
sensors

Article

An Exception Handling Approach for
Privacy-Preserving Service Recommendation
Failure in a Cloud Environment

Lianyong Qi 1,*, Shunmei Meng 2,3, Xuyun Zhang 4 ID , Ruili Wang 5, Xiaolong Xu 6 ID ,
Zhili Zhou 6 and Wanchun Dou 3

1 School of Information Science and Engineering, Qufu Normal University, Rizhao 276826, China
2 School of Computer Science and Technology, Nanjing University of Science and Technology,

Nanjing 210094, China; mengshunmei@njust.edu.cn
3 State Key Laboratory for Novel Software Technology, Department of Computer Science and Technology,

Nanjing University, Nanjing 210023, China; douwc@nju.edu.cn
4 Department of Electrical and Computer Engineering, University of Auckland, Auckland 1023,

New Zealand; xuyun.zhang@auckland.ac.nz
5 Institute of Natural and Mathematical Sciences, Massey University, Auckland 0745,

New Zealand; Ruili.WANG@MASSEY.AC.NZ
6 School of Computer and Software, Jiangsu Engineering Centre of Network Monitoring,

Nanjing University of Information Science and Technology, Nanjing 210044, China;
xlxu@nuist.edu.cn (X.X.); zhou_zhili@163.com (Z.Z.)

* Correspondence: lianyongqi@gmail.com; Tel.: +86-0633-3981060

Received: 23 May 2018; Accepted: 22 June 2018; Published: 26 June 2018
����������
�������

Abstract: Service recommendation has become an effective way to quickly extract insightful
information from massive data. However, in the cloud environment, the quality of service
(QoS) data used to make recommendation decisions are often monitored by distributed sensors
and stored in different cloud platforms. In this situation, integrating these distributed data
(monitored by remote sensors) across different platforms while guaranteeing user privacy is an
important but challenging task, for the successful service recommendation in the cloud environment.
Locality-Sensitive Hashing (LSH) is a promising way to achieve the abovementioned data integration
and privacy-preservation goals, while current LSH-based recommendation studies seldom consider
the possible recommendation failures and hence reduce the robustness of recommender systems
significantly. In view of this challenge, we develop a new LSH variant, named converse LSH, and then
suggest an exception handling approach for recommendation failures based on the converse LSH
technique. Finally, we conduct several simulated experiments based on the well-known dataset,
i.e., Movielens to prove the effectiveness and efficiency of our approach.

Keywords: service recommendation; privacy-preservation; failure; exception handling; converse
Locality-Sensitive Hashing

1. Introduction

With the advent of Web of Things (WoT), an increasing number of enterprises or organizations
are apt to encapsulate their products (e.g., web API (Application Programming Interface)) into
easy-to-access web services and publish them on the web so as to attract potential users and gain more
profits. However, the ever-increasing volume and varieties of candidate services place a heavy burden
on the service selection decisions of target users [1]. Under the circumstance, Collaborative Filtering
(CF)-based recommendation techniques are proposed to minimize such burdens. Typically, for a target

Sensors 2018, 18, 2037; doi:10.3390/s18072037 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7353-4159
https://orcid.org/0000-0003-4879-9803
http://www.mdpi.com/1424-8220/18/7/2037?type=check_update&version=1
http://dx.doi.org/10.3390/s18072037
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 2037 2 of 11

user who requires recommend services, the recommender system can look for his/her similar friends by
observing the quality of service (QoS) data monitored by various sensors, and then enact appropriate
recommendation decisions with the help of derived friends. Nowadays, CF technique has been
successfully applied in many recommender systems whose decision-making data for recommendation
are organized or stored in a centralized way.

However, in the cloud computing environment, the QoS information that is crucial to
recommendation decisions is often not centralized, but rather monitored by distributed sensors
and stored in different cloud platforms [2]. In this situation, it is necessary for a recommender system
to integrate or fuse these distributed data across different cloud platforms quickly and properly, so as
to make comprehensive and accurate recommendation decisions. In particular, to protect the sensitive
business information and obey the laws [3–5], preserving user privacy during the abovementioned
multi-source data integration process is an important but challenging task [6–10] for the success of
subsequent recommendations.

The Locality-Sensitive Hashing (LSH) technique [11] has recently been recruited to make
efficient and privacy-preserving service recommendation in the distributed environment. Typically,
according to the QoS data, the Locality-Sensitive Hashing technique can be used to search for
the similar friends of a target user in an efficient and privacy-preserving manner. Afterwards,
recommended results are generated by considering the preferences of obtained similar friends.
However, in certain situations, the recommender system cannot generate or produce any satisfying
recommended result; in other words, a recommendation failure occurs. While existing LSH-based
service recommendation approaches seldom consider this kind of recommendation failure problems as
well as the corresponding exception handling solutions; therefore, the robustness of the recommender
system is reduced significantly.

An intuitive example is presented in Figure 1, which contains three users and six services. The user
ratings are denoted by 1*–5*. According to the traditional LSH technique, the index values of Tom
and Alice are not same as they have no co-invoked services. Therefore, Tom is not similar with Alice.
Likewise, as Figure 1 shows, Tom is not similar with Bob either. In this situation, no satisfying candidate
services can be recommended or returned to Tom, i.e., the service recommendation process is failed.

Sensors 2018, 18, x 2 of 11

for a target user who requires recommend services, the recommender system can look for his/her

similar friends by observing the quality of service (QoS) data monitored by various sensors, and then

enact appropriate recommendation decisions with the help of derived friends. Nowadays, CF

technique has been successfully applied in many recommender systems whose decision-making data

for recommendation are organized or stored in a centralized way.

However, in the cloud computing environment, the QoS information that is crucial to

recommendation decisions is often not centralized, but rather monitored by distributed sensors and

stored in different cloud platforms [2]. In this situation, it is necessary for a recommender system to

integrate or fuse these distributed data across different cloud platforms quickly and properly, so as

to make comprehensive and accurate recommendation decisions. In particular, to protect the

sensitive business information and obey the laws [3–5], preserving user privacy during the

abovementioned multi-source data integration process is an important but challenging task [6–10]

for the success of subsequent recommendations.

The Locality-Sensitive Hashing (LSH) technique [11] has recently been recruited to make

efficient and privacy-preserving service recommendation in the distributed environment. Typically,

according to the QoS data, the Locality-Sensitive Hashing technique can be used to search for the

similar friends of a target user in an efficient and privacy-preserving manner. Afterwards,

recommended results are generated by considering the preferences of obtained similar friends.

However, in certain situations, the recommender system cannot generate or produce any satisfying

recommended result; in other words, a recommendation failure occurs. While existing LSH-based

service recommendation approaches seldom consider this kind of recommendation failure problems

as well as the corresponding exception handling solutions; therefore, the robustness of the

recommender system is reduced significantly.

An intuitive example is presented in Figure 1, which contains three users and six services. The

user ratings are denoted by 1*–5*. According to the traditional LSH technique, the index values of

Tom and Alice are not same as they have no co-invoked services. Therefore, Tom is not similar with

Alice. Likewise, as Figure 1 shows, Tom is not similar with Bob either. In this situation, no satisfying

candidate services can be recommended or returned to Tom, i.e., the service recommendation process

is failed.

Figure 1. A recommendation failure example (see our previous work [12]).

