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Abstract: Falls in older adults present a major growing healthcare challenge and reliable detection
of falls is crucial to minimise their consequences. The majority of development and testing has
used laboratory simulations. As simulations do not cover the wide range of real-world scenarios
performance is poor when retested using real-world data. There has been a move from the use of
simulated falls towards the use of real-world data. This review aims to assess the current methods
for real-world evaluation of fall detection systems, identify their limitations and propose improved
robust methods of evaluation. Twenty-two articles met the inclusion criteria and were assessed with
regard to the composition of the datasets, data processing methods and the measures of performance.
Real-world tests of fall detection technology are inherently challenging and it is clear the field is in
its infancy. Most studies used small datasets and studies differed on how to quantify the ability to
avoid false alarms and how to identify non-falls, a concept which is virtually impossible to define and
standardise. To increase robustness and make results comparable, larger standardised datasets are
needed containing data from a range of participant groups. Measures that depend on the definition
and identification of non-falls should be avoided. Sensitivity, precision and F-measure emerged as the
most suitable robust measures for evaluating the real-world performance of fall detection systems.

Keywords: accidental falls; fall detection; real-world; signal analysis; performance measures;
wearable sensors; non-wearable sensors; accelerometers; cameras

1. Introduction

Falls in older adults and their related consequences pose a major healthcare challenge that is set
to grow over the coming decades [1]. Approximately 30 percent of those over the age of 65 experience
one or more falls each year, which rises to around 45 percent in those over 80 [2]. Roughly six percent
of older adult falls result in fractured bones [3,4]. Falls are estimated to cost the UK over one billion
pounds each year, with fractures being the most costly fall related injury [5].

Even when the injuries are not so serious, fallers often struggle to get up unaided [6,7],
sometimes leading to a ‘long-lie’ where the faller remains trapped on the floor for an extended
period of time. Long-lies can lead to dehydration, pressure sores, pneumonia, hypothermia and
death [8–11]. Further to the physical consequences, the fear of falling can impact on older adults’
quality of life. A fear of falling is associated with a decline in physical and mental health, and an
increased risk of falling [12]. Estimates suggest that between 25 and 50 percent of older adults are
fearful of falling and half of these will limit their activities as a result [13,14].
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One method used to address the severe consequences associated with falling is the use of a push
button alarm system, which can ensure help is received quickly, and reduce the risk of a long-lie.
However, studies have shown that 80 percent of fallers do not or cannot activate their alarm following
a fall, meaning an alternative approach is needed [6,15]. As a result, there has been extensive research
into automatic detection of falls and a broad range of approaches have been developed.

In order to understand the efficacy of the automated fall detection systems, it is important to have
a robust method of testing performance. Key to the assessment of these systems is the evaluation
of reproducibility and experimental validity [16]. There are two types of experimental validity:
internal and external. Internal validity is the extent to which the results truly reflect the capability
of the tested system, and were not influenced by other confounding factors or systematic errors.
External validity is the extent to which the results can be generalised across people and environments.

External validity has been a central issue in tests of fall detection systems. The poor external
validity has been caused by the use of laboratory simulated falls conducted by young healthy
adults. The accidental, unexpected and uncontrolled nature of a fall makes it challenging to simulate.
When a person simulates a fall the movement is expected, deliberate and carried out in a safe space
where injury is highly unlikely. Therefore, reflexes to prevent or lessen the severity of the fall are
likely to be suppressed leading to a different pattern of movement. When 13 previously published
approaches were tested using real-world fall data, the performance was found to be considerably
worse (mean sensitivity and specificity of 0.57 and 0.83, respectively) than had originally been reported
from testing using simulations (mean sensitivity and specificity of 0.91 and 0.99, respectively) [17].

Despite the challenge associated with simulating falls, the vast majority of studies have used
simulated fall data (for recent reviews see [18,19]). The use of laboratory simulated falls has been an
accepted approach due to the challenge associated with recording real-world falls. The rarity of falls
means that recording them is both costly and time consuming. Bagala et al. [17] estimated that to
collect 100 falls, 100,000 days of activity would need to be recorded, assuming a fall incidence of one
fall per person every three years. Despite this challenge, the focus is now moving to real-world fall
data due to the external validity issues inherent in simulated fall based testing. Real-world data, by its
very nature provides high ecological validity and therefore contributes to higher external validity.

The use of real-world data, while a significant step forward, does not make the test robust.
Other factors such as cohort selection and size are important for external validity. In addition, the use
of real-world data does not increase the internal validity, in fact, the level of variation and abundance
of confounding factors creates a greater risk of systematic errors. Therefore, careful consideration and
planning of both the data collection and test procedure is vital to ensure the validity of results.

All methods of testing fall detection systems share the same basic framework which shapes the
whole method from data collection through to data processing. Therefore, a basic understanding
of this framework is needed to understand the best method to evaluate fall detector performance.
Fall detection is a case of binary classification; each movement is classified as either a fall (positive case)
or non-fall (negative case). For each movement there are four possible outcomes:

• True Positive (TP)—Correctly detected fall
• True Negative (TN)—Non-fall movement not detected as a fall
• False Positive (FP)—Classified as a fall when none occurred
• False Negative (FN)—A fall which was not detected

These four values can be represented as a table comparing the actual data with the system’s
predictions, this is known as a confusion matrix (Figure 1). All further measures can be calculated
from either a complete confusion matrix or a subset of one. Therefore, studies should aim to collect
data and process it in such a way that as many of these four values as possible can be calculated.
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Figure 1. Example confusion matrix.

The aim of this review is to identify the methods which have previously been used to evaluate fall
detector performance using real-world data and investigate how the differences in these methods of
evaluation effect the results. The review covers the methods of data collection and processing as well
as the performance measures which have been used for evaluation. In this review, we aim to identify
the strengths and limitations of current approaches and propose a more robust approach of evaluation
based on the findings.

2. Methods

A systematic search was conducted in August 2017 and repeated in March 2018, using the
following on-line literature databases: Medline, Cinahl, Pubmed, Web of Science and IEEE Xplore.
The search aimed to find all records where a fall detection technology (hardware or software) had
been tested using real-world falls. The search strategy used is shown in Table 1. Papers were excluded
where no fall detection technology was tested, where tests used fall simulations, or the technology was
not aimed at older adults. Only articles available in English were included.

