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Abstract: Currently, visual sensors are becoming increasingly affordable and fashionable,
acceleratingly the increasing number of image data. Image retrieval has attracted increasing interest
due to space exploration, industrial, and biomedical applications. Nevertheless, designing effective
feature representation is acknowledged as a hard yet fundamental issue. This paper presents a fusion
feature representation called a hybrid histogram descriptor (HHD) for image retrieval. The proposed
descriptor comprises two histograms jointly: a perceptually uniform histogram which is extracted
by exploiting the color and edge orientation information in perceptually uniform regions; and a
motif co-occurrence histogram which is acquired by calculating the probability of a pair of motif
patterns. To evaluate the performance, we benchmarked the proposed descriptor on RSSCN7,
AID, Outex-00013, Outex-00014 and ETHZ-53 datasets. Experimental results suggest that the
proposed descriptor is more effective and robust than ten recent fusion-based descriptors under
the content-based image retrieval framework. The computational complexity was also analyzed to
give an in-depth evaluation. Furthermore, compared with the state-of-the-art convolutional neural
network (CNN)-based descriptors, the proposed descriptor also achieves comparable performance,
but does not require any training process.

Keywords: visual sensors; image retrieval; hybrid histogram descriptor; perceptually uniform
histogram; motif co-occurrence histogram

1. Introduction

In the past decades, affordable visual sensor equipment (e.g., surveillance cameras, smart phones,
digital cameras and camcorders) has become widespread in our daily lives. Due to the growing
number of images collected from these visual sensors, how to accurately and quickly retrieve the
image-of-interest has become a hot topic [1–6]. Compared with text-based image retrieval (TBIR),
content-based image retrieval (CBIR) is widely considered as an effective and efficient technology
that not only extracts low-level visual cues (e.g., color, shape and texture) automatically, but also
bridges high-level semantic comprehension. Until now, the feature representation descriptors,
such as independent feature descriptor and fusion-based feature descriptor, have been increasing and
developing in the CBIR community.

Color information plays an important role in the feature representation. Currently,
color moment [7], color set [8], color coherence vector [9], color correlogram [10] and color
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histogram [11–18] have been developed for color feature representation continuously. In [11], the color
layout descriptor (CLD), scalable color descriptor (SCD), color structure descriptor (CSD) and dominant
color descriptor (DCD) are constructed as the color feature descriptors. Subsequently, in [12–15],
a series of equal-interval color quantization models are used for the extraction of color histograms.
Recently, in [16], Bayesian Information Criterion (BIC), Expectation Maximization (EM) and Gaussian
Mixture Models (GMM) are integrated into a universal color quantization framework. More recently,
in [17,18], the combined color histogram is proposed for color feature representation. However,
the above methods are confined to quantizing the range of different color channels, and a few
consider the color probability distribution of different color channels. In addition, several methods
(e.g., Fourier transforms [19], moment invariant [20] and edge orientation detection [13–15,21–25])
have been developed for shape-based representation. In [21], edge orientation detection is equipped
with different gradient operators for the orientation information computation on grey-scale images.
With the appearance of color images, in [13–15], a series of edge detection and quantization strategies is
applied to capture the geometry and orientation information from color images in different color spaces.
In [22–25], a class of local edge orientation detection descriptors is developed for edge orientation
histogram extraction. In short, edge orientation detection and quantization are widely considered as
the effective and correct approaches that not only achieve stable performances but also exploit the
geometry and orientation information with less computational complexity.

Along other research lines, many strategies [17,18,26–29] have been designed to represent textural
features. For example, the local binary pattern (LBP) [26] is first proposed to code the center pixel
and its neighborhood pixels as a binary label in eight directions. Later, the LBP is extended to the
local extrema pattern (LEP) [17], which computes the index values between the center pixel and its
eight neighbors in four directions. Afterwards, the LEP is modified to the local extrema co-occurrence
pattern (LEcP) [18], which reveals the relationship of mutual occurrence patterns in the V channel
of the HSV color space. Furthermore, the concept of texton or motif [27] is first defined to analysis
the elements of texture perception and their interactions. Recently, a grey-level co-occurrence matrix
(GLCM) [28] is treated as a co-occurrence-based relation descriptor that computed the occurrence
frequencies of a pair of grey-pixels. More recently, the motif co-occurrence matrix (MCM) [29] is
defined as a 3D matrix, in which six motif patterns are designed to calculate the probability of a pair of
motif patterns in a pre-defined direction. However, using six motif patterns is incomplete, because the
perceptually uniform motif patterns are not further discussed and analyzed.