In view of this challenge, we propose converse LSH technique and utilize it to look for a target

user’s contrary users (denoted by “enemy” in this paper) whose preferences are totally different from

the target user. Afterwards, according to the enemies of the target user, we infer the possible friends

of the target user indirectly so as to handle the exception incurred by recommendation failures.

Overall, the contributions in this paper are as follows:

(1) A novel LSH variant named converse LSH is developed, which can be utilized to search for the

enemy users of a target user, in a time-efficient and privacy-preserving way.

(2) We utilize converse LSH technique to search for the enemies of a target user and then look for

the target user’s similar friends indirectly based on the “enemy’s enemy is a possible friend”

Figure 1. A recommendation failure example (see our previous work [12]).

In view of this challenge, we propose converse LSH technique and utilize it to look for a target
user’s contrary users (denoted by “enemy” in this paper) whose preferences are totally different from
the target user. Afterwards, according to the enemies of the target user, we infer the possible friends of
the target user indirectly so as to handle the exception incurred by recommendation failures. Overall,
the contributions in this paper are as follows:

(1) A novel LSH variant named converse LSH is developed, which can be utilized to search for the
enemy users of a target user, in a time-efficient and privacy-preserving way.

Sensors 2018, 18, 2037 3 of 11

(2) We utilize converse LSH technique to search for the enemies of a target user and then look for
the target user’s similar friends indirectly based on the “enemy’s enemy is a possible friend”
inference rule in Social Balance Theory. Afterwards, we generate recommended results by
considering the preferences of obtained similar friends, so as to handle the exceptions incurred
by recommendation failures.

(3) Comprehensive experiments are simulated based on Movielens dataset, to test the effectiveness
of suggested recommendation approach. Experiment results indicate the advantages of our
proposal compared to other competitive approaches when a recommendation failure occurs.

The rest of this paper is structured as follows: in Section 2, we introduce the related work.
Converse LSH technique is proposed in Section 3. An exception handling approach based on converse
LSH is put forward in Section 4, to achieve indirect friend finding and service recommendations.
Experiment evaluations are given in Section 5. In Section 6, we summarize the paper and point out the
future research directions.

2. Related Work

Many researchers have investigated the privacy concerns in recommendation process and provide
their respective resolutions. In [13], the authors suggested that a user can publish partial QoS data to the
service community, so as to protect the remaining majority of QoS data. Similarly, in [14], the authors
take the amount of published data as a tunable parameter and then transform the privacy-preservation
problem into a multi-object optimization problem, so as to achieve a good tradeoff between data
availability and data privacy. However, in the above approaches, certain sensitive information about
users may be in danger due to the published partial data. Besides, recommendation failures are not
considered in these approaches.

Microaggregation idea is adopted in [15] to realize data K-anonymization so that the users’ sensitive
data (e.g., user location) can be protected. However, there is often a tradeoff between data availability
and data privacy; so the recommendation accuracy is often not as high as expected if the anonymous
data are employed to make service recommendation decisions. Besides, these approaches do not discuss
the possible service recommendation failures. Encryption technique is adopted in work [16] to guarantee
the privacy-preservation of sensitive information. However, as a heavy-weight privacy-preservation
manner, encryption operations often lead to high computational cost and long delay; therefore,
the encryption techniques are often not applicable to the light-weight service recommendation
requirements from certain users. Besides, recommendation failures are out of the scope of these
encryption-based approaches.

Randomized disturbance idea is adopted in [17] to convert the real QoS data into the
disturbed data; afterwards, the latter data are regarded as the recommendation bases to
achieve the privacy-preservation goal. However, recommendation failures are not discussed;
besides, the applicability of this approach is relatively limited as it can only be applied to the
Pearson Correlation Coefficient (PCC)-based collaborative service recommendation scenarios. In [18],
the authors utilize the Differential Privacy technique to make noise data injection and confusion, so as
to ensure that the real service quality data would not be exposed to the outside. However, the time
complexity of Differential Privacy is relatively high; second, when the service quality data are updated
frequently, the accumulated noise would be enlarged, which will decrease the service recommendation
accuracy accordingly; third, they do not consider the recommendation failures.

As an effective and efficient way to search for similar friends in the big data context, LSH is
recently introduced into service recommendation to achieve the distributed data integration and
privacy-preservation goals. In our previous work [19–21], LSH is combined with user-based CF to
make privacy-preserving service recommendation. Likewise, in [22], LSH is combined with item-based
CF to build service index table with little privacy and then make service recommendation based on
the service index table. However, these LSH-based recommendation approaches do not consider
the recommendation failures as well as the corresponding exception handling resolutions. As to the

Sensors 2018, 18, 2037 4 of 11

recommendation failures, the authors in [23] adopt the average idea to predict the missing QoS data.
Social Balance Theory is utilized in our previous works [12,24] to look for the possible friends of a target
user so as to cope with the recommendation failures. However, privacy concerns are not discussed.

Through the above literature review, a conclusion can be drawn that existing recommendation
approaches either fail to protect user privacy or overlook the recommendation failures and exceptions.
In view of this drawback, we propose converse LSH technique and utilize it to handle the exceptions
incurred by recommendation failures; this way, the robustness of recommender systems can be
improved significantly.

3. Converse Locality-Sensitive Hashing

Traditional LSH is an effective similar neighbor search technique. Therefore, in the service
recommendation domain, LSH is often integrated with user-based Collaborative Filtering (CF)
technique to search for the similar friends of a target user, in an efficient and privacy-preserving
way. In this section, we modify the traditional LSH technique and transform it into converse LSH
which can be used to search for the enemies of a target user efficiently while guaranteeing user privacy.
Next, we introduce the rationale of converse LSH.

Let’s consider two n-dimensional vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn) whose similarity
can be depicted by the PCC distance. Next, according to LSH theory [11], we can transform vectors
X and Y containing private information into corresponding hash values with little privacy, i.e., h(X)
and h(Y), respectively. Concretely, h(X) can be calculated by (1), where V is an n-dimensional vector
(v1, . . . , vn) and vj (j = 1, 2, . . . n) is randomly selected from [−1, 1]; “◦” represents the inner product of
different vectors. The physical meaning of equation in (1) is: vector V is a hyper plane which divides
the n-dimensional space into two parts; if point X is above hyper plane V (i.e., X#V > 0), then h(X) = 1
with high probability; otherwise, h(X) = 0:

h(X) =

{
1 if X

Sensors 2018, 18, x 4 of 11

Through the above literature review, a conclusion can be drawn that existing recommendation

approaches either fail to protect user privacy or overlook the recommendation failures and exceptions.

In view of this drawback, we propose converse LSH technique and utilize it to handle the exceptions

incurred by recommendation failures; this way, the robustness of recommender systems can be

improved significantly.

3. Converse Locality-Sensitive Hashing

Traditional LSH is an effective similar neighbor search technique. Therefore, in the service

recommendation domain, LSH is often integrated with user-based Collaborative Filtering (CF)

technique to search for the similar friends of a target user, in an efficient and privacy-preserving way.

In this section, we modify the traditional LSH technique and transform it into converse LSH which

can be used to search for the enemies of a target user efficiently while guaranteeing user privacy.

Next, we introduce the rationale of converse LSH.

