]:

e (568) |

1+ (2) 1

(f) = ~Im{k(f)} = zw &
®)

B(f) = Re{k(f)} = ”J g

Using the last Expression (8), the frequency dependent incremental part of the time delay (3) can
be derived analytically:

d (2 f\* 1 e lde" ¢ 1de d
A =—|— ] 55— lal F+53 vl 9
=55 ) weple(F 2 ) (5w ©
The above analytical Expressions (8) and (9) describe the three major physical phenomena of the
electromagnetic field propagation in dielectric media: attenuation, phase dispersion, and the resulted
group delay.
Propagation of light as well as millimeter and sub-millimeter wave infra-red radiation in the

atmosphere are usually studied using the complex refractive index n( f), which is written in terms of
the refractivity, N(f) (given in ppm):

n(f) =1+ N(f) x107° (10)
The frequency dependent refractivity is complex and can be presented as:
N(f) = No+ N'(f) = jiN"(f) (11)

where the nondispersive part Ny is real and positive and the other two terms, the real N’(f) and the
imaginary N”(f) parts, are frequency dependent. The relations between the complex refractivity and
complex permittivity can be obtained by using Equations (4), (5), (10) and (11):

n(f) = /¢ (f) = je" (f) = 1+ [No + N'(f) = jN"(f)] x 107° (12)
resulting in an expression for the real part:
¢(f) =1+2[No+ N'(f)] x 107° (13)

and for the imaginary part:
¢"(f) =2N"(f) x10°° (14)



Sensors 2018, 18,2148 40f12

Since the dispersion models often use combinations of these quantities, permittivity, and
refractivity, the above relations enable one to fuse between the models and present a generalized one.
The media properties can be also presented in terms of the refractivity:

a(f) = ~Im{k(f)} = ZLN"(f) x 10
B(f) = Re{k(f)} = ZL[(1+ No x 1076) + N'(f) x 10~¢] (15)
w(f) = &4 = {1+ No x 1079) + [N'(F) + F 4] x 1076}

For the study of millimeter waves propagation in the atmosphere, the MPM is employed [8,9].
In these models, quantitative values of the dispersive complex refractivity (11) are given via the
permittivity of the gases and water droplets composing the atmosphere. The refractivity is represented

as a summation of five terms:
N(f) = (NL+ N;s+ N;) + Nw + Nr (16)

Here Np(f) is moist air resonance contributions, N;(f) is dry air non-resonant spectra, N (f)
is water vapor continuum spectrum, Ny (f) is suspended water-droplet refractivity and Ng(f) is
rain approximation. It is important to note that the different refractivity terms above are mutually
independent and according to Equation (16) they are accumulated additively, contributing to the
overall refractivity. A comparative study between the comprehensive MPM and the International
Telecommunication Union (ITU) recommendation reveals that although the absorption peaks of water
vapor and oxygen are not taken into account in the ITU model, there is good fit between the models [18].
From evaluation of the refractivity terms (16), it was found that the suspended water droplets had a
major effect on the attenuation while the significant effect on the group delay was due to air humidity
NL(f) [19]. The dielectric permittivity for different values of relative humidity RH and water droplet
concentration Wy is presented in Figure 1, for real ¢’ (f) and imaginary ¢” (f) parts. Note that Figure 1b
describes the imaginary part €” ( f) of the atmospheric permittivity is in a logarithmic scale. It seems
that the fog effects increased intensely with frequency.

—RH=0[%] ;W=0 [g/m®]
- RH=50 %] ;W,=0 [g/m"]
___________________________ RH=100 [%] }W;=0 [g/m”]
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Figure 1. (a) The real ¢ (f) and (b) imaginary ¢” (f) part of dielectric permittivity for different relative
humidity RH (%) and water droplet concentration Wy (g/ m?) values.
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Substituting ¢'(f) and ¢’ (f) into Equations (8) and (9), we calculated the attenuation coefficient
a(f), the wavenumber B(f), and the resulted frequency dependent incremental part of group delay
Aty(f). The attenuation 201og(e) - a(f) in (dB/km) and the dimensionless measure ¢ - Aty (f)/d —1
for different values of relative humidity RH and water droplet concentration W are presented in
Figure 2.

—RH=0 %] ;W=0 [g/m"]

- RH=50 [%] ;W=0 [g/m’]
RH=100 [%] :W,=0 [g/m?]