Table 1. Example Search Strategy for PubMed.

fall*-detect*[Title/Abstract] OR fall*-sensor*[Title/Abstract] OR
fall*-alarm*[Title/abstract]

AND real-world[Title/Abstract] OR real-life[Title/Abstract] OR free-living[Title/Abstract]
OR community-dwelling[Title/Abstract] OR home-dwelling[Title/Abstract] OR
domestic-environment[Title/Abstract] OR long-term-care[Title/Abstract] OR
care-home[Title/Abstract] OR nursing-home[Title/Abstract] OR
hospital[Title/Abstract]

The studies which met the inclusion criteria were assessed with regard to the method used to test
the fall detection system. The focus was to assess the robustness of these tests and we therefore did not
assess the systems’ design or performance. For a comparison of wearable systems see [17] and for a
comparison of non-wearable systems see [20]. All included studies tested fall detection technology
using real-world fall data. Where studies reported on both tests using simulated data and tests using
real-world data, only the methods used for the real-world portion of the data were considered.

First we reviewed the information studies provided about their participants, how they collected
data and the volume of data collected. Next, we examined the methods used to identify fall events
and to process the data. Finally, we evaluated the use of each applicable performance measure.

3. Results

The systematic search returned 259 unique records. Following application of the selection criteria,
22 papers were identified for analysis. The full breakdown of the literature identification process,
including the reasons for exclusion, is shown in Figure 2. Table 2 provides a breakdown of the 22
included papers with regard to participant groups, devices used, participant numbers, numbers of
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recorded falls, the quantity and processing of non-fall data and finally, the performance measures
reported. The following sections provide further detail to complement Table 2.

Figure 2. Flow diagram of the systematic search.
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Table 2. Summary of papers evaluating fall detection systems using real-world falls.

Author Participant Group Additional
Information

Device Type
Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation

Performance
Measures

Aziz [21] Residents of a
long-term care
facility who had
experienced at least
one fall in the
previous year

Age, mobility
assessment

Accelerometer 9 1 214 h Data were
divided into
2.5 s time
windows
with a 1.5 s
overlap. The
30 s of data
following a
fall event
were
ignored.

Sensitivity,
Specificity,

FPRT, TP, FP,
FN

Patients at a
hospital geriatrics
department with
Progressive
Supranuclear Palsy

Age Accelerometer 10 9 178 h

Bagala [17] Patients with
Progressive
Supranuclear Palsy

Age, gender,
height, weight

Accelerometer 9 29
the

number
from
each

group
was not

provided

A total of 168 h from
seven of the participants.
Recordings were divided
into 60 s windows and
only the 1170 windows
where
max(RSS)−min(RSS) >
1.01 g were included

Sensitivity,
Specificity,

FPRT,
Precision

NPV,
AccuracyCommunity

dwelling older
adult

None Accelerometer 1
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Table 2. Cont.

Author Participant Group Additional
Information

Device Type
Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation

Performance
Measures

Bloch [22] Patients at a
geriatric
rehabilitation ward
with an identified
risk of falling

Age Working
alarm

composed
of an

accelerometer
and infrared

sensor

10 8 A total of 196 days. Data
was processed on-line and
the analysis compared the
alarm times to reported
fall times. Assumed
30 fall like events per day
to estimate of the number
of non-fall events.

Sensitivity,
Specificity,
Precision,
NPV, TP

Bourke
[23]

Patients at a
geriatric
rehabilitation unit

None Accelerometer
and

gyroscope

42 89 A total of 3466 events
extracted using a
dynamic detection
algorithm and further
reduced to 367 events
where: max(RSS) > 1.05 g
Total length of recorded
data was not given.

Sensitivity,
Specificity,
Accuracy,

ROC AUC
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Table 2. Cont.

Author Participant Group Additional
Information

Device Type
Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation

Performance
Measures

Chaudhuri
[24]

Community
dwelling older
adults

None Working
alarm

consisting
of an

accelerometer,
magnetometer,

and
gyroscope

18 14 A total of 1452.6 days.
Details of data
preparation not given.

Sensitivity,
Specificity,
Precision,

NPV,
Confusion

Matrix

Chen [25] Community
dwelling older
adults living in
geriatric
rehabilitation
centres

Age, gender,
height, weight

Accelerometer 22 22 A total of 22 events. Only
data from a 1200 s
window around the falls
was used, data up to 1 s
before each fall were used
as non-fall events.

Sensitivity,
FPR,

Accuracy,
Confusion

matrix
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Table 2. Cont.

Author Participant Group Additional
Information

Device Type
Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation

Performance
Measures

Debard
[26]

Older adults Age Camera 4 25 A total of 14,000 h. Only
data for the 20 min up to
and including the falls
were used, this was
divided into 2 min
windows.

Sensitivity,
Specificity,
Precision,
Confusion

matrix

Debard
[27]

Older persons
(two community
dwelling, one in a
nursing home and
four in assisted
living), two of
which did not fall
and were excluded

Age, mobility
assessment,
walking aid

use

Camera 7 29 Over 21,000 h recorded.
Only data from the 24 h
prior to each fall were
used which was divided
into 1 s windows.

Sensitivity,
Precision,
PR Curve,

PR AUC, TP,
FP, FN
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Table 2. Cont.

Author Participant Group Additional
Information

Device Type
Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation

Performance
Measures

Debard
[28]

Older persons
(two community
dwelling, one in a
nursing home and
four in assisted
living), two of
which did not fall
and were excluded

Age, mobility
assessment,
walking aid

use

Camera 7 29 Over 21,000 h recorded.
Only data from the 24 h
prior to each fall were
used which was divided
into 1 s windows.

Sensitivity,
Precision,
PR Curve,

PR AUC, TP,
FP, FN, FPRT

Feldwieser
[29]

Community
dwelling older
adults

Age, height,
weight,
mobility

assessments,
cognitive

assessments

Accelerometer 28 12 A total of 1225.7 days
(average daily user wear
time 8.1 ± 4.8 h). Details
of data preparation not
given.

TP, FP, FPRT

Gietzelt
[30]

Older adults with
recurrent falls

Age, gender,
mobility

assessments,
cognitive

assessments

Accelerometer
and camera

3 4 A total of 10 days. Details
of data preparation not
given.

