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Abstract: This article presents a non-destructive methodology to determine the modulus of elasticity
(MOE) in static bending of wood through the use of near-infrared (NIR) spectroscopy. Wood
specimens were obtained from Quercus mongolica growing in Northeast of China. The NIR spectra of
specimens were acquired by using a one-chip NIR fiber optic spectrometer whose spectral range was
900~1900 nm. The raw spectra of specimens were pretreated by multiplication scatter correlation and
Savitzky-Golay smoothing and differentiation filter. To reduce the dimensions of data and complexity
of modeling, the synergy interval partial least squares and successive projections algorithm were
applied to extract the characteristic wavelengths, which had closing relevance with the MOE of wood,
and five characteristic wavelengths were selected from full 117 variables of a spectrum. Taking the
characteristic wavelengths as input values, partial least square regression (PLSR) and the propagation
neural network (BPNN) were implemented to establish calibration models. The predictive ability
of the models was estimated by the coefficient of determination (rp) and the root mean square
error of prediction (RMSEP) and in the prediction set. In comparison with the predicted results of
the models, BPNN performed better results with the higher rp of 0.91 and lower RMSEP of 0.76.
The results indicate that it is feasible to accurately determine the MOE of wood by using the NIR
spectroscopy technique.

Keywords: near-infrared spectroscopy; the modulus of elasticity in static bending; synergy interval
partial least squares; successive projections algorithm; characteristic wavelengths

1. Introduction

Quercus mongolica is the main secondary forest species growing in Northeast China. Quercus mongolica
is a frequently used structural material, also used for manufacturing of furniture, machinery, and sports
appliances. The modulus of elasticity (MOE) in static bending is one of the most important mechanical
properties of Quercus mongolica. It could be used in various ways or made into different kinds of
products based on its MOE, so the detection of MOE can not only achieve its best use, but also ensure
safe use in engineering. However, most of the traditional methods of testing mechanical properties
of wood are destructive and time-consuming [1]. Although the results obtained are accurate, the test
specimens after detection are usually no longer of use value, which causes great waste. Moreover, it is
impossible to detect all the products, and the quality of the products cannot be guaranteed to meet the
requirements. Therefore, the researchers propose to use non-destructive technology to determine the
mechanical properties of wood.
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Near-infrared (NIR) spectroscopy is a non-invasive analytical, high reliability, and pollution-free
method to determine different properties of materials. NIR spectrum mainly reflects the second
harmonic generation and co-frequency absorption of C-H, N-H, O-H and other hydrogen radical
groups. The NIR absorption peaks of different groups have obvious differences. NIR spectra have
abundant structural information and can be adapted to the determination of organic matters [2]. NIR
spectroscopy has been studied by many scholars to determine the various properties of wood, such
as moisture content [3], drying stress level [4], basic density [5]. In recent years, NIR spectroscopy
technology has been widely studied on the determination of wood mechanical properties. For example,
Schimleck et al. examined NIR spectroscopy for the estimation of MOE, and modulus of rupture (MOR)
using clear wood samples obtained from several pine species; the results showed that NIR spectra
collected from the radial and transverse faces provided similar calibration statistics [6]. Todorović,
et al. predict the bending properties of thermally modified beech wood of both sapwood and red
heartwood, the results of the spectra taken from sapwood were, in most models, better than the spectra
of the red heartwood [7]. Acquah et al. incorporated tree breeding programs to further improve wood
quality by estimating the mechanical properties and basic density of elite loblolly pine families by NIR
spectroscopy [8].

The spectral analysis methods mainly focus on pretreatment methods, feature optimization,
and prediction model establishment. Andrade et al. employed multiplication scatter correlation to
pretreat the spectra before the prediction of MOE and the scattering light effect in the spectra of solid
samples [9]. Liang et al. used backward interval partial least squares and genetic algorithm to extract
the feature wavelengths from the original spectra to calibrate the model, which removed the noise
and low information region of spectra and improved the prediction ability of the model [10]. When
using NIR spectroscopy to analyze and predict the properties of wood, most of the models used were
linear, such as principal component regression, multiple linear regression, and partial least squares
regression (PLSR). Compared with the other linear regression methods, the predictive effects of PLSR
was usually better [11]. Thus, PLS has become the main linear modeling method in the quantitative
analysis of NIR spectroscopy. Besides, some of the non-linear modeling methods were applied in NIR
spectroscopy, such as back propagation neural network [12], and support vector machines [13]. NIR
spectroscopy combined with chemometrics analysis methods has the features of non-destruction and
are efficient in predicting the mechanical properties of wood, which has a bright application prospect.