Let’s consider two n-dimensional vectors X = (x1, …, xn) and Y = (y1, …, yn) whose similarity can

be depicted by the PCC distance. Next, according to LSH theory [11], we can transform vectors X and

Y containing private information into corresponding hash values with little privacy, i.e., h(X) and

h(Y), respectively. Concretely, h(X) can be calculated by (1), where Vis an n-dimensional vector (v1, …,

vn) and vj (j = 1, 2, … n) is randomly selected from [−1, 1]; “” represents the inner product of different

vectors. The physical meaning of equation in (1) is: vector V is a hyper plane which divides the n-

dimensional space into two parts; if point X is above hyper plane V (i.e., X○V > 0), then h(X) = 1 with

high probability; otherwise, h(X) = 0:

 
1 if 0

0 if 0
 h X

X V

X V










 (1)

Thus, through the hash map in (1), n-dimensional vectors X and Y are transformed into two

Boolean values, i.e., h(X) and h(Y), respectively. However, LSH is essentially a probability-based

similar friend search technique; therefore, a single hash value h(X) or h(Y) cannot precisely represents

the original n-dimensional vector X or Y. Considering this, more hash functions, i.e., a hash function

family H(.) = {h1(.), …, hr(.)} (r << n) are adopted here. Through the hash function family H(.), we can

transform the n-dimensional vectors X and Y into r-dimensional 0–1 vectors, i.e., H(X) = {h1(X), …,

hr(X)} and H(Y) = {h1(Y), …, hr(Y)}, respectively. The vectors X and Y, as well as their respective hash

values H(X) and H(Y), form a hash table. We repeat the above hash table building process until L

hash tables, i.e., Tb1, …, TbL are obtained. Next, according to LSH theory, vectors X and Y are contrary

with large probability iff the condition in (2) holds. In (2), Hz(X) and Hz(Y) denote the hash values of

vectors X and Y in z-th hash table, respectively; symbol “⊕” represents the XOR operation:

 z, s.t. Hz(X)⊕Hz(Y) = (1, 1, …, 1) (z ∈ {1, …, L}) (2)

The physical meaning of equation in (2) is clarified as below: if points X and Y are always located

on the different sides of hyper plane V (i.e., hi(X) ≠ hi(Y) holds for all i ∈ {1, ..., r}), then X and Y are far

away from each other with large probability (i.e., H(X)⊕H(Y) = (1, 1, …, 1)). Furthermore, if

H(X)⊕H(Y) = (1, 1, …, 1) in any of Tb1, …, TbL, points X and Y can be regarded as two contrary points

(i.e., enemies). This is the main idea of our proposed converse LSH technique. Through converse LSH,

we can search for the users (denoted by “enemies”) whose preferences are totally different from the

target user, in an efficient and privacy-preserving manner, as elaborated in the next section.

4. An Exception Handling Approach Based on Converse LSH

Next, we introduce an approach for handling the exceptions incurred by service

recommendation failures, named SerRecconverse-LSH, based on the converse LSH technique introduced

in Section 3. Concretely, our approach consists of three steps.

 Step-1: Build user indices offline through traditional LSH technique.

V > 0
0 if X

Sensors 2018, 18, x 4 of 11

Through the above literature review, a conclusion can be drawn that existing recommendation

approaches either fail to protect user privacy or overlook the recommendation failures and exceptions.

In view of this drawback, we propose converse LSH technique and utilize it to handle the exceptions

incurred by recommendation failures; this way, the robustness of recommender systems can be

improved significantly.

3. Converse Locality-Sensitive Hashing

Traditional LSH is an effective similar neighbor search technique. Therefore, in the service

recommendation domain, LSH is often integrated with user-based Collaborative Filtering (CF)

technique to search for the similar friends of a target user, in an efficient and privacy-preserving way.

In this section, we modify the traditional LSH technique and transform it into converse LSH which

can be used to search for the enemies of a target user efficiently while guaranteeing user privacy.

Next, we introduce the rationale of converse LSH.

Let’s consider two n-dimensional vectors X = (x1, …, xn) and Y = (y1, …, yn) whose similarity can

be depicted by the PCC distance. Next, according to LSH theory [11], we can transform vectors X and

Y containing private information into corresponding hash values with little privacy, i.e., h(X) and

h(Y), respectively. Concretely, h(X) can be calculated by (1), where Vis an n-dimensional vector (v1, …,

vn) and vj (j = 1, 2, … n) is randomly selected from [−1, 1]; “” represents the inner product of different

vectors. The physical meaning of equation in (1) is: vector V is a hyper plane which divides the n-

dimensional space into two parts; if point X is above hyper plane V (i.e., X○V > 0), then h(X) = 1 with

high probability; otherwise, h(X) = 0:

 
1 if 0

0 if 0
 h X

X V

X V










 (1)

Thus, through the hash map in (1), n-dimensional vectors X and Y are transformed into two

Boolean values, i.e., h(X) and h(Y), respectively. However, LSH is essentially a probability-based

similar friend search technique; therefore, a single hash value h(X) or h(Y) cannot precisely represents

the original n-dimensional vector X or Y. Considering this, more hash functions, i.e., a hash function

family H(.) = {h1(.), …, hr(.)} (r << n) are adopted here. Through the hash function family H(.), we can

transform the n-dimensional vectors X and Y into r-dimensional 0–1 vectors, i.e., H(X) = {h1(X), …,

hr(X)} and H(Y) = {h1(Y), …, hr(Y)}, respectively. The vectors X and Y, as well as their respective hash

values H(X) and H(Y), form a hash table. We repeat the above hash table building process until L

hash tables, i.e., Tb1, …, TbL are obtained. Next, according to LSH theory, vectors X and Y are contrary

with large probability iff the condition in (2) holds. In (2), Hz(X) and Hz(Y) denote the hash values of

vectors X and Y in z-th hash table, respectively; symbol “⊕” represents the XOR operation:

 z, s.t. Hz(X)⊕Hz(Y) = (1, 1, …, 1) (z ∈ {1, …, L}) (2)

The physical meaning of equation in (2) is clarified as below: if points X and Y are always located

on the different sides of hyper plane V (i.e., hi(X) ≠ hi(Y) holds for all i ∈ {1, ..., r}), then X and Y are far

away from each other with large probability (i.e., H(X)⊕H(Y) = (1, 1, …, 1)). Furthermore, if

H(X)⊕H(Y) = (1, 1, …, 1) in any of Tb1, …, TbL, points X and Y can be regarded as two contrary points

(i.e., enemies). This is the main idea of our proposed converse LSH technique. Through converse LSH,

we can search for the users (denoted by “enemies”) whose preferences are totally different from the

target user, in an efficient and privacy-preserving manner, as elaborated in the next section.

4. An Exception Handling Approach Based on Converse LSH

Next, we introduce an approach for handling the exceptions incurred by service

recommendation failures, named SerRecconverse-LSH, based on the converse LSH technique introduced

in Section 3. Concretely, our approach consists of three steps.

 Step-1: Build user indices offline through traditional LSH technique.