TP, FPRT
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Table 2. Cont.

Author Participant Group Additional
Information

Device Type
Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation

Performance
Measures

Godfrey
[31]

Older adult with
Parkinson’s disease

Age, BMI,
balance

assessment

Accelerometer 1 1 A total of 7 days. No
preparatory steps.

TP, FPRT

Hu [32] Community
dwelling older
adults with a
history of falls

Age, gender,
height, weight

Accelerometer
and

Gyroscope

5 20 A total of 70 days, divided
into sliding windows.
Window size was varied
from 5 to 30 min.

Sensitivity,
Specificity

Kangas
[33]

Residents of
elderly care units

Age, gender,
mobility

assessments,
cognitive

assessments

Accelerometer 16 15 A total of 1105 days
(average daily user wear
time 14.2 ± 6.3 h). Data
processed on line, 14 s
raw acceleration data
where recorded when
acceleration of all three
axes fell below 0.75 g.

Sensitivity,
FPRT, TP, FP
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Table 2. Cont.

Author Participant Group Additional
Information

Device Type
Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation

Performance
Measures

Lipsitz [34] Residents of a
long-term care
facility who had at
least once in the
previous 12 months

Age, gender,
height, weight,

BMI,
prevalence

of 21
comorbidities

Working
alarm system

using an
accelerometer

62 89 A total of 9300 days.
Working alarm, raw
sensor data not stored,
analysis compared the
alarm times to reported
fall times.

Sensitivity,
Precision, TP,

FP, FN

Liu [35] Older adult None Doppler radar 1 6 A total of 7 days. No
preparatory steps.

TP, FPRT
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Table 2. Cont.

Author Participant Group Additional
Information

Device Type
Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation

Performance
Measures

Palmerini
[36]

Patients with
Progressive
Supranuclear Palsy
staying in a
geriatric
rehabilitation unit

Age, gender Accelerometer 1 12 A total of 168 h from four
of the participants.
Recordings were divided
into 60 s windows and
only the 1170 windows
where
max(RSS)−min(RSS) >
1.01 g were included

Sensitivity,
Specificity,
FPR, FPRT,

Informedness,
ROC Curve,
ROC AUC,

FP
Community
dwelling patients
with Progressive
Supranuclear Palsy

Age, gender Accelerometer 6 16

Community
dwelling older
adult

Age, gender Accelerometer 1 1

Rezaee
[37]

Nursing home
residents

None Camera Not given 48 A total of 163 normal
movements extracted
from video sequences
totalling 57,425 frames.
Details of identification
not given.

Sensitivity,
Accuracy,

FPR,
Confusion

matrix
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Table 2. Cont.

Author Participant Group Additional
Information

Device Type
Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation

Performance
Measures

Skubic [20] Residents of an
older adult
independent living
facility

Age, gender Doppler radar 1 13 10 days Details of
data
preparation
not given for
any of the
datasets.

Sensitivity,
FPRT, TP, FP

Residents of an
older adult
independent living
facility

Age, gender Kinect 16 9 3,339 days

Resident of an
older adult
independent living
facility

Age, gender,
mobility

device use

Kinect 1 142 601 days

Residents of
assisted living
apartments

Gender Kinect 67 67 10,707 days

Soaz [38] Older adult Age, gender Accelerometer 1 1 3.5 h No
preparatory
steps.

Sensitivity,
FPRT, FP

Older adults Age, gender Accelerometer 14 0 996 h
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Table 2. Cont.

Author Participant Group Additional
Information

Device Type
Number of
Participants

Number
of Falls

Quantity of Non-Fall
Data and Method of

Preparation

Performance
Measures

Stone [39] Residents of an
older adult
independent living
facility

Age, gender Kinect 16 9 A total of 3339 days.
Device only stored data
for periods where motion
was detected.

Sensitivity,
FPRT

Yu [40] FARSEEING data
used previously
in [17,23] no
further details
provided

None Accelerometer 22 22 A total of 2618 normal
activities extracted as 1 s
windows from the 2 min
surrounding the fall
signals.

Sensitivity,
Precision,
Specificity

Notes: Performance measures reported in the articles abstract are shown in bold. Where a working alarm system was tested this is stated in the Device Type column,
otherwise the test was carried out off-line, using the collected dataset. Soaz [38] focused on estimating the false alarm rate, however one real fall was recorded by
chance and was included. RSS = Root Sum of Squares; FPRT = False Positive Rate Over Time; NPV = Negative Predictive Value; ROC Curve = Receiver Operating
Characteristic Curve; ROC AUC = Area Under ROC Curve; PR Curve = Precision Recall Curve; PR AUC = Area Under Precision Recall Curve; TP = True Positives;
FP = False Positives; FN = False Negatives; TN = True Negatives.
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3.1. Participant Descriptions

The level of detail provided about participants varied considerably. All but three [31,38,40] of the
articles stated whether participants were community dwelling, in long-term care or hospital patients.
Five articles did not provide any additional descriptive information on the participants [23,24,35,37,40].
The other eighteen articles describe participant’s age, twelve also provide gender information and six
provide details of height and weight or BMI [17,25,29,31,32,34]. Four articles provided information on
specific medical conditions, three recruited participants with Progressive Supranuclear Palsy [17,21,36]
and one included a single older adult with Parkinson’s disease [31]. Lipsitz et al. [34] provided the
most in-depth description with a breakdown of the proportion of participants with a range of 21
comorbidities. Eight articles reported results of mobility assessments [21,27–31,33,38], three articles
provided information on walking aid use [20,27,28] and three articles additionally reported results
of cognitive assessments [29,30,33]. None of the other 15 articles reported standardised measures of
cognitive or mobility status.

3.2. Method of Data Collection

All studies used the same general approach of monitoring participants with one or more
sensor devices. Studies can be classified into two main categories, those using wearable technology
(e.g. accelerometers or gyroscopes) and those using non-wearable technology (e.g. fixed cameras or
Kinect sensors). Both approaches have advantages and disadvantages with regard to fall detection.
For example, wearable devices are always with the user, however they may forget to wear the device.
In contrast, non-wearable devices have a limited capture area but the user can safely forget about them.
For a full discussion on the advantages and disadvantages of different sensor types refer to recent
reviews [19,41].