Although the above-mentioned methods have proven to be effective, independent feature
descriptors are inadequate to meet the demands of feature representation. Many studies have proven
that fusion-based descriptors are more powerful than independent feature descriptors. In [13–15],
the color histogram and the edge orientation histogram are treated as a pair of mutual information
descriptors, calculated by a color difference operator. In [17], the color histogram is combined with
the local extrema pattern histogram used for object tracking in the RGB color space. In [18], the local
extrema co-occurrence pattern (LEcP) is transformed into an independent feature vector; then, LEcP is
combined with the joint color histogram for feature representation. Again, in [30], a multi-channel
decoded local binary pattern (mdLBP) and a multi-channel adder local binary pattern (maLBP)
are simultaneously constructed by combining three LBP maps, which are calculated in the RGB
color space. Recently, in [31], the local neighborhood difference pattern (LNDP) and the LBP is
explored to capture local intensity difference information for the natural and texture image retrieval.
In [32], Bianconi et al. provided a general framework and taxonomy of color texture descriptors.
In [33], Cusano et al. suggested an evaluation of color texture descriptors under large variations of
controlled lighting conditions, whereas Qazi et al. investigated pertinent color spaces for color texture
characterization [34]. At the same time, in [35], user relevance feedback, feature re-weight and weight
optimization are used to further improve the accuracy of image retrieval.

In this study, the main contributions are summarized as follows:
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1. We designed the pyramid color quantization model, which is based on the powerful color
probability distribution prior in the L*a*b* color space.

2. We constructed the perceptually uniform histogram, which integrates color and edge orientation
as a whole by exploiting a color difference operator.

3. We developed the motif co-occurrence histogram in which the perceptually uniform motif
patterns are further discussed and analyzed.

4. We proposed the hybrid histogram descriptor that is comprised of the perceptually uniform
histogram and the motif co-occurrence histogram.

The remainder of this paper is organized as follows. Preliminaries are introduced in Section 2,
and the feature representation is described in Section 3. Experiments and evaluations are presented in
Section 4. Section 5 provides conclusions.

2. Preliminaries

2.1. The Color Space Selection

The selection of the color space is a crucial step before feature representation. In the past decades,
several types of color spaces (e.g., RGB, L*a*b*, HSV, CMYK, YUV and HSI) have been widely used for
CBIR. Among them, the RGB is recognized as one of the most popular color spaces. It is derived from
three colors of light, namely, red (R), green (G) and blue (B) [36]. Nevertheless, its disadvantages are
often ignored: (1) the redundancy between blue and green; (2) the missing yellow between red and
green; and (3) the non-uniform perception of human eye. Consequently, Hering defined the L*a*b*
color space, which includes three pairs of color channels consisting of the white–black pair of the
L* channel (ranging from 0 to 100), the yellow–blue pair of the a* channel (ranging from −128 to
+127), and the red–green pair of the b* channel (ranging from −128 to +127) [37]. Compared with the
RGB, the advantages of the L*a*b* color space are summarized as follows: (1) the L*a*b* remedies the
redundant and missing information of the RGB; (2) it conforms to human eye’s perception mechanism;
and (3) it provides excellent decoupling between intensity (represented by the L* channel) and color
(represented by the a* and b* channels) [38]. Therefore, our scheme transforms all images from RGB
to L*a*b* color space before the feature representation stage. The details of this transformation are
defined using standard RGB to L*a*b* transformations as follows [15,39]:{

L∗ = 116( Y
Yn
)

1/3 − 16 for Y
Yn

> 0.08856

L∗ = 903.3( Y
Yn
)

1/3
for Y

Yn
≤ 0.08856

, (1)

a∗ = 500( f (
X
Xn

)− f (
Y
Yn

)), (2)

b∗ = 500( f (
X
Xn

)− f (
Y
Zn

)), (3)

with {
f (u) = u1/3 for u > 0.08856
f (u) = 7.78u + Y

Yn
for u ≤ 0.08856

, (4)

where  X
Y
Z

 =

 0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227


 R

G
B

, (5)

where Xn, Yn and Zn are the values of X, Y and Z for the illuminant and [Xn, Yn, Zn] = [0.950450,
1.000000, 1.088754] in accordance with illuminant D65 [15].
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2.2. Probability Distribution Prior in L*a*b* Color Space