V ≤ 0
(1)

Thus, through the hash map in (1), n-dimensional vectors X and Y are transformed into two
Boolean values, i.e., h(X) and h(Y), respectively. However, LSH is essentially a probability-based
similar friend search technique; therefore, a single hash value h(X) or h(Y) cannot precisely represents
the original n-dimensional vector X or Y. Considering this, more hash functions, i.e., a hash function
family H(.) = {h1(.), . . . , hr(.)} (r << n) are adopted here. Through the hash function family H(.), we can
transform the n-dimensional vectors X and Y into r-dimensional 0–1 vectors, i.e., H(X) = {h1(X), . . . ,
hr(X)} and H(Y) = {h1(Y), . . . , hr(Y)}, respectively. The vectors X and Y, as well as their respective hash
values H(X) and H(Y), form a hash table. We repeat the above hash table building process until L hash
tables, i.e., Tb1, . . . , TbL are obtained. Next, according to LSH theory, vectors X and Y are contrary
with large probability iff the condition in (2) holds. In (2), Hz(X) and Hz(Y) denote the hash values of
vectors X and Y in z-th hash table, respectively; symbol “⊕” represents the XOR operation:

∃ z, s.t. Hz(X)⊕Hz(Y) = (1, 1, . . . , 1) (z ∈ {1, . . . , L}) (2)

The physical meaning of equation in (2) is clarified as below: if points X and Y are always located
on the different sides of hyper plane V (i.e., hi(X) 6= hi(Y) holds for all i ∈ {1, ..., r}), then X and Y
are far away from each other with large probability (i.e., H(X)⊕H(Y) = (1, 1, . . . , 1)). Furthermore,
if H(X)⊕H(Y) = (1, 1, . . . , 1) in any of Tb1, . . . , TbL, points X and Y can be regarded as two contrary
points (i.e., enemies). This is the main idea of our proposed converse LSH technique. Through converse
LSH, we can search for the users (denoted by “enemies”) whose preferences are totally different from
the target user, in an efficient and privacy-preserving manner, as elaborated in the next section.

Sensors 2018, 18, 2037 5 of 11

4. An Exception Handling Approach Based on Converse LSH

Next, we introduce an approach for handling the exceptions incurred by service recommendation
failures, named SerRecconverse-LSH, based on the converse LSH technique introduced in Section 3.
Concretely, our approach consists of three steps.

• Step-1: Build user indices offline through traditional LSH technique.

Let’s consider a user u whose single hash value (denoted by h(u)) is based on the hash map in
Equation (1) and user u’s historical service quality data (assume fixed and real values) monitored by
sensors. Furthermore, according to the hash function family H(.) = {h1(.), . . . , hr(.)} (r << n) in Section 3,
we can obtain user u’s compound hash value H(u) = {h1(u), . . . , hr(u)}. Then H(u) is treated as user
u’s index. Moreover, all users as well as their respective indices form a hash table. Repeat the above
process until L hash tables, i.e., Tb1, . . . , TbL are obtained. The above user indices building process
can be executed offline before a service recommendation requirement is raised; therefore, its time
complexity is O(1), which indicates that the recommendation speed can be accelerated greatly.

• Step-2: Determine the indirect friends of the target user u* based on user indices and converse
LSH technique.

We have obtained the user indices H(u) (including the index H(u*) for the target user (denoted by
u*)), and form L hash tables Tb1, . . . , TbL. Next, if H(u)⊕ H(u*) = (1, 1, . . . , 1) holds in any Tb1, . . . , TbL,
then user u can be regarded as a qualified enemy of the target user u* based on the converse LSH theory
introduced in Section 3. Likewise, for each user ω (ω 6= u and ω 6= u*), if H(ω) ⊕ H(u) = (1, 1, . . . , 1)
holds in any hash table, then user ω can be regarded as a qualified enemy of user u. Thus, ω can be
considered as an indirect friend of u* based on the “enemy’s enemy is a possible friend” rule in Social
Balance Theory; afterwards, we put ω into a new user set Possible_Friend_set(u*). Repeat the above
process until all the indirect friends of u* are found. This way, we can derive the friends of u* in an
indirect manner, if u* does not have similar friends due to the data sparsity according to the traditional
LSH technique.

Next, we turn to the example in Figure 2 where three users {u1, u2, u3} and two hash tables
{Tb1, Tb2} are present. The index values of the three users are also shown in Figure 2. Then according to
the judgement condition in Equation (2), u2 is an enemy of u1 as (1, 0, 1, 0)⊕ (0, 1, 0, 1) = (1, 1, 1, 1) holds
in hash table Tb1. Similarly, u3 is an enemy of u2 as (1, 1, 0, 1) ⊕ (0, 0, 1, 0) = (1, 1, 1, 1) holds in hash
table Tb2. With the above analyses, we can infer that u3 is a possible friend of u1 based on the “enemy’s
enemy is a possible friend” rule. So u3 is put into the friend set of u1, i.e., Possible_Friend_set(u1).

Sensors 2018, 18, x 5 of 11

Let’s consider a user u whose single hash value (denoted by h(u)) is based on the hash map in

Equation (1) and user u’s historical service quality data (assume fixed and real values) monitored by

sensors. Furthermore, according to the hash function family H(.) = {h1(.), …, hr(.)} (r << n) in Section 3,

we can obtain user u’s compound hash value H(u) = {h1(u), …, hr(u)}. Then H(u) is treated as user u’s

index. Moreover, all users as well as their respective indices form a hash table. Repeat the above

process until L hash tables, i.e., Tb1, …, TbL are obtained. The above user indices building process can

be executed offline before a service recommendation requirement is raised; therefore, its time

complexity is O(1), which indicates that the recommendation speed can be accelerated greatly.

 Step-2: Determine the indirect friends of the target user u* based on user indices and converse

LSH technique.

We have obtained the user indices H(u) (including the index H(u*) for the target user (denoted

by u*)), and form L hash tables Tb1, …, TbL. Next, if H(u) ⊕ H(u*) = (1, 1, …, 1) holds in any Tb1, …,

TbL, then user u can be regarded as a qualified enemy of the target user u* based on the converse LSH

theory introduced in Section 3. Likewise, for each user ω (ω ≠ u and ω ≠ u*), if H(ω) ⊕ H(u) = (1, 1, …, 1)

holds in any hash table, then user ω can be regarded as a qualified enemy of user u. Thus, ω can be

considered as an indirect friend of u* based on the “enemy’s enemy is a possible friend” rule in Social

Balance Theory; afterwards, we put ω into a new user set Possible_Friend_set(u*). Repeat the above

process until all the indirect friends of u* are found. This way, we can derive the friends of u* in an

indirect manner, if u* does not have similar friends due to the data sparsity according to the

traditional LSH technique.

Next, we turn to the example in Figure 2 where three users {u1, u2, u3} and two hash tables {Tb1, Tb2}

are present. The index values of the three users are also shown in Figure 2. Then according to the

judgement condition in Equation (2), u2 is an enemy of u1 as (1, 0, 1, 0) ⊕ (0, 1, 0, 1) = (1, 1, 1, 1) holds

in hash table Tb1. Similarly, u3 is an enemy of u2 as (1, 1, 0, 1) ⊕ (0, 0, 1, 0) = (1, 1, 1, 1) holds in hash

table Tb2. With the above analyses, we can infer that u3 is a possible friend of u1 based on the “enemy’s

enemy is a possible friend” rule. So u3 is put into the friend set of u1, i.e., Possible_Friend_set(u1).

Figure 2. Indirect friend finding based on converse LSH: an example.