Fifteen studies used wearable technology and ten used non-wearable, Table 2 shows full details
of the devices used in each study. Accelerometers are the most common choice of sensor and
have been used in 15 of the studies [17,21–25,29–34,36,38,40]. Eight studies tested some form of
optical sensor [20,22,26–28,30,37,39], making them the most common choice of non-wearable devices.
One additional study deployed an optical sensor as part of their system, but this did not record any
falls so they could not test it [29].

Studies can be further classified based on whether the device used was capable of processing data
on-line and raising an alarm when it detected a fall. Three studies deployed functioning wearable alarm
systems [24,33,34], one study deployed a system combining wearable and non-wearable devices [22],
no studies deployed an alarm system solely using non-wearable devices. Two of the studies which
tested working alarm systems did not store the raw sensor data, only recording when the alarm went
off [22,34], one article did not state if the raw sensor data was stored [24]. The raw sensor data can be
used for future development and testing, and therefore the favoured approach is to store this data.

The availability of the collected data is important for future work and the direct comparison of
approaches. None of the studies used publicly available datasets nor made their real-world fall data
publicly available. Two studies [25,40] made use of a subset of the FARSEEING repository, which is
available on request. The FARSEEING project is a real-world fall repository project funded by the
European Union. Four studies [17,21,23,36] were conducted by members of the FARSEEING project or
in collaboration with members, and also used data from the FARSEEING repository. No other studies
provide any information on the availability of their datasets.

3.3. Number of Participants and Falls, and the Volume of Non-Fall Data

There is a large range in the number of participants included, with most studies using small
cohorts. One article did not provide any information on the number of participants [37]. Three studies
had just a single participant [31,35,38] and one study [20] used data from only one participant in
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parts of their analysis. The maximum number of participants was 62 [34] and the median was nine
(IQR 4–18).

There was an equally large range in the number of fall events recorded. Two studies included
just a single real fall [31,38] and in one of the two datasets used by Aziz et al. [21] only one fall was
recorded. The maximum number of falls was 89, which was achieved in two separate studies [23,34].
The median number of falls contained in the datasets used was 17.5 (IQR 8.25–29).

Where reported, the length of the monitoring period varied considerably and comparison
is made difficult by the inconsistent choice of reported metrics. Thirteen articles provided
the total length of the recorded data, but did not provide details of the proportion where the
system was recording participant’s movement (participant in the capture area or wearing the
device) [20–22,24,26–28,30,32,34,35,38,39]. The median length of total recorded data, from studies
which provided it, was 592 days (IQR 21–1474). Only three articles provided information on device
wear time, in these studies the mean wear times were 8.1 [29], 14.2 [33] and 24 [31] h per day. None of
the articles on non-wearable devices provided information on the proportion of time during which
participants were in the capture area.

Six articles did not clearly state the time period over which participants were monitored
or the amount of data captured, instead they provided the number of extracted non-fall
events [17,23,25,36,37,40]. The number of non-fall events used in these studies ranged from 22 [25] to
3466 [23].

3.4. Method of Fall Identification and Validation

One of the main challenges in recording real-world falls is ensuring every fall that occurs is
identified accurately. How fall events are identified is influenced by both the choice of device and
whether the system is capable of raising alarms in real-time. The device used determines the type
and detail of information available for retrospective verification of fall times and types. A camera,
for example, provides a greater level of information compared to an accelerometer; assuming the video
footage is not highly pre-processed, for privacy reasons, before being stored. Where working alarm
systems are deployed, all detected falls can be quickly verified, providing additional robustness over a
single reporting method such as staff incident reports.

Four studies [22,24,33,34] deployed a functioning wearable alarm system. As the alarm systems
were being validated, a second reporting system was still needed to identify falls which did
not trigger an alarm. Three of the studies used staff incident reports in addition to the alarm
system [22,33,34]. It was unclear what secondary method of fall identification was used in one
of the studies [24]. Of the 18 studies which analysed the data retrospectively, three identified falls using
staff reports [17,21,39], five used participant self-report [29–32,38] and ten did not state how falls were
identified [20,23,25–28,35–37,40].

Where self-report of falls is used it is important to consider the cognitive ability of participants,
especially their memory. Only two of the five studies which used self-report provide results of
assessments of cognitive ability [29,30]. Both of these studies used a Mini Mental State Exam [42].
Feldwieser et al. [29] found no signs of cognitive impairment and Gietzelt et al. [30] found that one of
their three participants had cognitive impairment, but does not report how they accounted for this.

It is important to consider that reported fall times might not be accurate and that some falls may
not be reported, or may be reported by more than one member of staff with different timestamps.
This could, for example, be due to delays in completing the report, delays in the faller being discovered,
participant recall problems or staff naturally prioritising helping the faller over checking and reporting
the time. Only three articles describe methods to check reported fall times [17,21,32]. Two of
these [17,21] used datasets from the FARSEEING repository where expert analysis of the sensor
signals in combination with fall reports was used to pinpoint the fall signal. Hu et al. [32] reported
correlating self-reported fall times with the signals, but provided no details on how this was carried out.



Sensors 2018, 18, 2060 17 of 28

3.5. Methods of Data Processing

There are two approaches for testing real-world fall detection systems, the key difference is how
the data is prepared. The first approach is based on simply identifying when falls occur in continuous
user movement or a stream of sensor data, we call this the continuous data approach. The second
approach is based on a fall detector classifying events as either a fall or not a fall, we call this the
event based approach. The following sections explain each of these approaches and review their use.
In five studies it was unclear which approach was used [20,24,29,30,39].

3.5.1. Continuous Data Approach

The continuous data approach mirrors real-world usage of fall alarm systems where user
movement is the input and fall times or alarms are the output. This approach is therefore the primary
way of testing deployed fall alarm systems but can also be used for retrospective testing using existing
data. The fall detection systems sensors convert movement into a stream of raw data which is then
processed by the software component of the system. In this approach all aspects of data processing
are part of the fall detection software and are tested as a single unit. To test performance the systems
predictions are compared to the actual verified fall times. This comparison allows quantification of the
number of true positives (actual and predicted timestamps match), false positives (predicted fall with
no actual fall) and false negatives (fall occurred but none was predicted).