Therefore, the objective of this study was to investigate and build a new approach for quantitative
analysis and determination of MOE in Static Bending of Quercus mongolica based on NIR spectroscopy
combined with chemometrics analysis. The paper will focus on the following three aspects: (1) to reveal
the relationship between NIR spectra and the MOE of the non-defect specimens of Quercus mongolica;
(2) to explore an effective characteristic wavelengths extraction approach to select the closing relative
information of NIR spectral data; and (3) to establish a model to predict the MOE in Static Bending of
Quercus mongolica and evaluate the predictive ability of the model.

2. Materials and Methods

2.1. Specimen Preparation

The Quercus mongolica timber used in the experiment was collected from Chonghe forest farm,
forestry bureau of Wuchang City, Heilongjiang province, China. The geographical coordinates were
of 44◦37′~44◦47′ N, 27◦35′~127◦55′ E. The average elevation was 350 m. The climate of this area was
temperate continental monsoon climate with annual temperature ranging from 35◦ to −34◦, that led
to an unfreezing period of 125 days. The annual precipitation and annual evaporation capacity were
750 mm, and 340 mm, respectively. In the Quercus mongolica section of the forest farm, 3 groups of trees
were collected along the topography from high to low. Each group consisted of 4 trees, and 12 sample
trees were obtained. In accordance with Chinese national standards, “General requirements for
physical and mechanical tests of wood (GB1927~1943–2009)”, the timber was cut into small specimens
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with dimensions of 300 mm (L) × 20 mm (T) × 20 mm (R). 125 specimens without defects were chosen
and numbered from 1 to 125. These specimens were then stored at constant temperature and in a
constant humidity incubator; the moisture content of the incubator was adjusted to 12%. The NIR
spectrum scanning and mechanical properties were tested in a laboratory. The temperature was
22 ± 1 ◦C and the average relative humidity was 50%.

2.2. NIR Spectra Measurements

In this work, the equipment used for specimen spectrum measurements was a One-chip NIR
fiber optic spectrometer, which was researched and developed by Insion Co., GmbH, Heilbronn,
Germany. The spectrometer utilized two bifurcated fiber optic probes to scan the diffuse reflectance
spectrum in the surface of the specimen. The wavelength ranged from 900 to 1900 nm at a spectral
resolution of 9 nm. Scholars and researchers found that spectroscopy in 1100 to 1700 nm contained
important information that could be used to analyze and predict the properties of wood [7,14]. Before
scanning the specimens, the spectrometer preheated for 10 min, and calibration was done with the
commercial PTFE reference tile. The spectra of the specimens were then obtained. NIR spectra data
were collected using SPEC view 7.1 software (Insion Co., GmbH, Heilbronn, Germany), and exported
as Excel (Microsoft, Redmond, WA, USA). Each spectrum was acquired from an average of 30 scans.
The process of spectra measurements is shown in Figure 1.
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Figure 1. The diagram of spectra measurements.

Because of the difference of growth characteristics of timber, 9 spectra were collected uniformly
in each radial plane and each tangential plane by moving the probe. The 36 spectra (18 from the
radial plane and 18 from the tangential plane) were averaged to one single spectrum to represent the
specimen they belonged to. Figure 2 shows the plane distribution and spectral collection points in
the specimen.
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2.3. Detemination of MOE in Static Bending

The experiment used the all-around mechanical testing machine of wood to determine the MOE
in static bending of specimens, referring to steps and specifications in Chinese national standards,
“Method for Determination of the Modulus of Elasticity in Static Bending of Wood (GB/T 1936.2-2009)”.
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All the samples were loaded in a tangential direction at a uniform rate (10 mm/min) until rupture
(2 to 3 min per sample) to determine the MOE of the wood. The calculation of MOE was shown in
Equation (1):

MOE =
23Pl3

108bh3 f
(1)

where P was the difference of upper and lower limit load, l was the span of loading point, b was the
breadth of specimen, h was the height of the specimen, and f was the deformation value in the middle
of the specimen in the loading process.