 Step-3: Recommend services to u* based on the possible friends of u*.

According to target user u*’s possible friends (Possible_Friend_set(u*)) derived in Step-2, the

users in, we can recommend appropriate services to u*. First of all, we predict the missing QoS data

of ws by u* by (3) where q is a QoS criterion, q(u*, ws) represents ws’s QoS over criterion q invoked by

u*; Ф denotes the set of users who are possible friends of u* and have invoked service ws before,

which can be obtained by (4). Thus we can rank services ws based on q(u*, ws) in (3). At last, optimal

services are recommended to u*; this way, the recommendation failures are overcome:

 
1

* (,*)
|

,
|

i

i
u

q qs uw wsu
 

  (3)

Ф = {ui|ui ∈ Possible_Friend_set(u*) and ui has ever invoked ws} (4)

Figure 2. Indirect friend finding based on converse LSH: an example.

• Step-3: Recommend services to u* based on the possible friends of u*.

According to target user u*’s possible friends (Possible_Friend_set(u*)) derived in Step-2, the users
in, we can recommend appropriate services to u*. First of all, we predict the missing QoS data of ws

Sensors 2018, 18, 2037 6 of 11

by u* by (3) where q is a QoS criterion, q(u*, ws) represents ws’s QoS over criterion q invoked by u*;
Φ denotes the set of users who are possible friends of u* and have invoked service ws before, which can
be obtained by (4). Thus we can rank services ws based on q(u*, ws) in (3). At last, optimal services are
recommended to u*; this way, the recommendation failures are overcome:

q(u∗, ws) =
1
|ϕ|

∗
∑

ui∈ϕ

q(ui, ws) (3)

Φ = {ui|ui ∈ Possible_Friend_set(u*) and ui has ever invoked ws} (4)

5. Experiments

5.1. Experiment Configurations

To prove the effectiveness of our suggested exception handling approach named SerRecconverse-LSH,
we design and deploy several experiments based on popular dataset Movielens [25]. Movielens
reports the rating data of 3900 movies rated by 6040 users all over the world. Different from
other applications where multiple dimensions are present [26–34], we consider only one quality
dimension (i.e., user rating) in the experiments and take it as the unique recommendation basis,
because the Movielens dataset only provides one dimension, i.e., user-service rating. The complex
multi-dimensional service recommendation scenarios are out of the scope of this work. (In the
multi-dimensional service recommendation scenarios, the multiple quality dimensions as well as their
mutual correlations, such as the linear correlations and non-linear correlations should all be taken into
consideration. In this situation, the problem becomes more complex and cannot be directly extended
from this work, so we will investigate the complex multi-dimensional service recommendation
problems in the future; see Section 5.3 “Shortcoming analyses & future work”). We randomly remove
partial entries of the dataset to simulate recommendation failure scenarios. To evaluate the performance
of exception handling approaches, we test the time cost and Mean Absolute Error (MAE), respectively
(Note that LSH can protect data inherently, therefore, the privacy protection effect of SerRecconverse-LSH

is not tested in the experiment). Moreover, to validate the feasibility of our proposed SerRecconverse-LSH

approach, we compare our proposal with the following three competitive handling approaches.

(1) Random: this benchmark approach predicts the missing service quality data based on the quality
of a randomly selected service, and returns the service with the optimal predicted quality.

(2) WSRec [23]: it predicts the missing service quality data by two pieces of average quality,
i.e., average quality of the service rated by all users and average quality of all services rated by
the user. Finally, the optimal service is returned to the target user.

(3) SBT-SR [12]: this approach first looks for the indirect friends of a target user based on
Collaborative Filtering and Social Balance Theory, and then recommends appropriate services
based on the derived indirect friends.

The experiment running environment is as follows: (1) hardware: 2.80 GHz CPU + 2.0 GB RAM;
(2) software: Windows XP + JAVA 1.5. Experiments are executed ten times and their average values
are reported.

5.2. Experiment Results

Four experiments are designed and deployed, respectively. Four parameters are present in the
experiments: m, n denote the sizes of user set and service set; L, r represent the sizes of hash table set
and hash function set.

• Profile 1: Accuracy comparison of four approaches

The accuracy values of outputted results of four exception handling approaches are compared.
Here, m = 6000, n = 3900, L = 10, r = 8. Experiments are repeated ten times. The concrete experiment

Sensors 2018, 18, 2037 7 of 11

results of the ten iterations and the average result are demonstrated in Figure 3, which shows that
the accuracy value of Random approach is the smallest, as a random strategy is adopted to predict
the missing quality data. A simple and naïve “average” strategy is recruited in WSRec approach to
predict the missing service quality, while the average service quality cannot reflect the real running
quality of services very well; therefore, the recommendation accuracy of WSRec approach is also
low. Both SerRecconverse-LSH and SBT-SR approaches utilize the Social Balance Theory to improve
the recommendation robustness; however, the accuracy value of our suggested SerRecconverse-LSH

approach outperforms those of the other three competitive approaches including SBT-SR, as only the
similar friends (obtained in an indirect manner) of a target user are taken into consideration in missing
QoS prediction in SerRecconverse-LSH. Another observation from Figure 3 is that the recommendation
accuracy value of SerRecconverse-LSH approach does not vary significantly and regularly, which means
that our proposal can make relatively stable service recommendations.

Sensors 2018, 18, x 7 of 11

accuracy value of SerRecconverse-LSH approach does not vary significantly and regularly, which means

that our proposal can make relatively stable service recommendations.

Figure 3. Accuracy of recommended results.

 Profile 2: Efficiency comparison of four approaches

We measure the time cost for generating recommended results in our suggested SerRecconverse-LSH

approach and compare it with the rest three approaches. The parameters are as follows: m = 6000, n =

3900, L = 10, r = 8. Experiments are repeated ten times. The concrete experiment results of the ten

iterations and the average result are demonstrated in Figure 4.

Figure 4. Recommendation efficiency comparison.

Figure 4 shows that the recommendation efficiency of SBT-SR is low as it is based on

Collaborative Filtering and hence the time cost is rather high. The service recommendation

efficiencies of the other three approaches, i.e., SerRecconverse-LSH, WSRec and Random are rather high

and approximately the same. This is because most tasks in our SerRecconverse-LSH approach can be done

offline, and both WSRec and Random approaches have a polynomial time complexity.

 Profile 3: Accuracy of SerRecconverse-LSH with respect to L and r

Next, we test the variation tendency of accuracy of the proposed SerRecconverse-LSH approach with

respect to the parameters L and r. Here, m = 6000, n = 3900, L and r are both varied from 6 to 10.

Experiments are repeated ten times. The average values are demonstrated in Figure 5.

According to LSH theory, a larger r value or a smaller L value implies tighter condition for

neighbor search and higher recommendation accuracy (i.e., lower MAE value). However, as Figure 5

indicates, the recommendation accuracy of SerRecconverse-LSH does not render an obvious fluctuation

tendency with L and r. This is due to the following reason: in our proposal, the traditional LSH

technique is modified to be the converse LSH technique; and the converse LSH technique is recruited

Figure 3. Accuracy of recommended results.