In the previous color quantization models [12–15,17,18], three color channels are uniformly
mapped into the fixed intervals. However, during the process of quantization, these models lose some
useful color information. Hence, reducing the loss of the useful color information is a serious concern.
Inspired by this motivation, we have explored and summarized the color probability distribution of
the a* and b* channels in different image databases. The example of the AID image database [40]
is shown in Figure 1a,b. The frequency of pixels mainly focuses on the center region of the a* and
b* channels.
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of RSSCN7.

To verify the validity of this prior knowledge, we calculated the color probability distribution
statistics of the a* and b* channels on hundreds of image databases. The results show that the proposed
prior is stable and consistent. Even if an image database has been changed, the property of the color
probability distribution prior is still fairly consistent. For example, the color probability distribution of
the a* and b* channels in the RSSCN7 [41] dataset and its subset (50% of the RSSCN7 dataset) is shown
in Figure 1c–f. Obviously, there is almost no change between RSSCN7 and its subset, except for the
pixel frequency.
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3. Feature Representation

3.1. Perceptually Uniform Histogram

3.1.1. Pyramid Color Quantization Model

Inspired by the above prior knowledge, we designed a novel pyramid color quantization model
(as shown in Figure 2), in which every layer represents a quantized scheme (including a group
of intervals and indexes). The original range (−128, +127) of a* or b* is first projected into two
equal intervals in Layer 1, and the indexes of two intervals are flagged as 0 and 1 from left to
right, correspondingly. Then, considering the pixels focus on the middle, two middle intervals from
Layers 2–7 are split into four equal intervals from the up-layer to down-layer until two middle intervals
cannot be split in Layer 7. Finally, the remaining intervals are copied from the up-layer to down-layer,
sequentially. In this manner, we refine and retain the color information in the middle of the a* or
b* channels effectively. We define the quantization layer of the a* and b* channels as Ya* and Yb*,
where Ya*, Yb* ∈ {1, 2, . . . , 7}, and the indexes are denoted as Ỹa* and Ỹb*, Ỹa* ∈ {0, 1, . . . , Ÿa*} and
Ỹb* ∈ {0, 1, . . . , Ÿb*}, where Ÿa* = 2Ya* − 1 and Ÿb* = 2Yb* − 1, respectively.

Sensors 2018, 18, x FOR PEER REVIEW  5 of 22 

 

3. Feature Representation 

3.1. Perceptually Uniform Histogram 

3.1.1. Pyramid Color Quantization Model 

Inspired by the above prior knowledge, we designed a novel pyramid color quantization 
model (as shown in Figure 2), in which every layer represents a quantized scheme (including a 
group of intervals and indexes). The original range (−128, +127) of a* or b* is first projected into two 
equal intervals in Layer 1, and the indexes of two intervals are flagged as 0 and 1 from left to right, 
correspondingly. Then, considering the pixels focus on the middle, two middle intervals from  
Layers 2–7 are split into four equal intervals from the up-layer to down-layer until two middle 
intervals cannot be split in Layer 7. Finally, the remaining intervals are copied from the up-layer to 
down-layer, sequentially. In this manner, we refine and retain the color information in the middle 
of the a* or b* channels effectively. We define the quantization layer of the a* and b* channels as Ya* 
and Yb*, where Ya*, Yb*   {1, 2, …, 7}, and the indexes are denoted as Ỹa* and Ỹb*, Ỹa*   {0, 1, …, Ÿa*} 
and Ỹb*   {0, 1, …, Ÿb*}, where Ÿa* = 2Ya* − 1 and Ÿb* = 2Yb* − 1, respectively. 

 
Figure 2. Pyramid color quantization model. 