2.4. Calibration Set and Predition Set Partitioning Using Improved Kennard-Stone Method

In order to guarantee the applicability and stability of the prediction model, the ratio of calibration
set and prediction set was generally between 2:1 and 4:1. However, random set partitioning usually
made the calibration set unrepresentative [15]. According to the spectral difference, the Kennard-Stone
(K-S) method can put the biggest different sample into the calibration set and put the closing samples
into the prediction set, ensuring the integrity and representativeness of the calibration set [16,17].
Since the traditional K-S algorithm calculated the Euclidean distance between any two samples in
the sample pool in the high-dimensional space, the amount of calculation was very huge. Therefore,
K-S algorithm was optimized by improving the distance formula of K-S in this work. The Euclidean
distance used in the sample selection process of the K-S algorithm was replaced by the normalized
Euclidean distance, improving computational efficiency. The formula calculating the spectral distance
of samples in the improved K-S method is shown in Equation (2):

d(p, q) =

√
m
∑

j=1

[
xp(j)− xq(j)

]2
max{d(p, q)} ; p, q ∈ [1, n] (2)

where xp(j) and xq(j) were the absorbance of sample p and q at the j wavelength, respectively, m was
the number of wavelengths in a spectrum, and n was the total number of samples.

In this study, the ratio of the calibration set to the prediction set was chosen as 2:1.

2.5. Pretreatment of NIR Spectra

In the process of acquiring NIR spectrum data of the experimental samples, the noise, such as
light scattering, high-frequency random noise, was inevitably caused by the spectrometer itself or the
environment. The noise influenced the modeling effect and prediction accuracy. Therefore, the raw
data needed to be pretreated before establishing the analysis model of the relationship between the NIR
spectra and the mechanical properties of samples. The pretreatment methods studied in this work are
multiplication scatter correlation (MSC), and Savitzky-Golay (SG) smoothing and differentiation filter.

MSC was used to compensate the dispersion effect of spectral data and reduce the occurrence
of baseline drift. MSC was also used to correct the scattering of each spectrum and obtain an ideal
spectrum [18]. SG smoothing, also called polynomial smoothing, was capable of eliminating the
high-frequency noise, removing possible overlapping peaks, and correcting the spectra baseline [19].
The SG smoothing and differentiation filter did least-squares fitting of the data in the moving
window through polynomials, so the smoothing effect varied by selection of window size. Besides,
the spectral contour and absorption peak was more clear and obvious after pretreatment by using
SG smoothing and differentiation filter, which did a fist derivative operation with the former spectra.
Thus, the samples were pretreated by MSC combined with the SG convolution smoothing and
differentiation filter.
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2.6. Characteristic Spectrum Extraction

There was a lot of redundant information in the spectral data, which not only increased
computational complexity, but also reduced the predicting accuracy of the model. Therefore, it was
necessary to eliminate the uninformative wavelengths in the spectra that had unrelated MOE
information. This process was named as characteristic spectrum extraction. The whole process
included two steps: (1) optimal spectra intervals selection by synergy interval partial least squares
(SiPLS); (2) characteristic wavelengths selection by successive projections algorithm (SPA).

2.6.1. SiPLS

SiPLS was a further improvement on interval partial least squares (iPLS), proposed by
Norgaard [20,21]. The basic principle of SiPLS was as follows: first, the full spectrum was divided into
N smaller equidistant sub-intervals; second, the partial least squares (PLS) regression model was built
with m sub-intervals; and lastly the combination of sub-interval spectrum, which had the lowest root
mean square error of the cross-validation showed better performance [22].

2.6.2. SPA

SPA used vector projection analysis to find the variable set containing the lowest redundancy
information and minimized the collinearity between variables. SPA selected a few groups of strong
representative variables from the original spectrum of the experimental samples, which contained
the majority of the spectral information. It also eliminated redundant and repetitive information in
the spectral variables to improve the prediction ability of the model [23,24]. The main procedures are
summarized here: the maximum number of variables N to be selected were set. Starting from each
variable, SPA yields M (total number of variables) sets of selection of N variables. The optimal initial
variable and number of variable can be determined on the basis of the smallest root mean squared
error of prediction in a validation set of multiple linear regression calibrations [25].

2.7. Model Evaluation Standard

The quality of the models was assessed using several common statistical measures [26]:
the coefficient of determination (rc of calibration set, rp of prediction set), the standard error
of cross-validation (SECV), the root mean square error of prediction (RMSEP), and the ratio of
performance to deviation (RPD). The type of cross-validation was leave-one-out RPD, which was the
quotient of standard deviation (SD) of the true value of prediction set and the RMSEP of prediction
set. The selection of the final model was based on its predictability following a procedure which has
already been successfully applied [27]. Generally, a good model should have higher values of rc, rp,
and RPD, but a lower value of RMSEC and RMSEP.