• Profile 2: Efficiency comparison of four approaches

We measure the time cost for generating recommended results in our suggested SerRecconverse-LSH

approach and compare it with the rest three approaches. The parameters are as follows: m = 6000,
n = 3900, L = 10, r = 8. Experiments are repeated ten times. The concrete experiment results of the ten
iterations and the average result are demonstrated in Figure 4.

Sensors 2018, 18, x 7 of 11

accuracy value of SerRecconverse-LSH approach does not vary significantly and regularly, which means

that our proposal can make relatively stable service recommendations.

Figure 3. Accuracy of recommended results.

 Profile 2: Efficiency comparison of four approaches

We measure the time cost for generating recommended results in our suggested SerRecconverse-LSH

approach and compare it with the rest three approaches. The parameters are as follows: m = 6000, n =

3900, L = 10, r = 8. Experiments are repeated ten times. The concrete experiment results of the ten

iterations and the average result are demonstrated in Figure 4.

Figure 4. Recommendation efficiency comparison.

Figure 4 shows that the recommendation efficiency of SBT-SR is low as it is based on

Collaborative Filtering and hence the time cost is rather high. The service recommendation

efficiencies of the other three approaches, i.e., SerRecconverse-LSH, WSRec and Random are rather high

and approximately the same. This is because most tasks in our SerRecconverse-LSH approach can be done

offline, and both WSRec and Random approaches have a polynomial time complexity.

 Profile 3: Accuracy of SerRecconverse-LSH with respect to L and r

Next, we test the variation tendency of accuracy of the proposed SerRecconverse-LSH approach with

respect to the parameters L and r. Here, m = 6000, n = 3900, L and r are both varied from 6 to 10.

Experiments are repeated ten times. The average values are demonstrated in Figure 5.

According to LSH theory, a larger r value or a smaller L value implies tighter condition for

neighbor search and higher recommendation accuracy (i.e., lower MAE value). However, as Figure 5

indicates, the recommendation accuracy of SerRecconverse-LSH does not render an obvious fluctuation

tendency with L and r. This is due to the following reason: in our proposal, the traditional LSH

technique is modified to be the converse LSH technique; and the converse LSH technique is recruited

Figure 4. Recommendation efficiency comparison.

Figure 4 shows that the recommendation efficiency of SBT-SR is low as it is based on Collaborative
Filtering and hence the time cost is rather high. The service recommendation efficiencies of the other
three approaches, i.e., SerRecconverse-LSH, WSRec and Random are rather high and approximately the

Sensors 2018, 18, 2037 8 of 11

same. This is because most tasks in our SerRecconverse-LSH approach can be done offline, and both
WSRec and Random approaches have a polynomial time complexity.

• Profile 3: Accuracy of SerRecconverse-LSH with respect to L and r

Next, we test the variation tendency of accuracy of the proposed SerRecconverse-LSH approach
with respect to the parameters L and r. Here, m = 6000, n = 3900, L and r are both varied from 6 to 10.
Experiments are repeated ten times. The average values are demonstrated in Figure 5.

According to LSH theory, a larger r value or a smaller L value implies tighter condition for
neighbor search and higher recommendation accuracy (i.e., lower MAE value). However, as Figure 5
indicates, the recommendation accuracy of SerRecconverse-LSH does not render an obvious fluctuation
tendency with L and r. This is due to the following reason: in our proposal, the traditional LSH
technique is modified to be the converse LSH technique; and the converse LSH technique is recruited
twice in order to search for the friends of a target user indirectly. So the influence of parameters L and
r over the recommendation accuracy is not so obvious any more.

Sensors 2018, 18, x 8 of 11

twice in order to search for the friends of a target user indirectly. So the influence of parameters L

and r over the recommendation accuracy is not so obvious any more.

Figure 5. Accuracy of SerRecconverse-LSH.

 Profile 4: Efficiency of SerRecconverse-LSH with respect to L and r

Next, we evaluate the efficiency of SerRecconverse-LSH with respect to L and r. Here, m = 6000; n =

3900; L = 6, 8, 10; r = 6, 8, 10. Experiments are repeated ten times. The average results are demonstrated

in Figure 6.

Figure 6. Efficiency of SerRecconverse-LSH.

From the figure, we can see that our efficiency decreases when the number of hash tables, i.e., L

rises. This is because when L grows, the search condition for dissimilar enemy becomes looser and

correspondingly, more qualified enemies are returned to take part in the service recommendation

decision-makings; in this situation, more time cost is needed. Another result that Figure 6 indicates

is that our efficiency decreases when the number of hash functions, i.e., r drops. This is because when

r drops, the search condition for dissimilar enemy becomes stricter and correspondingly, fewer

qualified enemies of a target user are returned to take part in the service recommendation decision-

makings; therefore, less computational time is needed.

With the above analyses, a conclusion can be drawn that SerRecconverse-LSH approach achieves a

good tradeoff between service recommendation accuracy and efficiency. Besides, SerRecconverse-LSH

outperforms the other approaches in terms of privacy-preservation due to the inherent characteristic

of LSH.

Figure 5. Accuracy of SerRecconverse-LSH.

• Profile 4: Efficiency of SerRecconverse-LSH with respect to L and r

Next, we evaluate the efficiency of SerRecconverse-LSH with respect to L and r. Here, m = 6000;
n = 3900; L = 6, 8, 10; r = 6, 8, 10. Experiments are repeated ten times. The average results are
demonstrated in Figure 6.

Sensors 2018, 18, x 8 of 11

twice in order to search for the friends of a target user indirectly. So the influence of parameters L

and r over the recommendation accuracy is not so obvious any more.

Figure 5. Accuracy of SerRecconverse-LSH.

 Profile 4: Efficiency of SerRecconverse-LSH with respect to L and r

Next, we evaluate the efficiency of SerRecconverse-LSH with respect to L and r. Here, m = 6000; n =

3900; L = 6, 8, 10; r = 6, 8, 10. Experiments are repeated ten times. The average results are demonstrated

in Figure 6.

Figure 6. Efficiency of SerRecconverse-LSH.

From the figure, we can see that our efficiency decreases when the number of hash tables, i.e., L

rises. This is because when L grows, the search condition for dissimilar enemy becomes looser and

correspondingly, more qualified enemies are returned to take part in the service recommendation

decision-makings; in this situation, more time cost is needed. Another result that Figure 6 indicates

is that our efficiency decreases when the number of hash functions, i.e., r drops. This is because when

r drops, the search condition for dissimilar enemy becomes stricter and correspondingly, fewer

qualified enemies of a target user are returned to take part in the service recommendation decision-

makings; therefore, less computational time is needed.

With the above analyses, a conclusion can be drawn that SerRecconverse-LSH approach achieves a

good tradeoff between service recommendation accuracy and efficiency. Besides, SerRecconverse-LSH

outperforms the other approaches in terms of privacy-preservation due to the inherent characteristic

of LSH.

Figure 6. Efficiency of SerRecconverse-LSH.

Sensors 2018, 18, 2037 9 of 11

From the figure, we can see that our efficiency decreases when the number of hash tables,
i.e., L rises. This is because when L grows, the search condition for dissimilar enemy becomes looser
and correspondingly, more qualified enemies are returned to take part in the service recommendation
decision-makings; in this situation, more time cost is needed. Another result that Figure 6 indicates is
that our efficiency decreases when the number of hash functions, i.e., r drops. This is because when r
drops, the search condition for dissimilar enemy becomes stricter and correspondingly, fewer qualified
enemies of a target user are returned to take part in the service recommendation decision-makings;
therefore, less computational time is needed.