In addition, considering the human visual intensity perception mechanism in [5], the L* channel 
is quantized into three intervals (0, +25), (+26, +75) and (+76, +100). We define the quantization layer of 
the L* channel as YL*, where YL* = 1, and the index is flagged as ỸL*, ỸL*   {0, 1, …, ŸL*}, where ŸL* = 
2YL*. In summary, combining the indexes of the L*, a* and b* channels, the color map of an image f(x, y) 

is defined as C(x, y), and the index is flagged as C , C  {0, 1, …, Ĉ }, where Ĉ  = 2Ya* × 2Yb* × 3 − 1. 
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In addition, considering the human visual intensity perception mechanism in [5], the L* channel
is quantized into three intervals (0, +25), (+26, +75) and (+76, +100). We define the quantization
layer of the L* channel as YL*, where YL* = 1, and the index is flagged as ỸL*, ỸL* ∈ {0, 1, . . . , ŸL*},
where ŸL* = 2YL*. In summary, combining the indexes of the L*, a* and b* channels, the color
map of an image f (x, y) is defined as C(x, y), and the index is flagged as C̃, C̃ ∈ {0, 1, . . . , Ĉ},
where Ĉ = 2Ya* × 2Yb* × 3 − 1.

3.1.2. Perceptually Uniform Histogram Definition

The Gestalt Psychology Theory elucidates that the human visual perception mechanism tends
to group elements into a local region where the elements share a homologous or approximate
property [42]. Based on this theoretical foundation, perceptually uniform regions can be described
as a certain visual feature space in which visual elements have the same rule (e.g., color and edge
orientation). For the visual feature space Ĩ, an element ξ and its neighborhoods ξg within Ĩ are flagged
as Ĩ(ξ) and Ĩ(ξg). Mathematically, the discrimination function ϕ(·) is formulated as follows:

ϕ( Ĩ(ξ), Ĩ(ξg)) =

{
1, Ĩ(ξ) = Ĩ(ξg)

0, Ĩ(ξ) 6= Ĩ(ξg)
, g ∈

{
1, 2, . . . ,

..
N
}

, (6)

where
..
N represents the number of neighborhoods. If ϕ(Ĩ(ξ), Ĩ(ξg)) = 1, Ĩ Ĩ(ξg) belongs to the perceptually

uniform region; if ϕ(Ĩ(ξ), Ĩ(ξg)) = 0, Ĩ(ξg does not belong to the perceptually uniform region.
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With subject to the perceptually uniform region, we construct the perceptually uniform histogram
by exploiting the color difference operator [15,43,44] between the color and edge orientation. Herein,
given an image f (x, y), the edge orientation map O(x, y) is first extracted by using the Prewitt operator,
due to its advantages of extracting the geometry and boundary information from the observed content.
Then, experimentally, the edge orientation value is quantized uniformly into four bins to construct
the edge orientation map O(x, y) because it is time consuming and unnecessary to consider all edge
orientation values. Finally, the edge orientation map O(x, y) and the color map C(x, y) are divided into
the overlapping 3 × 3 windows in which the central pixel is flagged as (x, y) and its eight neighbors are
flagged as (xg, yg), g ∈ {1, 2, . . . , 8}. The perceptually uniform histogram (PUH) is defined as follows:

PUHcolour(O(x, y)) =
8

∑
g=1

√
∑

ψ∈L∗,a∗,b∗
(∆ fψ)

2 sub.t. ϕ(C(x, y), C(xg, yg)) = 1, (7)

PUHori(C(x, y)) =
8

∑
g=1

√
∑

ψ∈L∗,a∗,b∗
(∆ fψ)

2 sub.t. ϕ(O(x, y), O(xg, yg)) = 1, (8)

where ∆f represents the color differences among the central pixel (x, y) and its eight neighbors (xg, yg)
in ψ channels, ψ ∈ L∗, a∗, b∗. The feature vector length of PUHcolor(O(x, y)) and PUHori(C(x, y)) are 4
and 2Ya* × 2Yb* × 3, respectively. For an image dataset D, the fitness quantization layers of Ya* and
Yb* are computed depending upon the retrieval accuracy score Acc(D|Ya*, Yb*). This procedure is
expressed as the maximization problem as follows:

max
Ya∗ ,Yb∗

Acc(D|Ya∗, Yb∗), Ya∗, Yb∗ ∈ {1, 2, . . . , 7}, (9)

We present the detailed evaluation of different color quantization layers of Ya* and Yb* in
Section 4.4.

3.2. Motif Co-Occurrence Histogram

The perceptually uniform histogram only extracts the color and edge orientation information,
but the texture information is ignored to some extent. Fortunately, the motif pattern, which depicts the
texture information by the pre-defined spatial structure model, can remedy this shortcoming.

