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Abstract: Service recommendation has become an effective way to quickly extract insightful
information from massive data. However, in the cloud environment, the quality of service
(QoS) data used to make recommendation decisions are often monitored by distributed sensors
and stored in different cloud platforms. In this situation, integrating these distributed data
(monitored by remote sensors) across different platforms while guaranteeing user privacy is an
important but challenging task, for the successful service recommendation in the cloud environment.
Locality-Sensitive Hashing (LSH) is a promising way to achieve the abovementioned data integration
and privacy-preservation goals, while current LSH-based recommendation studies seldom consider
the possible recommendation failures and hence reduce the robustness of recommender systems
significantly. In view of this challenge, we develop a new LSH variant, named converse LSH, and then
suggest an exception handling approach for recommendation failures based on the converse LSH
technique. Finally, we conduct several simulated experiments based on the well-known dataset,
i.e., Movielens to prove the effectiveness and efficiency of our approach.

Keywords: service recommendation; privacy-preservation; failure; exception handling; converse
Locality-Sensitive Hashing

1. Introduction

With the advent of Web of Things (WoT), an increasing number of enterprises or organizations
are apt to encapsulate their products (e.g., web API (Application Programming Interface)) into
easy-to-access web services and publish them on the web so as to attract potential users and gain more
profits. However, the ever-increasing volume and varieties of candidate services place a heavy burden
on the service selection decisions of target users [1]. Under the circumstance, Collaborative Filtering
(CF)-based recommendation techniques are proposed to minimize such burdens. Typically, for a target

Sensors 2018, 18, 2037; doi:10.3390/s18072037 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7353-4159
https://orcid.org/0000-0003-4879-9803
http://www.mdpi.com/1424-8220/18/7/2037?type=check_update&version=1
http://dx.doi.org/10.3390/s18072037
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 2037 2 of 11

user who requires recommend services, the recommender system can look for his/her similar friends by
observing the quality of service (QoS) data monitored by various sensors, and then enact appropriate
recommendation decisions with the help of derived friends. Nowadays, CF technique has been
successfully applied in many recommender systems whose decision-making data for recommendation
are organized or stored in a centralized way.

However, in the cloud computing environment, the QoS information that is crucial to
recommendation decisions is often not centralized, but rather monitored by distributed sensors
and stored in different cloud platforms [2]. In this situation, it is necessary for a recommender system
to integrate or fuse these distributed data across different cloud platforms quickly and properly, so as
to make comprehensive and accurate recommendation decisions. In particular, to protect the sensitive
business information and obey the laws [3–5], preserving user privacy during the abovementioned
multi-source data integration process is an important but challenging task [6–10] for the success of
subsequent recommendations.

The Locality-Sensitive Hashing (LSH) technique [11] has recently been recruited to make
efficient and privacy-preserving service recommendation in the distributed environment. Typically,
according to the QoS data, the Locality-Sensitive Hashing technique can be used to search for
the similar friends of a target user in an efficient and privacy-preserving manner. Afterwards,
recommended results are generated by considering the preferences of obtained similar friends.
However, in certain situations, the recommender system cannot generate or produce any satisfying
recommended result; in other words, a recommendation failure occurs. While existing LSH-based
service recommendation approaches seldom consider this kind of recommendation failure problems as
well as the corresponding exception handling solutions; therefore, the robustness of the recommender
system is reduced significantly.

An intuitive example is presented in Figure 1, which contains three users and six services. The user
ratings are denoted by 1*–5*. According to the traditional LSH technique, the index values of Tom
and Alice are not same as they have no co-invoked services. Therefore, Tom is not similar with Alice.
Likewise, as Figure 1 shows, Tom is not similar with Bob either. In this situation, no satisfying candidate
services can be recommended or returned to Tom, i.e., the service recommendation process is failed.
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Figure 1. A recommendation failure example (see our previous work [12]).