With the above analyses, a conclusion can be drawn that SerRecconverse-LSH approach achieves a
good tradeoff between service recommendation accuracy and efficiency. Besides, SerRecconverse-LSH

outperforms the other approaches in terms of privacy-preservation due to the inherent characteristic
of LSH.

5.3. Shortcoming Analyses & Future Work

There are still several shortcomings in our approach. First of all, we only consider
the recommendation scenario where one quality dimension is monitored by sensors,
while multi-dimensional and weighted applications are more common in practice [35–37], so in the
future, we will further refine our work by considering the multiple service quality dimensions as well
as their respective weights. Besides, for simplicity, we only discuss the service quality dimensions
with real and continuous monitored values, without considering the diversity of the quality values
(e.g., discrete [38,39], binary [40], fuzzy [41] and correlated [42–44]). Considering this drawback, we will
further improve our proposed recommendation approach by integrating the diverse forms (or formats)
of different service quality dimensions, for the purpose of getting more comprehensive and reasonable
recommended services.

6. Conclusions

The multi-source property of service usage data (monitored by distributed sensors) used to make
service recommendations in the cloud environment requires that a recommender system to quickly
integrate the distributed monitored data so as to make comprehensive and accurate recommendation
decisions. In this situation, protecting the private information of users from leakage during the above
data integration process is an important but challenging task for the successful service recommendation.
Although the LSH technique can be recruited to achieve the abovementioned data integration and
privacy-preservation goals, existing LSH-based service recommendation approaches seldom consider
the possible recommendation failures as well as the resulted exceptions. In view of this drawback,
we put forward a new LSH variant, i.e., converse LSH, and integrate it with the Social Balance Theory
so as to look for the possible friends of a target user indirectly and then recommend appropriate
services based on the obtained possible friends. The experiments conducted on Movielens dataset
prove the effectiveness of our approach in terms of service recommendation accuracy and time cost
while guaranteeing privacy-preservation of quality data monitored by sensors.

However, in SerRecconverse-LSH, only one quality dimension of services is considered. In our future
work, we will continue to refine SerRecconverse-LSH by considering multiple quality dimensions as well
as their weight information. Besides, QoS data often vary with concrete service execution context
(e.g., service invocation time and user location); therefore, we will further improve our approach by
taking context into consideration.

Author Contributions: Data curation, W.D.; Formal analysis, S.M., X.Z. and Z.Z.; Methodology, R.W.; Validation,
X.X.; Writing—original draft, L.Q.

Funding: This paper is partially supported by the Natural Science Foundation of China (No. 61672276,
No. 61702277, No. 61702299), the Open Research Project of State Key Laboratory of Novel Software Technology
(Nanjing University) under Grant No. KFKT2017B07, the New Zealand Marsden Funds, the UoA Faculty Research

Sensors 2018, 18, 2037 10 of 11

Development Fund (No. 3714668) and the Open Project of State Key Laboratory for Novel Software Technology
(No. KFKT2016B22).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Naim, H.; Aznag, M.; Quafafou, M.; Durand, N. Probabilistic approach for diversifying web services
discovery and composition. In Proceedings of the International Conference on Web Services (ICWS),
San Francisco, CA, USA, 27 June–2 July 2016; pp. 73–80.

2. Qi, L.; Zhang, X.; Dou, W.; Ni, Q. A distributed locality-sensitive hashing based approach for cloud service
recommendation from multi-source data. IEEE J. Sel. Areas Commun. 2017, 35, 2616–2624. [CrossRef]

3. Cui, J.; Zhang, Y.; Cai, Z.; Liu, A.; Li, Y. Securing display path for security-sensitive applications on mobile
devices. Comput. Mater. Contin. 2018, 55, 17–35.

4. Cao, Y.; Zhou, Z.; Sun, X.; Gao, C. Coverless information hiding based on the molecular structure images of
material. Comput. Mater. Contin. 2018, 54, 197–207.

5. Liu, Y.; Peng, H.; Wang, J. Verifiable diversity ranking search over encrypted outsourced data.
Comput. Mater. Contin. 2018, 55, 37–57.

6. Li, T.; Li, J.; Liu, Z.; Li, P.; Jia, C. Differentially Private Naive Bayes Learning over Multiple Data Sources.
Inf. Sci. 2018, 444, 89–104. [CrossRef]

7. Meng, W.; Tischhauser, E.; Wang, Q.; Wang, Y.; Han, J. When Intrusion Detection Meets Blockchain
Technology: A Review. IEEE Access 2018, 6, 10179–10188. [CrossRef]

8. Zhang, Y.; Chen, X.; Li, J.; Wong, D.S.; Li, H.; You, I. Ensuring attribute privacy protection and fast decryption
for outsourced data security in mobile cloud computing. Inf. Sci. 2017, 379, 42–61. [CrossRef]

9. Cai, Z.; Yan, H.; Li, P.; Huang, Z.; Gao, C. Towards secure and flexible EHR sharing in mobile health cloud
under static assumptions. Cluster Comput. 2017, 20, 2415–2422. [CrossRef]

10. Li, P.; Li, T.; Ye, H.; Li, J.; Chen, X.; Xiang, Y. Privacy-preserving machine learning with multiple data
providers. Future Gener. Comput. Syst. 2018, 87, 341–350. [CrossRef]

11. Gionis, A.; Indyk, P.; Motwani, R. Similarity search in high dimensions via hashing. VLDB J. 1999, 99,
518–529.

12. Qi, L.; Zhang, X.; Wen, Y.; Zhou, Y. A social balance theory-based service recommendation approach.
In Proceedings of the International Conference on Asia-Pacific Services Computing (APSCC), Bangkok,
Thailand, 7–9 December 2015; pp. 48–60.

13. Qi, L.; Zhou, Z.; Yu, J.; Liu, Q. Data-sparsity tolerant web service recommendation approach based on
improved collaborative filtering. IEICE T. Inf. Syst. 2017, E100D, 2092–2099. [CrossRef]

14. Zheng, X.; Cai, Z.; Li, J.; Gao, H. Location-privacy-aware review publication mechanism for local business
service systems. In Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM), Atlanta, GA, USA, 1–4 May 2017; pp. 1–9.

15. Fran, C.; Josep, D.F.; Constantinos, P.; Domènec, P.; Agusti, S. A k-anonymous approach to privacy preserving
collaborative filtering. J. Comput. Syst. Sci. 2015, 81, 1000–1011.

16. Ahila, S.S.; Shunmuganathan, K.L. Role of agent technology in web usage mining: homomorphic encryption
based recommendation for e-commerce applications. Wirel. Pers. Commun. 2016, 87, 499–512. [CrossRef]

17. Zhu, J.; He, P.; Zheng, Z.; Lyu, M.R. A privacy-preserving qos prediction framework for web service
recommendation. In Proceedings of the International Conference on Web Services (ICWS), New York, NY,
USA, 27 June–2 July 2015; pp. 241–248.