3.2.1. Motif Patterns

The motif co-occurrence matrix (MCM) is investigated in [29] where the first six types of motif
patterns shown in Figure 3, starting from the top-left point P1, are generated because they represent a
completed set of space filling curves. However, using merely six motif patterns is insufficient because
the perceptually uniform motif patterns (PUMP) are ignored.
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Figure 3. Nine types of motif patterns.

To depict the consistency of spatial structure information, we propose three perceptually uniform
motif patterns into which all types of perceptually uniform motif patterns are separated based on the
number of equal pixels. Combining the previous six motif patterns, nine motif patterns are obtained,
as shown in Figure 3, in which the red dots represent the number of equal pixels in the motif patterns
7, 8 and 9.
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3.2.2. Motif Co-Occurrence Histogram Definition

Since the L*a*b* color space provides excellent decoupling between intensity (represented by
the L* channel) and color (represented by the a* and b* channels) [38], the L* channel is applied to
extract the motif co-occurrence histogram. For simplicity, a 5 × 5 mini-numerical map in Figure 4a
is adopted to illustrate the proposed method. In our scheme, each pixel (apart from the lower and
right boundary pixels) in the map is divided into the overlapping 2 × 2 grids in Figure 4b. Then,
each grid is transformed into a motif pattern with the minimized local gradient to obtain the motif map
shown in Figure 4c, which is used to calculate the motif co-occurrence histogram shown in Figure 4d.
For example, the red circle in Figure 4c is a pair of motif patterns, indexed as (3, 2), in the 0◦ direction,
corresponding to the red bar “MCH(3, 2) = 1” in the motif co-occurrence histogram in Figure 4d.
Mathematically, the probability of co-occurrence of a pair of motif patterns is expressed as follows:

MCH(MPe1, MPe2) = Pr
{

M(i, j) = MPe1, M(i, j + 1) = MPe2
}

, (10)

where Pr is the probability of co-occurrence of a pair of motif patterns corresponding to (i, j) and its
neighbor (i, j + 1) within the motif map M(x, y). MPe1 and MPe2 represent the indexes of a pair of
motif patterns, where MPe1, MPe2 ∈ {1, 2, . . . , 9}. The feature vector length of the motif co-occurrence
histogram is 81. We will perform the detailed evaluation of different motif co-occurrence schemes
between the motif co-occurrence matrix [29] and the proposed motif co-occurrence histogram in
Section 4.5.
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3.3. Hybrid Histogram Descriptor Definition

It is widely recognized that an image possesses a rich semantic content that goes beyond the
description by its metadata [2]. Hence, it is necessary to take a fusion-based feature descriptor into
account because it can integrate the merits of the subjective aspects of image semantics. From this
point of view, the hybrid histogram descriptor (HHD) is proposed by concatenating the perceptually
uniform histogram and the motif co-occurrence histogram, and it is expressed as follows:

HHD = [PUH, MCH] , (11)

We present the detailed evaluation of the proposed descriptors among the perceptually uniform
histogram, the motif co-occurrence histogram and the hybrid histogram descriptor in Section 4.6.

4. Experiments and Discussion

4.1. Distance Metric

The distance metric serves as an important step to measure the feature vector dissimilarity. In the
CBIR framework, the query image and database images are converted into feature vectors in the form
of histogram descriptors, and they are sent to the distance measure for measuring the dissimilarity. In
this paper, the Extended Canberra Distance [15,32] is used, and it is defined as follows:

T(D, Q) =
K

∑
µ=1

∣∣Dµ −Qµ

∣∣∣∣Dµ + lD
∣∣+ ∣∣Qµ + lQ

∣∣ , (12)

where Q, D, K, and T represent the query image, the database image, the feature vector dimension,
and the distance metric result, respectively, where lD = ∑K

µ=1 Dµ/K and lQ = ∑K
µ=1 Qµ/K.