In view of this challenge, we propose converse LSH technique and utilize it to look for a target
user’s contrary users (denoted by “enemy” in this paper) whose preferences are totally different from
the target user. Afterwards, according to the enemies of the target user, we infer the possible friends of
the target user indirectly so as to handle the exception incurred by recommendation failures. Overall,
the contributions in this paper are as follows:

(1) A novel LSH variant named converse LSH is developed, which can be utilized to search for the
enemy users of a target user, in a time-efficient and privacy-preserving way.
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(2) We utilize converse LSH technique to search for the enemies of a target user and then look for
the target user’s similar friends indirectly based on the “enemy’s enemy is a possible friend”
inference rule in Social Balance Theory. Afterwards, we generate recommended results by
considering the preferences of obtained similar friends, so as to handle the exceptions incurred
by recommendation failures.

(3) Comprehensive experiments are simulated based on Movielens dataset, to test the effectiveness
of suggested recommendation approach. Experiment results indicate the advantages of our
proposal compared to other competitive approaches when a recommendation failure occurs.

The rest of this paper is structured as follows: in Section 2, we introduce the related work.
Converse LSH technique is proposed in Section 3. An exception handling approach based on converse
LSH is put forward in Section 4, to achieve indirect friend finding and service recommendations.
Experiment evaluations are given in Section 5. In Section 6, we summarize the paper and point out the
future research directions.

2. Related Work

Many researchers have investigated the privacy concerns in recommendation process and provide
their respective resolutions. In [13], the authors suggested that a user can publish partial QoS data to the
service community, so as to protect the remaining majority of QoS data. Similarly, in [14], the authors
take the amount of published data as a tunable parameter and then transform the privacy-preservation
problem into a multi-object optimization problem, so as to achieve a good tradeoff between data
availability and data privacy. However, in the above approaches, certain sensitive information about
users may be in danger due to the published partial data. Besides, recommendation failures are not
considered in these approaches.

Microaggregation idea is adopted in [15] to realize data K-anonymization so that the users’ sensitive
data (e.g., user location) can be protected. However, there is often a tradeoff between data availability
and data privacy; so the recommendation accuracy is often not as high as expected if the anonymous
data are employed to make service recommendation decisions. Besides, these approaches do not discuss
the possible service recommendation failures. Encryption technique is adopted in work [16] to guarantee
the privacy-preservation of sensitive information. However, as a heavy-weight privacy-preservation
manner, encryption operations often lead to high computational cost and long delay; therefore,
the encryption techniques are often not applicable to the light-weight service recommendation
requirements from certain users. Besides, recommendation failures are out of the scope of these
encryption-based approaches.

Randomized disturbance idea is adopted in [17] to convert the real QoS data into the
disturbed data; afterwards, the latter data are regarded as the recommendation bases to
achieve the privacy-preservation goal. However, recommendation failures are not discussed;
besides, the applicability of this approach is relatively limited as it can only be applied to the
Pearson Correlation Coefficient (PCC)-based collaborative service recommendation scenarios. In [18],
the authors utilize the Differential Privacy technique to make noise data injection and confusion, so as
to ensure that the real service quality data would not be exposed to the outside. However, the time
complexity of Differential Privacy is relatively high; second, when the service quality data are updated
frequently, the accumulated noise would be enlarged, which will decrease the service recommendation
accuracy accordingly; third, they do not consider the recommendation failures.

As an effective and efficient way to search for similar friends in the big data context, LSH is
recently introduced into service recommendation to achieve the distributed data integration and
privacy-preservation goals. In our previous work [19–21], LSH is combined with user-based CF to
make privacy-preserving service recommendation. Likewise, in [22], LSH is combined with item-based
CF to build service index table with little privacy and then make service recommendation based on
the service index table. However, these LSH-based recommendation approaches do not consider
the recommendation failures as well as the corresponding exception handling resolutions. As to the



Sensors 2018, 18, 2037 4 of 11

recommendation failures, the authors in [23] adopt the average idea to predict the missing QoS data.
Social Balance Theory is utilized in our previous works [12,24] to look for the possible friends of a target
user so as to cope with the recommendation failures. However, privacy concerns are not discussed.