18. Dou, K.; Guo, B.; Kuang, L. A privacy-preserving multimedia recommendation in the context of social
network based on weighted noise injection. Multimed. Tools Appl. 2017, 1–20. [CrossRef]

19. Xu, Y.; Qi, L.; Dou, W.; Yu, J. Privacy-preserving and scalable service recommendation based on simhash in a
distributed cloud environment. Complexity 2017, 2017, 3437854. [CrossRef]

20. Qi, L.; Zhang, X.; Dou, W.; Hu, C.; Yang, C.; Chen, J. A two-stage locality-sensitive hashing based approach
for privacy-preserving mobile service recommendation in cross-platform edge environment. Future Gener.
Comput. Syst. 2018. [CrossRef]

21. Gong, W.; Qi, L.; Xu, Y. Privacy-aware multi-dimensional mobile service quality prediction and
recommendation in distributed fog environment. Wirel. Commun. Mob. Commun. 2018, 2018, 3075849.

http://dx.doi.org/10.1109/JSAC.2017.2760458
http://dx.doi.org/10.1016/j.ins.2018.02.056
http://dx.doi.org/10.1109/ACCESS.2018.2799854
http://dx.doi.org/10.1016/j.ins.2016.04.015
http://dx.doi.org/10.1007/s10586-017-0796-5
http://dx.doi.org/10.1016/j.future.2018.04.076
http://dx.doi.org/10.1587/transinf.2016EDP7490
http://dx.doi.org/10.1007/s11277-015-3082-y
http://dx.doi.org/10.1007/s11042-017-4352-3
http://dx.doi.org/10.1155/2017/3437854
http://dx.doi.org/10.1016/j.future.2018.02.050

Sensors 2018, 18, 2037 11 of 11

22. Zhang, K.; Fan, S.; Wang, H.J. An efficient recommender system using locality sensitive hashing.
In Proceedings of the Annual Hawaii International Conference on System Sciences (HICSS), Hawaii, HI,
USA, 3–6 January 2018.

23. Zheng, Z.; Ma, H.; Lyu, M.R.; King, I. QoS-aware web service recommendation by collaborative filtering.
IEEE Trans. Serv. Comput. 2011, 4, 140–152. [CrossRef]

24. Qi, L.; Dou, W.; Zhang, X. An inverse collaborative filtering approach for cold-start problem in web service
recommendation. In Proceedings of the Australasian Computer Science Week (ACSW), Geelong, Australia,
31 January–3 February 2017; pp. 46–54.

25. Movielens. Available online: https://grouplens.org/datasets/movielens/ (accessed on 11 March 2018).
26. Tian, G.; Wang, M.; Song, L. Variable selection in the high-dimensional continuous generalized linear model

with current status data. J. Appl. Stat. 2014, 41, 467–483. [CrossRef]
27. Wang, M.; Tian, G. Robust group non-convex estimations for high-dimensional partially linear models.

J. Nonparametr. Stat. 2016, 28, 49–67. [CrossRef]
28. Wang, X.; Wang, M. Variable selection for high-dimensional generalized linear models with the weighted

elastic-net procedure. J. Appl. Stat. 2016, 43, 796–809. [CrossRef]
29. Wang, P.; Zhao, L. Some geometrical properties of convex level sets of minimal graph on 2-dimensional

Riemannian manifolds. Nonlinear Anal. 2016, 130, 1–17. [CrossRef]
30. Wang, P.; Wang, X. The geometric properties of harmonic function on 2-dimensional Riemannian manifolds.

Nonlinear Anal. 2014, 103, 2–8. [CrossRef]
31. Wang, M.; Song, L.; Tian, G. SCAD-penalized least absolute deviation regression in high dimensional models.

Commun. Stat.-Theory Methods 2015, 44, 2452–2472. [CrossRef]
32. Xu, F.; Zhang, X.; Wu, Y.; Liu, L. Global existence and the optimal decay rates for the three dimensional

compressible nematic liquid crystal flow. Acta Appl. Math. 2017, 150, 67–80. [CrossRef]
33. Wang, X.; Zhao, S.; Wang, M. Restricted profile estimation for partially linear models with large-dimensional

covariates. Stat. Probabil. Lett. 2017, 128, 71–76. [CrossRef]
34. Tian, H.; Han, M. Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable

systems. J. Differ. Equ. 2017, 263, 7448–7474. [CrossRef]
35. Yang, S.; Yao, Z.; Zhao, C. The weight distributions of two classes of p-ary cyclic codes with few weights.

Finite Fields Their Appl. 2017, 44, 76–91. [CrossRef]
36. Wang, Y.; Yin, C.; Zhang, X. Uniform estimate for the tail probabilities of randomly weighted sums. Acta Math.

Appl. Sin. E 2014, 30, 1063–1072. [CrossRef]
37. Cai, J. An implicit sigma(3) type condition for heavy cycles in weighted graphs. Ars Combin. 2014, 115,

211–218.
38. Liu, H.; Meng, F. Some new generalized volterra-fredholm type discrete fractional sum inequalities and their

applications. J. Inequal. Appl. 2016, 2016, 213. [CrossRef]
39. Li, P.R.; Ren, G.B. Some classes of equations of discrete type with harmonic singular operator and convolution.

Appl. Math. Comput. 2016, 284, 185–194. [CrossRef]
40. Zhang, B. Remarks on the maximum gap in binary cyclotomic polynomials. Bull. Math. Soc. Sci. Math. 2016,

59, 109–115.
41. Wang, L. The fixed point method for intuitionistic fuzzy stability of a quadratic functional equation.

Fixed Point Theory A 2010, 107182. [CrossRef]
42. Liu, L.L.; Ma, D. Some polynomials related to dowling lattices and x-stieltjes moment sequences.

Linear Algebra Appl. 2017, 533, 195–209. [CrossRef]
43. Li, L.; Meng, F.; Zheng, Z. Oscillation results related to integral average technique for linear hamiltonian

systems. Dyn. Syst. Appl. 2009, 18, 725–736.
44. Xu, A.; Ding, N. Semidualizing bimodules and related gorenstein homological dimensions. J. Algebra Appl.

2016, 15, 1650193. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSC.2010.52
https://grouplens.org/datasets/movielens/
http://dx.doi.org/10.1080/02664763.2013.840271
http://dx.doi.org/10.1080/10485252.2015.1112009
http://dx.doi.org/10.1080/02664763.2015.1078300
http://dx.doi.org/10.1016/j.na.2015.09.021
http://dx.doi.org/10.1016/j.na.2014.03.002
http://dx.doi.org/10.1080/03610926.2013.781643
http://dx.doi.org/10.1007/s10440-017-0094-5
http://dx.doi.org/10.1016/j.spl.2017.04.013
http://dx.doi.org/10.1016/j.jde.2017.08.011
http://dx.doi.org/10.1016/j.ffa.2016.11.004
http://dx.doi.org/10.1007/s10255-014-0446-0
http://dx.doi.org/10.1186/s13660-016-1152-7
http://dx.doi.org/10.1016/j.amc.2016.03.004
http://dx.doi.org/10.1155/2010/107182
http://dx.doi.org/10.1016/j.laa.2017.07.023
http://dx.doi.org/10.1142/S0219498816501930
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Converse Locality-Sensitive Hashing
	An Exception Handling Approach Based on Converse LSH
	Experiments
	Experiment Configurations
	Experiment Results
	Shortcoming Analyses & Future Work

	Conclusions
	References