4.2. Evaluation Criteria

The final goal of image retrieval is to search a set of target images from the image database [35].
For a query image IQ and a database image ID, the precision (Pre) and recall (Rec) values are given
as follows:

Pre =
1

Nσ

Nσ

∑
D=1

ς(ϑ(IQ), ϑ(ID))× 100%, (13)

Rec =
1

Nτ

Nτ

∑
D=1

ς(ϑ(IQ), ϑ(ID))× 100%, (14)

ς(ϑ(IQ), ϑ(ID)) =

{
1, if ϑ(IQ) = ϑ(ID)

0, otherwise
, (15)

where ϑ(·), Nσ, and Nτ represent the image category information, the number of retrieved images,
and the number of images in each category, respectively. The discrimination function ς(·) is
used to determine the category information between the query image and the database images.
In the experiments, to guarantee accuracy and reproducibility, all images were chosen as the query
image. Referring to the parameter setting in [30,32], the number of retrieved images was set to 10.
For ETHZ-53 [45], the number of retrieved images was set to 5.

Further, for N query images, the average precision rate (APR) and average recall rate (ARR) values
are defined as follows:

APR =
∑N

n=1 Pre(n)
N

× 100%, (16)

ARR =
∑N

n=1 Rec(n)
N

× 100%, (17)
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where n is the nth query image.
Furthermore, considering the order of the retrieved images, the precision–recall curve denotes

an auxiliary evaluation criterion that measures the dynamic precision with the threshold recall.
Mathematically, the precision–recall curve is formulated as follows:

PR(χ) =
Nτ

Nχ
· χ× 100%, (18)

where Nτ and Nχ represent the number of images in each category, and the total number of the shown
images at the recall of χ, χ ∈ {1, 2, . . . , Nσ − 1}. A higher precision–recall curve indicates a more
accurate retrieval performance.

4.3. Image Databases

Extensive experiments were conducted on five benchmark databases, including two remote
sensing image databases (RSSCN7 and AID), two textural image datasets (Outex-00013 and
Outex-00014), and one object image database (ETHZ-53). The details of these datasets are summarized
as follows:

1. RSSCN7 database

The RSSCN7 [41] is a publicly available remote sensing dataset produced by different remote
imaging sensors. It consists of seven land-use categories, such as industrial region, farm land,
residential region, parking lot, river lake, forest and grass land. For each category, there are 400 images
with size of 400 × 400 in JPG format. Some sample images are shown in Figure 5a, in which each row
represents one category. Note that there are images with rotation and resolution differences in the
same category. Thus, the RSSCN7 dataset can not only verify the effective of the proposed descriptor
but also inspect the robustness of different rotations and resolutions. The RSSCN7 dataset can be
downloaded from https://www.dropbox.com/s/j80iv1a0mvhonsa/RSSCN7.zip?dl=0.

2. AID database

The aerial image dataset (AID) [40] is also a publicly available large-scale remote sensing dataset
produced by different remote imaging sensors. It contains 10,000 images in 30 categories, for example,
airport, bare land, meadow, beach, park, bridge, forest, railway station, and baseball field.
Each category includes different numbers of images varying from 220 to 420 with size of 600 × 600 in
JPG format. Some sample images are shown in Figure 5b, in which each row is one category. Similar to
RSSCN7, there are images with rotation and resolution differences in the same category. The AID
dataset can be downloaded from http://www.lmars.whu.edu.cn/xia/AID-project.html.

3. Outex-00013

The Outex-00013 [46] is a publicly available color texture dataset produced by an Olympus Camedia
C-2500 L digital camera. It contains 1360 images in 68 categories, for example, wool, fabric, cardboard,
sandpaper, natural stone and paper. Each category includes 20 images, each with size of 128 × 128
in BMP format. Some sample images from Outex-00013 are shown in Figure 5c, in which each row
represents one category. There is no difference in the same category. The Outex-00013 dataset can be
downloaded from http://www.outex.oulu.fi/index.php?page=classification.

4. Outex-00014

The Outex-00014 [46] is also a publicly available color texture dataset produced by an Olympus Camedia
C-2500 L digital camera. It contains 4080 images in 68 categories, for example, wool, fabric, cardboard,
sandpaper, natural stone, and paper. Each category includes 20, each with size of 128 × 128 images
in BMP format. Some sample images from Outex-00014 are shown in Figure 5d, in which each

https://www.dropbox.com/s/j80iv1a0mvhonsa/RSSCN7.zip?dl=0
http://www.lmars.whu.edu.cn/xia/AID-project.html
http://www.outex.oulu.fi/index.php?page=classification
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row represents one category. All images are produced under three different illuminants: the 4000 K
fluorescent TL84 lamp, the 2856 K incandescent CIE A and the 2300 K horizon sunlight. The Outex-00014
dataset can also be downloaded from http://www.outex.oulu.fi/index.php?page=classification.