3. Results and Discussion

3.1. Determination of the MOE and Dataset Partitioning

The MOE of the 125 specimens ranged from 10.43 GPa to 19.25 GPa. The samples were partitioned
into a calibration set and a prediction set by the improved K-S method, and the K-S method was
carried out by using MATLAB. The ratio of these two sets was 2:1, that was, 84 specimens were put
into the calibration set and 41 into the prediction set. The partition of sets is shown in Table 1. Table 2
shows the statistical value of the MOE of the two sets.
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Table 1. The results of sets partition by improved K-S method.

Sample Set Serial Number of Samples

Calibration set

2 3 4 6 9 11 12
15 16 17 18 19 20 21
22 23 25 26 27 28 29
30 32 35 36 37 40 41
43 44 45 47 48 49 50
52 53 54 56 60 63 64
66 67 69 72 74 75 76
77 78 79 80 82 83 84
85 86 87 88 92 93 94
95 96 97 98 100 101 104
105 106 107 108 111 112 113
114 115 118 120 122 123 125

Prediction set

1 5 7 8 10 13 14
24 31 33 34 38 39 42
46 51 55 57 58 59 61
62 65 68 70 71 73 81
89 90 91 99 102 103 109
110 116 117 119 121 124

Table 2. Statistics of the Compressive Strength from the Calibration and Prediction Sets.

Samples Maximum (GPa) Minimum (GPa) Mean (GPa) Standard Deviation (GPa)

Calibration set (n = 84) 19.25 10.43 16.00 3.05
Prediction set (n = 41) 18.96 11.22 16.41 2.23

3.2. Near-Infrared Spectra of Specimens and Spectral Pretreatment

The NIR spectra of 125 specimens were collected with a wavelength ranging from 907 to 1864 nm.
The number of sampling points of the wavelength variable was 117, and the raw spectra of all the
specimens are as shown in Figure 3.
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The raw spectra were pretreated by MSC combined with the SG convolution smoothing and
differentiation filter. The results of pretreatment are shown in Figure 4. It can be seen from Figure 4a
that the influence factors of the scattered light were weakened after the raw spectra was corrected
by MSC, and the spectral aggregation degree was stronger after the pretreatment. In addition, the
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trend of the change was more uniform. The spectral absorption peaks did not, however, become
obvious, and the intensity of information was still low. Therefore, the SG convolution smoothing
and differentiation filter were applied. It not only eliminated the effects of high-frequency noise,
but also eliminated the baseline offset caused by environmental changes. The window size of the
SG convolution smoothing algorithm is generally selected as 5, 7, 9, 11, and 13. On the basis of the
experimental results, it was revealed that pretreatment effects were the best with window size of 11 and
polynomial order of 3. The spectra pretreated by MSC combined with the SG convolution smoothing
and differentiation filter is shown in Figure 4b. Figure 4b infers that the problems of raw spectra;
including scattered light, baseline drift, and high-frequency noise had been solved after pretreatment,
and the spectral information was enhanced.
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convolution smoothing and differentiation filter.

3.3. Characteristic Spectrum Selection

3.3.1. Optimal Spectra Intervals Selected by SiPLS

In this study, the full spectrum (907~1864 nm) of specimens was divided into 5, 6, . . . , 15 intervals
combined with 2, 3 or 4 subintervals. The optimal combination of intervals and the number of PCs
was optimized by full cross-validation and determined according to the lowest RMSECV. In this study,
the optimal spectra intervals were a combination of four subintervals when the spectrum was divided
into 10 subintervals. Table 3 shows the results of selected optimal spectral subintervals, and Figure 5
demonstrates the spectral regions corresponding to the optimal subintervals, i.e., 915.09~1005.2 nm,
1309.4~1400.1 nm, 1499.2~1581.9 nm, and 1681.3~1764.3 nm.

Table 3. The results of selected optimal spectral subintervals.