True negatives can be quantified if the times when non-falls occurred were recorded, however,
non-falls are not defined. In the strictest sense non-falls are everything which is not a fall, but that
does not enable their occurrence to be quantified. It is not possible to count when a fall doesn’t occur
without arbitrarily dividing the time-series data into events, and counting the events where no fall
occurred. Such a method of dividing the data would fall under the event based testing approach.
In the continuous data approach any segmenting of the data for processing purposes is part of the fall
detection system, not the test procedure.

Six studies used the continuous data approach [22,31,33–35,38]. Bloch et al. [22] processed the
data using the continuous data approach, and then used an assumption of thirty ‘fall-like’ events
per day to calculate a number of true negatives (30 × number of days the sensor was in use). The other
five studies did not attempt to quantify TN.

3.5.2. Event Based Approach

The event based approach has its roots in tests using laboratory based simulation datasets.
When data is collected in the laboratory a predefined set of movements or events is simulated, the times
of these events is known and therefore they can be easily extracted. To test performance all the events
must first be labelled as either a fall or not a fall using the record of event times. For each event the
label is compared to the software’s predictions allowing a complete confusion matrix to be generated.

In real-world data, events are less clearly defined than in simulated data since there is no
complete record of the movements which occurred. The creation of events from real-world data
has been based on arbitrary rules rather than identification of the underlying movements of the users.
The events are labelled using reported fall times, where no fall occurred the event is considered a
non-fall. As this method always yields non-fall events, true negatives can be quantified, unlike in the
continuous approach.

Eleven studies used the event based approach [17,21,23,25–28,32,36,37,40]. The predominant
method to create events was based on time windows, where the data is sliced using constant time
intervals, for example each 60 seconds of data is one event. However, there is no consensus on what
constitutes an event and in practice, a method of reducing the volume of data is often used, for example,
to exclude data where no movement was recorded. The time windows can overlap allowing the same
data to be processed multiple times, although the rationale for this is not clear.
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To create events, one study used 2.5 s windows with a 1.5 s overlap and kept all the events [21].
Two studies divided the data into 60 s windows and used a movement detection algorithm to select
events [17,36]. Bourke et al. [23] also used a movement detection algorithm to select events but does
not describe the windowing technique. Two studies used the same dataset where the 24 hours prior
to each fall was divided into one second windows [27,28]. One study used self-reported wear time
to reduce the dataset prior to dividing into windows, but does not provide any details about the
windowing technique [32].

Three studies used only a limited section of data from around each fall. Debard et al. [26]
divided up the 20 minutes of data prior to a fall into two minute windows. Chen et al. [25] only used
data from 20 minutes surrounding each fall and used the section of data up to one second prior to
impact as non-fall events. Yu et al. [40] divided the two minutes around each fall into one second
windows, removed the one second window where the fall occurred and used the remaining windows
as non-fall events.

3.6. Definition of Performance Measures and Review of Their Use

3.6.1. Sensitivity

Sensitivity (also known as recall and true positive rate) is the proportion of falls which are correctly
detected (Equation (1)). The inverse of sensitivity is miss rate (false negative rate) which quantifies
the proportion of falls not detected (Equation (2)). Sensitivity is by far the most commonly reported
statistic; it was reported in 18 of the articles [17,20–28,32–34,36–40] and could be calculated from the
information given in the other four [29–31,35].

Sensitivity =
TP

TP + FN
=

TP
P

(1)

Miss Rate =
FN

FN + TP
=

FN
P

= 1− Sensitivity (2)

3.6.2. Specificity

Specificity (also known as true negative rate) is the proportion of non-fall events which are
correctly detected (Equation (3)). It quantifies the ability to avoid false positives (false alarms).
The inverse of specificity is false positive rate, which is the proportion of non-fall events mistakenly
detected as falls (Equation (4)). Nine articles reported specificity [17,21–24,26,32,36,40] and two
reported false positive rate [36,37]. It is unclear whether Chen et al. [25] reported specificity or false
positive rate, as the reported number of TN and FP suggest that what they report as specificity is in fact
false positive rate. Specificity could be calculated from the information provided in a further two of
the studies [27,28].

Specificity =
TN

TN + FP
=

TN
N

(3)

False Positive Rate =
FP

FP + TN
=

FP
N

= 1− Specificity (4)

3.6.3. False Positive Rate over Time

False Positive Rate over Time (FPRT) has become a popular measure in real-world tests of fall
detection. This measure provides information on the frequency of false alarms. Twelve articles report
the number of false positives either per hour or per day [17,20,21,28–31,33,35,36,38,39] and it could be
calculated from the information provided in seven others [24–27,32,34,37].
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3.6.4. Precision

Precision (also known as positive predictive value) is the proportion of alarms which are true falls
(Equation (5)). It therefore provides the probability that an alarm will be an actual fall and not a false
alarm. For example, a precision of 0.5 means that half of alarms will be actual falls, and half will be false
alarms (1 false positive for every detected fall). Eight articles reported precision [17,22,24,26–28,34,40]
and it could be calculated from the information provided in all of the other articles.

Precision =
TP

TP + FP
(5)

3.6.5. Negative Predictive Value

Negative Predictive Value (NPV) is the proportion of events classified as non-falls which are
true non-fall events (Equation (6)). NPV therefore provides information about the ability to correctly
classify non-fall events. NPV will be high if a system correctly ignores many times more non-fall
events than the number of falls it fails to detect. Therefore, for false negatives to have any notable
effect, the number of falls and non-falls must be approximately equal. However, in real-world fall
data falls are usually much less frequent than non-fall events, which limits the insights yielded from
NPV as systems typically score over 0.99 out of 1 [17,22,24]. Three articles reported NPV in their
results [17,22,24]. NPV could also be calculated from the information provided in eleven of the other
articles [21,23,25–28,32,34,36,37,40].

Negative Predictive Value =
TN

TN + FN
(6)

3.6.6. Accuracy

Accuracy is the proportion of predictions which were correct (Equation (7)). Accuracy is a measure
which summarises the whole confusion matrix in a single value. Accuracy’s major limitation is the
inability to handle imbalanced datasets, for example, in real-world fall data where there are many
more non-fall events than falls. Similar to NPV, accuracy is dominated by the larger group and the
effect is proportional to the size of the imbalance. Therefore, in real-world fall detection studies,
accuracy is skewed towards the correct detection of non-fall events over the correct detection of falls.
For example, in eight of the algorithms tested by Bagala et al. [17] the accuracies were greater than
0.9 with sensitivities below 0.6, in one case an accuracy of 0.96 with a sensitivity of 0.14. Four articles
reported accuracy [17,23,25,37] and it could be calculated from the results provided in seven of the
other articles [21,24,26–28,36,40].