5. ETHZ-53

The ETHZ-53 [45] is a publicly available object dataset collected by a color camera. It contains
265 images in 53 objects, such as cup, shampoo, vegetable, fruit, and car model. Each object
includes 5 images, each with size of 320 × 240 in BNG format. Some sample images are shown
in Figure 5e, in which each row represents one category. Note that each object is with 5 different angles.
The ETHZ-53 dataset can be downloaded from http://www.vision.ee.ethz.ch/en/datasets/.
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4.4. Evaluation of Different Color Quantization Layers

Tables 1–5 show the average precision rate (APR) of the proposed descriptor on the RSSCN7,
AID, Outex-00013, Outex-00014 and ETHZ-53 datasets under different color quantization layers of Ya*

and Yb*, where Ya*, Yb* ∈ {1, 2, . . . , 7}. Bold values highlight the best values. As reported in Tables 1
and 2, i when Ya* = 6 and Yb* = 5, the HHD achieves the best APR = 79.57% on RSSCN7 and the best
APR = 58.13% on AID, respectively. As documented in Tables 3 and 4, when Ya* = 6 and Yb* = 2,
the HHD achieves the best APR = 84.21% on Outex-00013 and the best APR = 82.82% on Outex-00014,
respectively. As listed in Table 5, when Ya* = 5 and Yb* = 6, the HHD achieves the best APR = 97.89%
on ETHZ-53. In addition, we can also see that the simplest color quantization scheme (e.g., Ya* = 1
and Yb* = 1) does not lead to the lowest APR on RSSCN7 and Outex-00013, and the most refined color
quantization scheme (e.g., Ya* = 7 and Yb* = 7) does not guarantee the highest APR. This phenomenon
demonstrates that it is necessary to adaptively select the fitness quantization layers of Ya* and Yb*.
Depending upon the retrieval accuracy score, the fitness quantization layers of Ya* and Yb* will be
used in the following experiments.

http://www.outex.oulu.fi/index.php?page=classification
http://www.vision.ee.ethz.ch/en/datasets/
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Table 1. Average precision rate (APR) of different color quantization layers on RSSCN7.

The Color Quantization
Layer for Ya*

The Color Quantization Layer for Yb*

Yb* = 1 Yb* = 2 Yb* = 3 Yb* = 4 Yb* = 5 Yb* = 6 Yb* = 7

Ya* = 1 76.65 76.62 76.65 77.18 77.59 77.69 77.56
Ya* = 2 76.61 76.59 76.56 77.21 77.59 77.81 77.61
Ya* = 3 76.64 76.56 76.45 77.12 77.51 77.81 77.64
Ya* = 4 77.32 77.24 77.09 77.42 77.88 78.18 78.11
Ya* = 5 78.20 78.21 78.18 78.43 79.05 79.34 79.12
Ya* = 6 79.00 79.08 79.10 79.20 79.57 79.54 79.26
Ya* = 7 78.75 78.90 78.91 78.94 79.26 79.24 78.68

Table 2. Average precision rate (APR) of different color quantization layers on AID.

The Color Quantization
Layer for Ya*

The Color Quantization Layer for Yb*

Yb* = 1 Yb* = 2 Yb* = 3 Yb* = 4 Yb* = 5 Yb* = 6 Yb* = 7

Ya* = 1 53.07 53.19 53.40 55.01 55.75 55.72 55.52
Ya* = 2 53.19 53.31 53.54 55.15 55.96 55.90 55.74
Ya* = 3 53.30 53.47 53.70 55.19 56.02 55.96 55.81
Ya* = 4 54.52 54.65 54.85 56.05 56.74 56.79 56.71
Ya* = 5 56.18 56.27 56.35 57.17 57.68 57.79 57.83
Ya* = 6 56.83 57.02 57.06 57.81 58.13 57.99 57.76
Ya* = 7 56.68 56.83 56.91 57.75 57.99 57.71 57.50

Table 3. Average precision rate (APR) of different color quantization layers on Outex-00013.