Number of Intervals PCs Selected Subintervals RMSECV

5 8 [1 3 5] 1.439
6 7 [1 2 3 6] 1.431
7 6 [1 5 7 9] 1.354
8 8 [1 6 7] 1.388
9 8 [1 2 6 8] 1.355

10 6 [1 5 7 9] 1.354
11 7 [1 2 8 10] 1.374
12 8 [1 2 9 11] 1.360
13 6 [1 6 9 11] 1.387
14 7 [1 7 10 12] 1.388
15 7 [1 7 12 13] 1.389
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Figure 5. Optimal spectra intervals selected by SiPLS.

3.3.2. Characteristic Wavelengths Selected by SPA

After optimal spectral intervals selection by SiPLS, the number of wavelengths was reduced from
117 to 46. The 46 variables were numbered from 1 to 46. SPA was then implemented to select the
characteristic wavelengths from the 46 variables. Figure 6a shows the relationship between the number
of different variables and the root mean square error (RMSE). In the process of increasing the number
of variables, the value of RMSE decreased significantly. When the number of variables was 5, the value
of RMSE was the smallest at 1.3152. However, RMSE was rising when selected variables continue
to increase. The numbers of variables selected were 14, 19, 25, 33, and 41. The distribution of the
final selected wavelengths in one of the raw spectrums is shown in Figure 6b. The final characteristic
wavelengths selected by SPA were 1317.6 nm, 1358.8 nm, 1499.2 nm, 1565.36 nm, and 1722.78 nm.
According to the Ref [28], these five wavelengths were in the NIR spectra range, which would reveal
the relationship between NIR spectroscopy and resin, cellulose, lignin, and hemicellulose. Since the
contents of these organic components in the wood had a direct connection with the physical properties
of the wood, the information in these characteristic wavelengths can be used to indirectly determine
the MOE of the wood.
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3.4. Analysis of the Predictive Models

The experiments used the characteristic wavelengths in the calibration set to establish a calibration
model. Partial least square regression (PLSR) was the main linear modeling method in NIR quantitative
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analysis, so it was used to analyze the relationship between NIR spectrum and MOE of the specimen
in this work. On the other hand, the propagation neural network (BPNN), which is a widely used
nonlinear model, was also selected to predict the MOE of wood. Table 4 demonstrates the comparison
of prediction effects of PLSR and BPNN. It can be concluded that BPNN obtained better predictive
performance than PLSR, which was at a higher rp of 0.91 and lower RMSEP of 0.76. Furthermore,
the RPD of BPNN was between 2.5 and 3.0, which suggested that the model met the needs of
quantitative prediction [26]. The experimental results indicated that BPNN was capable of quantitative
analysis and prediction of the MOE of Quercus mongolica specimens without defects. Figure 7 shows
the relationship between measured and predicted MOE of Quercus mongolica specimens with BPNN
as the prediction model. Figure 7 shows a clear separation of high and lower MOE values in the
calibration set; this is because in order to ensure the integrity and representativeness of the calibration
set, the improved K-S put the biggest different sample into the calibration set and the closing samples
into the prediction set, and led the number of specimens in the high MOE value and low MOE value
were more than the others.

Table 4. Comparison of the calibration model results with PLSR and BPNN.

Types of model rc RMSEC SECV rp RMSEP RPD

PLSR 0.90 1.35 1.34 0.84 1.08 2.06
BPNN 0.94 1.00 1.04 0.89 0.76 2.93
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4. Conclusions

This study revealed the relationship between the NIR spectrum and the MOE of Quercus mongolica
specimens without defects. NIR spectroscopy was used to establish a quantitative analysis model
for non-destructive testing of MOE of samples. Based on the experimental results, the following
conclusions can be drawn:

(1) The improved K-S method can make the sample distribution uniform, and ensure that the
calibration set is widely distributed

(2) By pretreating with MSC and the SG smoothing and differentiation filter, the overall variation
trend of spectra was more consistent, and the contour of spectra was more clear. Moreover,
the absorption peak is more obvious. When the window size of SG was of 11, the effect of
pretreatment was the best
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(3) SiPLS combined with SPA could extract characteristic wavelengths that had the closest relevance
with the MOE of Quercus mongolica. It reduced the dimensions of the original data, decreasing
the computation and reducing the complexity of the modelling process.

(4) Compared with the prediction results, BPNN was better capable of predicting the MOE of the
specimens by using the characteristic wavelengths to establish the calibration model. The rp,
RMSEP, and RPD of BPNN were 0.91, 0.76, and 2.93, respectively. The quantitative prediction
effects of the model can meet the needs of actual industrial activities.
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