Through the above literature review, a conclusion can be drawn that existing recommendation
approaches either fail to protect user privacy or overlook the recommendation failures and exceptions.
In view of this drawback, we propose converse LSH technique and utilize it to handle the exceptions
incurred by recommendation failures; this way, the robustness of recommender systems can be
improved significantly.

3. Converse Locality-Sensitive Hashing

Traditional LSH is an effective similar neighbor search technique. Therefore, in the service
recommendation domain, LSH is often integrated with user-based Collaborative Filtering (CF)
technique to search for the similar friends of a target user, in an efficient and privacy-preserving
way. In this section, we modify the traditional LSH technique and transform it into converse LSH
which can be used to search for the enemies of a target user efficiently while guaranteeing user privacy.
Next, we introduce the rationale of converse LSH.

Let’s consider two n-dimensional vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn) whose similarity
can be depicted by the PCC distance. Next, according to LSH theory [11], we can transform vectors
X and Y containing private information into corresponding hash values with little privacy, i.e., h(X)
and h(Y), respectively. Concretely, h(X) can be calculated by (1), where V is an n-dimensional vector
(v1, . . . , vn) and vj (j = 1, 2, . . . n) is randomly selected from [−1, 1]; “◦” represents the inner product of
different vectors. The physical meaning of equation in (1) is: vector V is a hyper plane which divides
the n-dimensional space into two parts; if point X is above hyper plane V (i.e., X#V > 0), then h(X) = 1
with high probability; otherwise, h(X) = 0:

h(X) =

{
1 if X
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V ≤ 0
(1)

Thus, through the hash map in (1), n-dimensional vectors X and Y are transformed into two
Boolean values, i.e., h(X) and h(Y), respectively. However, LSH is essentially a probability-based
similar friend search technique; therefore, a single hash value h(X) or h(Y) cannot precisely represents
the original n-dimensional vector X or Y. Considering this, more hash functions, i.e., a hash function
family H(.) = {h1(.), . . . , hr(.)} (r << n) are adopted here. Through the hash function family H(.), we can
transform the n-dimensional vectors X and Y into r-dimensional 0–1 vectors, i.e., H(X) = {h1(X), . . . ,
hr(X)} and H(Y) = {h1(Y), . . . , hr(Y)}, respectively. The vectors X and Y, as well as their respective hash
values H(X) and H(Y), form a hash table. We repeat the above hash table building process until L hash
tables, i.e., Tb1, . . . , TbL are obtained. Next, according to LSH theory, vectors X and Y are contrary
with large probability iff the condition in (2) holds. In (2), Hz(X) and Hz(Y) denote the hash values of
vectors X and Y in z-th hash table, respectively; symbol “⊕” represents the XOR operation:

∃ z, s.t. Hz(X)⊕Hz(Y) = (1, 1, . . . , 1) (z ∈ {1, . . . , L}) (2)

The physical meaning of equation in (2) is clarified as below: if points X and Y are always located
on the different sides of hyper plane V (i.e., hi(X) 6= hi(Y) holds for all i ∈ {1, ..., r}), then X and Y
are far away from each other with large probability (i.e., H(X)⊕H(Y) = (1, 1, . . . , 1)). Furthermore,
if H(X)⊕H(Y) = (1, 1, . . . , 1) in any of Tb1, . . . , TbL, points X and Y can be regarded as two contrary
points (i.e., enemies). This is the main idea of our proposed converse LSH technique. Through converse
LSH, we can search for the users (denoted by “enemies”) whose preferences are totally different from
the target user, in an efficient and privacy-preserving manner, as elaborated in the next section.
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4. An Exception Handling Approach Based on Converse LSH

Next, we introduce an approach for handling the exceptions incurred by service recommendation
failures, named SerRecconverse-LSH, based on the converse LSH technique introduced in Section 3.
Concretely, our approach consists of three steps.

• Step-1: Build user indices offline through traditional LSH technique.