-+ RH=100 [%] ;W,=10 [g/m°]

—RH=100 [%] ;W ;=50 [g/m"]

107
% 50 100 150 200 250 300 350
Frequency [GHZ]
(a)
4
45 x10 i
74
K —RH=0 [%] }W,=0 [g/m’]
§'3.5 = RH=50[%] ;W,=0 [g/m®]
o 1 - W 3
] RH=100 [%] ;W,=0 [g/m°]
8 5l 4 [+RH=100 [%] ;W,=10 [g/m®]
©
£ —RH=100 [%] ;W,=50 [g/m°]
o
Z 251

0 50 100 150 200 250 300 350
Frequency [GHz]

(b)

Figure 2. (a) Attenuation coefficient 20log(e) - a(f) in (dB/km) and (b) normalized group delay
c-Aty(f)/d — 1 for different relative humidity RH (%) and water droplet concentration Wy
(g/m3) values.

3. Fog Characterization

Fog and clouds contain water droplets or ice crystals suspended in the air. They are normally
formed at a relative humidity RH near 100%. The fog often is characterized via parameters like
visibility, Vis (measured in (m)), droplet number concentration n; (measured in (cm™3)), and mass
liquid water content Wy (measured in (g/m?)). The parametrization of the suspended water droplets
(SWD) is required for the theoretical and experimental study.

The visibility in the current work is defined as the distance at which visible light is attenuated to
2% of the maximum light intensity attained in clear sky. According to the International Commission
on Illumination, this definition presents the visual range where the contrast ratio for a black target of a
“reasonable” size against the horizon viewed by a typical human eye falls down to 0.05 [20].

The suspended water droplets size in typical fog and clouds is in the range of 5-50 um and
the number concentration of droplets is in the range 102-10% cm~3 [11,21-23]. In heavy fog the
numbers may increase even further. The mass liquid water content is typically 0.05 g/m? for medium
fog (visibility of the order of 300 m) and 0.5 g/m? for heavy fog (visibility of the order of 50 m).
Gultepe et al. [22] developed a generalized expression connecting between visibility, droplet number
concentration n; and liquid water content Wy:

Vis = 1002 - (1 - Wo) 473 (17)
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where the visibility is given in (km). The product (1, - WO)_1 is the termed “fog index”. This model
can roughly estimates the visibility with more than 50% uncertainty depending on environmental
conditions [23]. Graphs of the visibility as a function of liquid water content Wy are drawn in Figure 3
for different number concentrations 7.

Ny = 100 [cm-3]
—- Ny = 200 [cm-3]

n,= 300 [cm-3]
—ny= 400 [cm-3]
—-ny = 500 [cm-3]
ey = 600 [cm-3]
- ny= 700 [cm-3]
—Nny= 800 [cm-3]

Visibility [m]

75 10 20 50 100 200 500
W, [g/m?]

Figure 3. Visibility (m) as a function of liquid water content Wy (g/ m?) on assumed droplet number
concentration 1 (cm™3).

Table 1 summarizes some of the measurements carried out experimentally in previous studies.
Millimeter wave attenuations measured in different monitored foggy conditions, are presented. In these
works, quantitative measurements of the liquid water content Wy were also performed, enabling us to
demonstrate a comparison with the fog characterization model.

Table 1. Comparison of measured fog attenuation in millimeter wavelengths with previous researches.

Frequency Reference Water Droplet Fog Attenuation Fog Attenuation
(GHz) Concentration Wy (g/m®)  Experiment (dB/km)  Simulation (dB/km)
72.56 [24] 0.2 0.6 0.7
210 [25] 0.03 0.4 0.3
240 [26] 3 37 38.6

4. The Effect of Fog on Frequency-Modulated Continuous-Wave (FMCW) Radar Accuracy

Previous theoretical work indicated that dispersion in the atmospheric medium affects the
accuracy of radars [19]. In the setup described in the followings, a wide band FMCW is utilized
for an experimental study of the effect of fog on the accuracy of distance measurement to a target.
The transmitted signal is a frequency modulated (FM) signal with an instantaneous frequency varying
linearly in time (chirp) [19]. The time dependent frequency in the chirp is given as:

fit) = fo+ BT‘:\] -t (18)

where fy is the start frequency of the chirp, BW is frequency span, and T; is sweep time. Passing through
the atmosphere to the target located at a distance d, scattered and reflected back to the radar receiver,
the ‘chirped’ signal is delayed and its intensity is reduced. The intermediate frequency (IF) of the
detected signal obtained at the receiver output is expected to be:

BW BW /d
leZz'T'TdZZ' T (C+ATd> (19)
s s
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Here 1, is the time delay in propagation a range d to the target. For propagation in a vacuum,
the incremental group delay At; = 0, and the resulted IF signal would have been a single frequency
tone at:

BW d

fm=2- T ¢ (20)

which is proportional to the target distance d. However, when a dispersive medium (as in foggy
conditions) is involved, there is a shift in the intermediate frequency due to the incremental group
delay Aty
BW
Ts
Using the Expression (9) we derived for group delay ATy, one can express the error Ad in the
radar range measurement expected due to the dielectric properties of the medium in different weather

Afir = fiFr— fm =2~

. ATd (21)

conditions:
Ad Aty(fo) ( f02> 1 e 1de ¢ 1de
= =c =L ) = a4z |48+ -1 ()
d d c Ja?+ B2 fo 2 df f B fo defo

5. Experimental Setup

Now we demonstrate the effect described in the preceding sections using a high resolution FMCW
radar operating at the higher band of the millimeter waves, at 330 GHz [27]. A set of experiments have
been conducted for studying the effect of fog on the radar performances even at very low visibility
conditions, down to 0.5 m. The results were used to demonstrate the effects and validate the model for
such extreme conditions. The experimental setup was based on a radar system placed in a confined
indoor space filled with artificial fog. The radar system and a metal target were placed in the two
far ends of the closed corridor. The fog was created by a thermal fog machine. The chamber has a
dimension of 20 m x 3.5 m x 4 m, where the distance between the radar and the target was d = 18.8 m.

Schematics for the FMCW radar used in the experiment is given in Figure 4a. The HP-8350B
frequency-sweeping synthesizer is employed as a primary driver of the Local Oscillator (LO).
Its frequency was tuned to sweep from 10 to 10.31 GHz and multiplied by a factor 32 providing
linear FM signal starting from fy = 320 GHz with a sweep of BW = 10 GHz. The transmission power
was 10 dBm. Both the transmitting and receiving antennas were ELVA-1 custom design Gaussian
horn-lens antenna with a gain of 40 dBi and linear horizontal polarization. A photograph of the
320-330 GHz FMCW radar is given in Figure 4b. The operational parameters of radar are summarized
in Table 2. The detected signal obtained at the output of the harmonic mixer at the receiver chain was
analyzed using a spectrum analyzer, model R&S FSV40. The spectrum of the detected signal was
measured to find strength of the IF signal and its spectral components.

(b)

Figure 4. The 320-330 GHz Frequency-Modulated Continuous-Wave (FMCW) radar used in the
experimental setup: (a) Block diagram and (b) Photo including transmitting and receiving antennas.
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Table 2. 320-330 GHz FMCW radar parameters.

Starting frequency fo 320 GHz
Sweep bandwidth BW 10 GHz
Sweep time Ts 9.6 ms
Transmitted power P 10 dBm
Antenna gain G 40 dBi
Beam width Opeam 1.3°
Polarization Linear Horizontal

A convenient way to create stable, sustainable, homogeneous, low visibility fog in a relatively
large indoor space is by using artificial fog. The artificial fog was generated using a fog machine type
MAGNUM 850 with maximum fog output of 200 m? per minute. The water based aerosol fog was
created by using vaporizing proprietary water and glycol-based (glycols, poly-glycols) fog juice [28].
According to the manufacturer, the particle size produced by this thermal fog machine, was within the
wide range of 0.25-60 um [29].

Although the artificial fog used in the current experiment was somewhat different in its
characteristics from ‘natural” water fog and clouds, its small particle sizes fit to our experimental
requirements. The typical droplet size in natural fog is about 10 um. The artificial fog droplet diameter
was measured to be around R, = 4 um [28]. This leads to a size parameter 27tR, /A = 0.1 at 330 GHz.
This is well below the Mie scattering regime and within the Rayleigh approximation. The spatial fog
spread in space was homogenized using a series of small fans along the corridor (see Figure 5).

machine

Figure 5. The corridor and the fog streaming start-up.

The composition of the artificial fog was based on aqueous glycol solution. The solution
components and their respective refractive index were triethylene glycol (n = 1.4531), 1,3-butylene
glycol (1.4401), propylene glycol (1.4324), and deionized water (1.330). Since the weight percentage of
each component was not provided by the manufacturer, an estimation was made for the refractive
index as 1.439 [29].

The initial thermal conditions along the corridor were 16 °C and 70% relative humidity.
The process of filling the space with the artificial fog lasted several minutes to reach a visibility
less than one meter. The filling process can be seen in Figure 6. The droplet number concentration
and liquid water content Wy can be estimated using expression (17). For a visibility of Vis = 0.5 m we
found that in our case, n; = 4000 cm 3 and Wo=30g/ mS.



Sensors 2018, 18, 2148 90f12

@) (b)

Figure 6. (a) The process of filling the corridor with fog, the visibility of about 1.5 m; (b) The corridor is
filled with fog until the visibility was less than a meter.