Accuracy =
TP + TN

P + N
(7)

3.6.7. F-Measure

F-measure (also known as F-score) is the harmonic mean of sensitivity and precision (Equation (8)).
F-measure, therefore, considers all outcomes except true negatives (non-falls). In fall detection,
the priorities are detected falls (TP), missed falls (FN) and false alarms (FP). F-measure considers
all of these outcomes and therefore provides a good overview of performance. No articles
report a value for F-measure, however it could be easily calculated from their results as eight
articles [17,22,24,26–28,34,40] reported both sensitivity and precision and all but two [32,39] reported
enough information to calculate both sensitivity and precision.

F-measure = 2× Precision× Sensitivity
Precision + Sensitivity

(8)
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3.6.8. Informedness

Informedness (also known as Youden’s J Statistics or Youden’s Index) is a statistic which combines
sensitivity and specificity (Equation (9)). It is the probability that predictions are informed versus a pure
guess. Informedness is linked to the proportion of cases classified correctly. However, unlike accuracy,
it is robust to an imbalance in the number of fall and non-fall events. This is achieved through equal
weighting of sensitivity and specificity which are in turn the proportions of falls detected and non-falls
correctly ignored. The value ranges from negative one to positive one. Zero indicates predictions
are no better than guessing, positive one indicates perfect predictions and negative one indicates
all predictions are the opposite of the true value. In cases where the value is negative, the output
classes can simply be swapped over. One study reported informedness [36], however, 12 other articles
reported both sensitivity and specificity or false positive rate, or the information necessary to calculate
them [17,21–28,37,40], so informedness could be calculated from their results.

Informedness = Sensitivity + Specificity− 1 (9)

3.6.9. Markedness

Markedness is a statistic which combines precision and NPV (Equation (10)). Markedness is
linked with the proportion of predictions which are correct. It combines the proportion of correct
positive and negative predictions with equal weighting and is therefore unaffected by imbalance in
the number of positive and negative predictions. As with informedness, the result is a value between
negative and positive one. No articles reported markedness, but twelve did report enough information
for markedness to be calculated [17,21–28,36,37,40].

Markedness = Precision + NPV− 1 (10)

3.6.10. Matthews Correlation Coefficient

Matthews Correlation Coefficient (MCC) is the geometric mean of informedness and markedness
(Equations (11) and (12)). It should be noted that Equation (11) only works if informedness and
markedness are both positive, Equation (12) works in all cases. MCC considers both the proportion
of events classified correctly and the proportion of correct predictions and is therefore robust to
imbalanced datasets. The result is a value between negative and positive one as with both informedness
and markedness. None of the articles reported MCC, enough information to calculate MCC was given
in 14 articles [17,21–28,32,34,36,37,40].

MCC =
√

Informedness×Markedness (11)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(12)

3.6.11. Receiver Operating Characteristic Curve

A Receiver Operating Characteristic (ROC) Curve is a plot of sensitivity versus false positive
rate as the primary threshold of the classifier is adjusted. ROC curves can therefore be used to
understand the trade-off between sensitivity and false positive rate and optimise a primary threshold.
There could be debate as to which balance of sensitivity and false positives is optimal, therefore a
ROC curve provides useful insight. However, it is difficult to compare systems robustly based on a
curve. Consequently, it is in the optimisation where ROC curves are best used, rather than final results,
as only the optimised version will be deployed.
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ROC curves can be reduced to a single number by calculating the area under the curve (AUC).
AUC has been found to be a poor measure for comparing classifiers, particularly where the sample
size is small [43–45]. Two studies have used ROC analysis and reported AUC [23,36].

3.6.12. Precision-Recall Curve

A precision-recall (PR) curve is similar to a ROC curve, the difference is that precision is used
instead of false positive rate and the term recall is used in place of sensitivity. PR curves are preferred
over ROC curves when there is a large imbalance in the data [46]. Calculating AUC for PR curves
is more challenging than for ROC curves as precision does not increase linearly, meaning linear
interpolation yields incorrect results [46]. Two studies reported PR AUC [27,28], although it is unclear
how PR AUC was calculated in these studies.

4. Discussion

This is the first review to be conducted on the methods used to evaluate real-world performance of
fall detection systems. Ensuring a sound method is critical for meaningful results, therefore reflecting
on the way studies are conducted and seeking improvements to the method is vital in emerging areas
of research where no consensus has yet been reached. The real-world testing of fall detection systems
is currently in its infancy and this is reflected in our findings. The method is highly variable across
studies, which makes comparing the results difficult if not impossible. The following three sections
discuss the key issues and make recommendations for future studies.

4.1. Data Collection and Preparation

One major aspect which leads to variation between studies is the participant groups and the
differences in the movements and behaviours captured by the sensor systems. If insufficient detail is
gathered about participants it is challenging to reproduce the findings as differing results could be due
to differing participant characteristics. In addition, one may want to collect new data comparable to
that used in a previous study for the purpose of comparing the performance of a new system using
different sensors with previously tested systems. Information gathered about participants was both
inconsistent and insufficient to allow the data collection to be reproduced.

A comprehensive consensus process has previously been carried out by the FARSEEING
consortium [47]. As part of the consensus process the group identified a minimum set of clinical
measures which they deemed essential for the interpretation of real-world fall data. The measures
included age, height, weight, gender, fall history, assistive device use as well as assessments of mobility,
cognitive impairments and visual impairments. None of the reported studies have implemented
these recommendations.

Cognitive and mobility tests provide useful information about fall risk and the likelihood
of false positives caused by events such as ‘falling into a chair’ or improper use of the device.
Compared to standard metrics such as age, height and weight, assessments of mobility and
cognition provide a much deeper insight into participant’s fall risk and movement characteristics.
Therefore, standardised cognitive and mobility assessments should be prioritised. Deeper insights into
participant’s movements could be achieved though continuous profiling using activity monitoring
software to process the recorded dataset. However, development and validation of activity monitoring
software may be a barrier unless an existing activity monitoring system is used for the data collection.
Where such profiling is possible details should be reported to enhance the interpretation of results.