Let’s consider a user u whose single hash value (denoted by h(u)) is based on the hash map in
Equation (1) and user u’s historical service quality data (assume fixed and real values) monitored by
sensors. Furthermore, according to the hash function family H(.) = {h1(.), . . . , hr(.)} (r << n) in Section 3,
we can obtain user u’s compound hash value H(u) = {h1(u), . . . , hr(u)}. Then H(u) is treated as user
u’s index. Moreover, all users as well as their respective indices form a hash table. Repeat the above
process until L hash tables, i.e., Tb1, . . . , TbL are obtained. The above user indices building process
can be executed offline before a service recommendation requirement is raised; therefore, its time
complexity is O(1), which indicates that the recommendation speed can be accelerated greatly.

• Step-2: Determine the indirect friends of the target user u* based on user indices and converse
LSH technique.

We have obtained the user indices H(u) (including the index H(u*) for the target user (denoted by
u*)), and form L hash tables Tb1, . . . , TbL. Next, if H(u)⊕ H(u*) = (1, 1, . . . , 1) holds in any Tb1, . . . , TbL,
then user u can be regarded as a qualified enemy of the target user u* based on the converse LSH theory
introduced in Section 3. Likewise, for each user ω (ω 6= u and ω 6= u*), if H(ω) ⊕ H(u) = (1, 1, . . . , 1)
holds in any hash table, then user ω can be regarded as a qualified enemy of user u. Thus, ω can be
considered as an indirect friend of u* based on the “enemy’s enemy is a possible friend” rule in Social
Balance Theory; afterwards, we put ω into a new user set Possible_Friend_set(u*). Repeat the above
process until all the indirect friends of u* are found. This way, we can derive the friends of u* in an
indirect manner, if u* does not have similar friends due to the data sparsity according to the traditional
LSH technique.

Next, we turn to the example in Figure 2 where three users {u1, u2, u3} and two hash tables
{Tb1, Tb2} are present. The index values of the three users are also shown in Figure 2. Then according to
the judgement condition in Equation (2), u2 is an enemy of u1 as (1, 0, 1, 0)⊕ (0, 1, 0, 1) = (1, 1, 1, 1) holds
in hash table Tb1. Similarly, u3 is an enemy of u2 as (1, 1, 0, 1) ⊕ (0, 0, 1, 0) = (1, 1, 1, 1) holds in hash
table Tb2. With the above analyses, we can infer that u3 is a possible friend of u1 based on the “enemy’s
enemy is a possible friend” rule. So u3 is put into the friend set of u1, i.e., Possible_Friend_set(u1).
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Figure 2. Indirect friend finding based on converse LSH: an example.

• Step-3: Recommend services to u* based on the possible friends of u*.

According to target user u*’s possible friends (Possible_Friend_set(u*)) derived in Step-2, the users
in, we can recommend appropriate services to u*. First of all, we predict the missing QoS data of ws
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by u* by (3) where q is a QoS criterion, q(u*, ws) represents ws’s QoS over criterion q invoked by u*;
Φ denotes the set of users who are possible friends of u* and have invoked service ws before, which can
be obtained by (4). Thus we can rank services ws based on q(u*, ws) in (3). At last, optimal services are
recommended to u*; this way, the recommendation failures are overcome:

q(u∗, ws) =
1
|ϕ|

∗
∑

ui∈ϕ

q(ui, ws) (3)

Φ = {ui|ui ∈ Possible_Friend_set(u*) and ui has ever invoked ws} (4)