6. Verification of the Theory

The experiments with the 320-330 GHz FMCW radar were carried out without fog, as a reference
background case, and with fog where the visibility was 0.5 m. The output signal at IF was recorded in
the form of power spectral density in the spectrum analyzer. The signal obtained contained relatively
large spectral fluctuations, mainly due to multi reflections from different objects along the corridor,
as can be seen in Figure 7a. Knowing the physical distance of the target, we perform numerical
smoothing algorithm. The detected spectrum measured in a clear corridor (without fog) and that
obtained in the presence of fog are both shown in Figure 7b.

When the fog is introduced, 3 dB attenuation and 9 Hz frequency up-shift are revealed in the IF
signal in respect with the reference (no fog) measurement. These results correspond to an attenuation
of 80 dB/km and a time delay of 230 ps/km. Using the theoretical model, we evaluated these values
as summarized in Table 3.

35
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25

o ,‘"“
—CLEAR-E.SM ° i
- -FOG-ESM 2 i
o’
)
Ay ‘l"

—CLEAR-E.SM
--FOG-E.SM

21

>
15

0 17 | [ | | |
127 129 131 133 1305 130.55 130.6 130.65 130.7
Frequency [KHz] Frequency [KHz]
(a) (b)

Figure 7. (a) The detected intermediate frequency (IF) signal spectrum when the target is at a physical
distance of 18.8 m in both cases with and without fog; (b) after filtering and smoothing.

Simulations were carried out for reference conditions as prevailed during the experiment;
ambient temperature 16 °C, air pressure 101 kPa and relative humidity RH = 70%. Some small
differences between simulation results and experimental measurements were noted. In order to
demonstrate the effects pointed out theoretically, in a limited experimental space (a corridor with a
length of about 20 m), we generated a heavy fog and brought the visibility to be very low. This may
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lead to some uncertainties in the visibility estimation, mainly due to extremely low, hard-to-measure
visibility of the artificial fog along the whole corridor. However, the typical droplets dimension
generated by the ‘fog machine’” were small enough to be well in the Rayleigh scattering regime
even if the temperature changes during the experiment. This enables neutralization of temperature
fluctuation and its effect on the diameter of the droplets on the scattering phenomena even in
sub-millimeter wavelengths.

According to expression (21), a frequency shift of Af;r = 9 Hz corresponds to an incremental
group delay of At; = 4.32 ps. This means that the fog introduces additional delay in the received
signal with respect to the physical distance measures at clear conditions. The resulted time delay
enables calculation of the index of refraction of the fog at 320 GHz. Using relations (15), we estimated
the real part of refractivity in the presence of the fog to be Ny + N'(f) = 68 ppm. From the measured
attenuation of 3 dB, we also estimated the imaginary part of the refractivity to be N (f) = 50 ppm.

Table 3. Simulation and experimental results for frequency of 320 GHz at distance d = 18.8 m.

Model Experiment
Parameter Name Parameter Symbol Units :
No Fog Fog Change Difference
Visibility Vis (m) 0 0.5
Water content Wo (g/ cm?) 0 30
Attenuation 201log(e) - a(f) (dB) 0.35 2.1 1.75 15
Intermediate frequency fiF (Hz) 130,622 130,631 9 9
Group delay T4 (ps) 62,752 62,756 4 4.3
Incremental group Aty (ps) 2710 2714 4 43

delay

7. Summary and Conclusions

The paper discussed the absorptive and dispersive characteristics of fog and their effects on the
accuracy of a radar operating in the millimeter wave regime. A theoretical analysis of the attenuation
and group delay emerged due to the suspension of water droplets in the atmosphere, occurring in
foggy weather conditions. We derive the relations between the optical visibility in foggy conditions
and the dielectric properties of the atmospheric medium, as well as its complex refractivity.

The effects of the fog on radar accuracy are demonstrated by generating fog artificially with a fog
machine. The resulted heavy fog produced in a closed corridor enables an experimental realization
of the theory even in a relatively short distance. The dimensions of the generated fog droplets were
small enough to keep the millimeter wave scattering well within the Rayleigh regime and neutralize
variations in the environmental conditions, such as temperature and pressure that may affect droplet
sizes. Small droplet dimensions enabled us to distribute the fog quite uniformly along the corridor,
and bring the visibility to be low enough to demonstrate absorption and dispersion effects caused by
the suspended small droplets.

The measurements were done using high resolution FMCW radar operating at 330 GHz. The high
bandwidth of the radar and its extended frequency sweep, allow us to reveal the effects quantitatively.
The experimental measurements showed an agreement with the calculated results predicted by
the theory.
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