Another critical aspect of the test is the size of the dataset. Currently, the datasets used are
generally small, have been collected with a low number of participants and contain only a few falls.
Small datasets reduce the validity of the test and hinder reproducibility. Where the dataset is small
either due to few participants, a low incidence of falls or both, it is possible that only a limited subset of
movements and fall types were captured. In such cases comparisons of results to tests of other systems
is difficult as the dataset may be the main cause of differences in reported performance. Further,
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the generalisability of results is questionable where the sample size is small. The small datasets are
one factor which makes it difficult to understand which systems perform the best and therefore where
future development should focus. The other main factors are the different populations recruited
for studies and the limited insights into how this effects the fundamental aspect of the data—the
movements captured.

Due to the known challenges in recording fall signals, the only feasible way for most researchers
to gain access to a large number of fall signals is through collaboration. In addition, if systems are
tested using the same data, the results are directly comparable. Therefore, large shared test datasets
are needed to allow the performance of fall detection software to be compared. To facilitate the sharing
of datasets, the FARSEEING consortium have established a data repository which currently contains
over 300 fall signals [48]. However, more studies are needed to generate datasets that can be added to
the repository and used for robust testing of devices and development of improved software.

Even with shared data, there is still an issue of how to ensure all fall signals are accurately
identified. We have identified that the method used to identify the fall signals is poorly described
in published studies, leaving a large gap in our understanding of how the dataset was prepared.
The current prevailing method to identify fall signals is expert signal analysis to verify participant or
staff reported fall times. There is a risk that not all falls are reported, leading to real falls being included
as non-fall data. Expert signal analysis cannot overcome the issue of under reporting, but does at least
give greater confidence that inaccurate reported times were corrected and all included fall signals were
real falls.

Expert signal analysis, while clearly better than no verification, could lead to bias. Currently there
is an insufficient understanding of fall signals due to a limited number of recorded falls and a lack of
research into the profile of the signals. Our limited understanding could lead to atypical falls not being
verified and thus excluded. There is a risk that systems are designed to detect certain signal profiles
as falls and only these profiles are being verified as falls. Therefore the results could be artificially
improved through restricting the test data.

Unless a gold standard fall reporting system is used, such as video analysis, studies will be limited
in their ability to verify fall signals, under reporting of falls will remain a concern and there is a risk
of bias in the verification process needed to compensate for the inaccuracies of the ‘silver standard’
reporting system. The current lack of standardised method or gold standard, and the lack of reporting
how fall signals were identified and verified, inhibits understanding of results. A consensus is needed
on the process for fall signal identification and studies should clearly report their methods.

4.2. Data Processing

Two approaches were identified for preparing sensor signals for fall detection system testing and
we named these the continuous data approach and the event based approach. Both approaches have
issues surrounding what constitutes a non-fall. In the continuous data approach the issue is centred
around the definition and identification of non-falls. In the event based approach non-fall events can
be defined as any event which is not a fall. However, events could be defined as anything which is
either a fall event or non-fall event, and since falls are defined, the issue returns to what constitutes
a non-fall.

The strictest definition of non-falls as everything which is not a fall is not particularly useful.
This definition does not allow non-falls to be quantified in the continuous data approach and provides
no indication of how the data should be divided into events for the event based approach. A more
helpful concept is that of fall-like movements, a subset of non-falls which share characteristics with
falls. The FARSEEING consortium defined a fall as “an unexpected event in which the person comes
to rest on the ground, floor or lower level” [49]. A fall-like movement could therefore, by removing the
unexpected clause, be defined as “any event in which the person comes to rest on the ground, floor or
lower level”.
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With a definition for fall-like events these could be recorded, at least theoretically, in the same
manner as falls and therefore, allow true negatives to be quantified robustly. In reality it is not feasible
for a researcher to record the times of all fall-like movements in the same way that falls are recorded,
due to the vast quantity which would occur. An automated system would be more practical, although
it is unlikely to be easier to develop automated fall-like detection than automated fall detection systems.
Consequently, researchers must consider if the development of fall-like movement detection systems
is worth the investment, simply to extend the testing of fall-detection systems. Given that a robust
evaluation of fall detection systems can be achieved without the need for true negatives, and hence
non-fall or fall-like movements, we suggest that automated fall-like movement detection is unlikely to
bring benefits which outweigh the required investment.

4.3. Performance Measures

It is challenging to compare results across studies or determine the current state-of-the-art due
to disparity in the choice of measures reported and challenges calculating unreported measures.
The measures used to report and interpret performance vary widely across studies and not all studies
report the basic results from which all measures can be calculated (TP, FP, FN and TN). Where TP,
FP, FN and TN are not reported these can only be estimated, due to rounding of the reported results.
Using one of the tests reported by Bourke et al. [23] as an example, the number of FP could be any
value between 18 and 51 based on the reported specificity of 0.99 with 3466 total non-falls. To facilitate
the calculation of additional measures, future studies should report TP, FP, FN and TN if these can be
calculated robustly and are used in the calculation of the reported performance measures.

In addition to reporting enough information to allow further measures to be calculated, it is
important that the headline measures give a true reflection of performance and allow robust
comparisons to be made with other systems. Sensitivity has been a mainstay in previous studies, it is
an important aspect of system performance. Sensitivity only quantifies the ability to detect falls, it does
not consider false positives. The question is therefore which measure to pair sensitivity with to provide
understanding of the ability to avoid false positives. In addition, a single combined measure which
considers both aspects is important in order to understand the overall level of performance.

Specificity has been the most common choice of measure to quantify the ability to avoid
false alarms in laboratory based testing [19] and it has remained a common choice in real-world
tests. Specificity considers how well non-fall events are classified, it could therefore be considered
sensitivity’s natural counterpart. The weakness of specificity in the context of real-world fall detection
is the reliance on non-falls, which are poorly defined and troublesome to identify.