5. Experiments

5.1. Experiment Configurations

To prove the effectiveness of our suggested exception handling approach named SerRecconverse-LSH,
we design and deploy several experiments based on popular dataset Movielens [25]. Movielens
reports the rating data of 3900 movies rated by 6040 users all over the world. Different from
other applications where multiple dimensions are present [26–34], we consider only one quality
dimension (i.e., user rating) in the experiments and take it as the unique recommendation basis,
because the Movielens dataset only provides one dimension, i.e., user-service rating. The complex
multi-dimensional service recommendation scenarios are out of the scope of this work. (In the
multi-dimensional service recommendation scenarios, the multiple quality dimensions as well as their
mutual correlations, such as the linear correlations and non-linear correlations should all be taken into
consideration. In this situation, the problem becomes more complex and cannot be directly extended
from this work, so we will investigate the complex multi-dimensional service recommendation
problems in the future; see Section 5.3 “Shortcoming analyses & future work”). We randomly remove
partial entries of the dataset to simulate recommendation failure scenarios. To evaluate the performance
of exception handling approaches, we test the time cost and Mean Absolute Error (MAE), respectively
(Note that LSH can protect data inherently, therefore, the privacy protection effect of SerRecconverse-LSH

is not tested in the experiment). Moreover, to validate the feasibility of our proposed SerRecconverse-LSH

approach, we compare our proposal with the following three competitive handling approaches.

(1) Random: this benchmark approach predicts the missing service quality data based on the quality
of a randomly selected service, and returns the service with the optimal predicted quality.

(2) WSRec [23]: it predicts the missing service quality data by two pieces of average quality,
i.e., average quality of the service rated by all users and average quality of all services rated by
the user. Finally, the optimal service is returned to the target user.

(3) SBT-SR [12]: this approach first looks for the indirect friends of a target user based on
Collaborative Filtering and Social Balance Theory, and then recommends appropriate services
based on the derived indirect friends.

The experiment running environment is as follows: (1) hardware: 2.80 GHz CPU + 2.0 GB RAM;
(2) software: Windows XP + JAVA 1.5. Experiments are executed ten times and their average values
are reported.

5.2. Experiment Results

Four experiments are designed and deployed, respectively. Four parameters are present in the
experiments: m, n denote the sizes of user set and service set; L, r represent the sizes of hash table set
and hash function set.

• Profile 1: Accuracy comparison of four approaches

The accuracy values of outputted results of four exception handling approaches are compared.
Here, m = 6000, n = 3900, L = 10, r = 8. Experiments are repeated ten times. The concrete experiment
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results of the ten iterations and the average result are demonstrated in Figure 3, which shows that
the accuracy value of Random approach is the smallest, as a random strategy is adopted to predict
the missing quality data. A simple and naïve “average” strategy is recruited in WSRec approach to
predict the missing service quality, while the average service quality cannot reflect the real running
quality of services very well; therefore, the recommendation accuracy of WSRec approach is also
low. Both SerRecconverse-LSH and SBT-SR approaches utilize the Social Balance Theory to improve
the recommendation robustness; however, the accuracy value of our suggested SerRecconverse-LSH

approach outperforms those of the other three competitive approaches including SBT-SR, as only the
similar friends (obtained in an indirect manner) of a target user are taken into consideration in missing
QoS prediction in SerRecconverse-LSH. Another observation from Figure 3 is that the recommendation
accuracy value of SerRecconverse-LSH approach does not vary significantly and regularly, which means
that our proposal can make relatively stable service recommendations.
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• Profile 2: Efficiency comparison of four approaches

We measure the time cost for generating recommended results in our suggested SerRecconverse-LSH

approach and compare it with the rest three approaches. The parameters are as follows: m = 6000,
n = 3900, L = 10, r = 8. Experiments are repeated ten times. The concrete experiment results of the ten
iterations and the average result are demonstrated in Figure 4.
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Figure 4 shows that the recommendation efficiency of SBT-SR is low as it is based on Collaborative
Filtering and hence the time cost is rather high. The service recommendation efficiencies of the other
three approaches, i.e., SerRecconverse-LSH, WSRec and Random are rather high and approximately the
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same. This is because most tasks in our SerRecconverse-LSH approach can be done offline, and both
WSRec and Random approaches have a polynomial time complexity.