The need for researchers to design or select methods for non-fall identification opens up a
considerable possibility of bias. A method could be used which suits the specific system and dataset
causing distortion of the results and hindering comparisons with other systems. In the case of
specificity, the difficulty of the test is very much determined by the definition of a non-fall; the more
inclusive the definition, the more non-fall events and therefore the higher the score for the same
number of false positives. This effect can be seen in the study of Bourke et al. [23], where tests were
conducted twice using different definitions of non-falls. With the most restrictive definition of non-falls,
specificity ranged from 0.83 to 0.91. With the more open definition, specificity was consistently 0.98 or
greater. Expanding the definition includes more movements which are less fall-like, thus it creates an
easier test.

It is hard to prevent bias in selecting a definition of non-falls as it is likely unintentional.
One solution is to remove the need to select a method on a study by study basis, however, standardising
the method is challenging. Since there is currently no clear way to standardise non-fall identification,
the best option may simply be to avoid them altogether. A solution might be standard publicly
available datasets, with an agreed method to identify non-fall events. In such a case, the results are
comparable to each other, but not to other studies using other datasets or methods.
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Using standard data is challenging due to the vast array of sensors which could be used and
the huge number of combinations. It is simply not possible to have a single dataset used to test all
systems. Furthermore, it seems impossible to identify all types of relevant non-fall movements needed
for a universal standard dataset. Any measures which rely on non-falls (specificity, NPV, accuracy,
informedness, markedness, MCC and ROC AUC) are subject to the above problems and therefore
should not be used as a primary measure. Where measures reliant on non-falls are used the methods
should be described in detail and their limitations should be made clear to avoid confusion and
misinterpretation.

The issues surrounding non-falls substantially reduces the options for quantifying the ability to
avoid false positives and gauge overall performance. There are four possible measures which do not
rely on non-falls, these are FPRT, precision, F-measure and PR AUC.

FPRT is a useful measure to understand the frequency of false alarms, however differences in
the datasets affect the calculation. Wear time or time in the capture area must be considered, as false
positives will, most likely, be far lower when the device is not in use. Another consideration is which
hours of the day the device is in use; false positive rate during night time hours would be very different
to day time hours. Reporting of times when the device was monitoring participants was found to be
inadequate. Of the 11 articles which reported FPRT only two clearly reported wear time or time in the
capture area [29,33] and none reported any details on the distribution of this time throughout the day.

Our findings suggest that there is a lack of an agreed and clearly defined method to calculate FPRT.
Only one study clearly states that FPRT was calculated using solely the time a participant was being
monitored by the device [33]. None of the other studies appear to have taken usage time into account
when calculating FPRT. If usage time is not considered or reported it is unclear what extent device
usage, or lack thereof affected the result. An unused system is unlikely to produce false positives.
The issues in identifying wear time or time in the capture area could make FPRT an unreliable measure
to compare across studies. Although users and clinicians may find the rate of false positives over time
useful, it might be better to use a rate of something other than time.

Precision is an alternative to specificity and FPRT, it quantifies the false positives (FP) in relation
to detected falls (TP). TP and FP should, for any reasonable level of performance, be in the same order
of magnitude, therefore precision is resilient to the imbalance in the data. Further, the ratio between TP
and FP is unlikely to be notably affected by usage time, if a device is used half of the time, TP and FP
would be expected to be half compared to full device usage. Therefore, compared to FPRT, precision is
far less affected by device usage, or lack thereof. The proportion of fall predictions which were true
falls could be more useful than FPRT since frequent false positives may be acceptable to a frequent
faller, assuming the falls are detected. Precision should be the primary measure of the ability to avoid
false positives.

Sensitivity and precision together quantify the ability to detect falls and avoid false alarms,
therefore providing a complete portrayal of performance. In addition to sensitivity and precision
it is important to have a single measure which can quantify the trade-off between them. PR AUC
is one possible option, however it considers the performance of multiple sub-optimum versions
of the system as the system’s parameters are adjusted. Since only the optimised system can be
deployed, it is the optimised version which should be the focal point of the evaluation. F-measure,
the harmonic mean of sensitivity and precision, appears to be the most suitable single measure for
objective comparison. This trio of measures has two major advantages in robustness: (1) it does not
rely on non-falls and (2) it is resistant to issues surrounding wear time and time in the capture area.
Future studies should report sensitivity, precision and F-measure, and F-measure should be used as
the standard for comparing systems.

5. Summary and Conclusions

As focus in fall detection performance evaluation shifts from simulated to real-world fall data,
one must consider if the approach used for evaluating on simulations is optimum for real-world data.
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Through examining the published articles on evaluation of real-world fall detection, two issues have
become apparent:

1. The approaches to quantifying performance are inconsistent and many studies use measures
which provide limited representation of performance.

2. The number of falls is generally small and study populations are diverse, making comparison
between the datasets and results difficult.

It is critical that a consensus is reached on the most appropriate method to evaluate real-world
performance of fall detection systems.

To address the issues with the datasets there needs to be greater collaboration and sharing
of data. The FARSEEING consortium have made substantial steps to facilitate data sharing
and have recorded over 300 falls through collaboration between six institutions [48]. Six of the
22 studies published to date have used parts of this data to develop or test approaches to fall
detection [17,21,23,25,36,40], highlighting the importance of this data. However, further work is
still needed to grow the volume of available data, record more falls, improve standardisation and
further develop fall detection technology. Only through collaboration will the collection of a dataset
large enough for robust development and testing become possible.

To address the issues surrounding how performance is quantified studies should avoid the need
for non-falls. The concept is poorly defined and standardisation seems to be extremely problematic.
The concept of non-falls is only needed to allow the calculation of measures such as specificity and
accuracy, both of which are common in simulation based studies [19]. However, quantification of
the difference in false alarm rate between simulated and real-world tests is not possible due to the
disparity of the data. Therefore, traditional measures such as specificity and accuracy are of little value.
Continued use of these traditional measures may lead to confusion and improper interpretation of
performance. Measures which do not depend on non-falls should be used instead of these traditional
measures. Sensitivity and precision should be the cornerstones of the evaluation with F-measure used
for the objective comparison of systems.
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Abbreviations

The following abbreviations are used in this manuscript:

P Positive cases
N Negative cases
TP True Positives
FP False Positives
FN False Negatives
TP True Positives
NPV Negative Predictive Value
FPRT False Positive Rate over Time
MCC Mathews Correlation Coefficient
ROC Receiver Operating Characteristic
PR Precision-Recall
AUC Area Under Curve
RSS Root Sum of Squares
IQR InterQuartile Range
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