• Profile 3: Accuracy of SerRecconverse-LSH with respect to L and r

Next, we test the variation tendency of accuracy of the proposed SerRecconverse-LSH approach
with respect to the parameters L and r. Here, m = 6000, n = 3900, L and r are both varied from 6 to 10.
Experiments are repeated ten times. The average values are demonstrated in Figure 5.

According to LSH theory, a larger r value or a smaller L value implies tighter condition for
neighbor search and higher recommendation accuracy (i.e., lower MAE value). However, as Figure 5
indicates, the recommendation accuracy of SerRecconverse-LSH does not render an obvious fluctuation
tendency with L and r. This is due to the following reason: in our proposal, the traditional LSH
technique is modified to be the converse LSH technique; and the converse LSH technique is recruited
twice in order to search for the friends of a target user indirectly. So the influence of parameters L and
r over the recommendation accuracy is not so obvious any more.
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• Profile 4: Efficiency of SerRecconverse-LSH with respect to L and r

Next, we evaluate the efficiency of SerRecconverse-LSH with respect to L and r. Here, m = 6000;
n = 3900; L = 6, 8, 10; r = 6, 8, 10. Experiments are repeated ten times. The average results are
demonstrated in Figure 6.
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From the figure, we can see that our efficiency decreases when the number of hash tables,
i.e., L rises. This is because when L grows, the search condition for dissimilar enemy becomes looser
and correspondingly, more qualified enemies are returned to take part in the service recommendation
decision-makings; in this situation, more time cost is needed. Another result that Figure 6 indicates is
that our efficiency decreases when the number of hash functions, i.e., r drops. This is because when r
drops, the search condition for dissimilar enemy becomes stricter and correspondingly, fewer qualified
enemies of a target user are returned to take part in the service recommendation decision-makings;
therefore, less computational time is needed.

With the above analyses, a conclusion can be drawn that SerRecconverse-LSH approach achieves a
good tradeoff between service recommendation accuracy and efficiency. Besides, SerRecconverse-LSH

outperforms the other approaches in terms of privacy-preservation due to the inherent characteristic
of LSH.

5.3. Shortcoming Analyses & Future Work

There are still several shortcomings in our approach. First of all, we only consider
the recommendation scenario where one quality dimension is monitored by sensors,
while multi-dimensional and weighted applications are more common in practice [35–37], so in the
future, we will further refine our work by considering the multiple service quality dimensions as well
as their respective weights. Besides, for simplicity, we only discuss the service quality dimensions
with real and continuous monitored values, without considering the diversity of the quality values
(e.g., discrete [38,39], binary [40], fuzzy [41] and correlated [42–44]). Considering this drawback, we will
further improve our proposed recommendation approach by integrating the diverse forms (or formats)
of different service quality dimensions, for the purpose of getting more comprehensive and reasonable
recommended services.

6. Conclusions

The multi-source property of service usage data (monitored by distributed sensors) used to make
service recommendations in the cloud environment requires that a recommender system to quickly
integrate the distributed monitored data so as to make comprehensive and accurate recommendation
decisions. In this situation, protecting the private information of users from leakage during the above
data integration process is an important but challenging task for the successful service recommendation.
Although the LSH technique can be recruited to achieve the abovementioned data integration and
privacy-preservation goals, existing LSH-based service recommendation approaches seldom consider
the possible recommendation failures as well as the resulted exceptions. In view of this drawback,
we put forward a new LSH variant, i.e., converse LSH, and integrate it with the Social Balance Theory
so as to look for the possible friends of a target user indirectly and then recommend appropriate
services based on the obtained possible friends. The experiments conducted on Movielens dataset
prove the effectiveness of our approach in terms of service recommendation accuracy and time cost
while guaranteeing privacy-preservation of quality data monitored by sensors.

However, in SerRecconverse-LSH, only one quality dimension of services is considered. In our future
work, we will continue to refine SerRecconverse-LSH by considering multiple quality dimensions as well
as their weight information. Besides, QoS data often vary with concrete service execution context
(e.g., service invocation time and user location); therefore, we will further improve our approach by
taking context into consideration.
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