The Color Quantization
Layer for Ya*

The Color Quantization Layer for Yb*

Yb* = 1 Yb* = 2 Yb* = 3 Yb* = 4 Yb* = 5 Yb* = 6 Yb* = 7

Ya* = 1 83.41 83.52 83.21 82.60 82.28 81.55 81.21
Ya* = 2 83.52 83.61 83.23 82.79 82.38 81.73 81.39
Ya* = 3 83.54 83.72 83.20 82.99 82.54 81.79 81.31
Ya* = 4 83.43 83.55 83.13 82.87 82.44 81.62 81.28
Ya* = 5 83.38 83.59 83.10 82.76 82.36 81.54 81.14
Ya* = 6 84.11 84.21 83.78 83.32 82.84 82.00 81.76
Ya* = 7 83.87 83.92 83.65 83.26 82.82 81.84 81.35

Table 4. Average precision rate (APR) of different color quantization layers on Outex-00014.

The Color Quantization
Layer for Ya*

The Color Quantization Layer for Yb*

Yb* = 1 Yb* = 2 Yb* = 3 Yb* = 4 Yb* = 5 Yb* = 6 Yb* = 7

Ya* = 1 79.22 79.33 80.11 81.44 81.60 81.34 81.02
Ya* = 2 79.33 79.43 80.20 81.59 81.71 81.49 81.19
Ya* = 3 79.36 79.45 80.17 81.62 81.85 81.57 81.21
Ya* = 4 80.71 80.76 80.84 81.84 81.92 81.69 81.35
Ya* = 5 82.00 82.22 81.99 82.43 82.35 82.06 81.80
Ya* = 6 82.71 82.82 82.59 82.69 82.56 82.31 82.13
Ya* = 7 82.54 82.68 82.59 82.72 82.58 82.35 82.09

Table 5. Average precision rate (APR) of different color quantization layers on ETHZ-53.

The Color Quantization
Layer for Ya*

The Color Quantization Layer for Yb*

Yb* = 1 Yb* = 2 Yb* = 3 Yb* = 4 Yb* = 5 Yb* = 6 Yb* = 7

Ya* = 1 81.21 81.96 86.87 91.47 92.83 93.06 93.36
Ya* = 2 80.98 81.58 87.32 91.40 92.68 93.43 93.13
Ya* = 3 84.68 85.36 90.19 93.21 94.49 94.87 94.49
Ya* = 4 89.81 89.43 92.68 95.62 96.53 96.91 96.75
Ya* = 5 92.98 93.21 95.55 97.21 97.74 97.89 97.66
Ya* = 6 93.36 93.13 95.77 97.13 97.58 97.58 97.43
Ya* = 7 81.21 81.96 86.87 91.47 92.83 93.06 93.36
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4.5. Evaluation of Different Motif Co-Occurrence Schemes

Table 6 shows the average precision rate (APR) and average recall rate (ARR) values on the
RSSCN7, AID, Outex-00013, Outex-00014 and ETHZ-53 datasets by using the motif co-occurrence
matrix (MCM) and the motif co-occurrence histogram (MCH), respectively. Bold values highlight
the best values. In Table 6, the {APR, ARR} of MCH greatly outperforms MCM by {18.14%, 0.45%}
on RSSCN7, {15.21%, 0.47%} on AID, {41.75%, 20.87%} on Outex-00013 and {24.63%, 12.32%} on
Outex-00014. One possible reason is that MCH takes three perceptually uniform motif patterns.
Based on the above results, it can be concluded that MCH is more effective than MCM.

Table 6. Average precision rate (APR) and average recall rate (ARR) of different motif
co-occurrence histograms.

Descriptor Performance (%)
Data Set

RSSCN7 AID Outex-13 Outex-14 ETHZ-53

MCM
APR 45.96 22.83 26.85 16.28 29.13
ARR 1.15 0.68 13.43 8.14 29.13

MCH
APR 64.10 38.04 68.60 40.91 48.38
ARR 1.60 1.15 34.30 20.46 48.38

4.6. Evaluation of the Proposed Descriptors

Table 7 shows the average precision rate (APR) and average recall rate (ARR) values on the
RSSCN7, AID, Outex-00013, Outex-00014 and ETHZ-53 datasets by using the motif co-occurrence
histogram (MCH), the perceptually uniform histogram (PUH) and the hybrid histogram descriptor
(HHD). Bold values highlight the best values. As listed in Table 7, the {APR, ARR} of HHD outperforms
MCH by {15.47%, 0.39%} on RSSCN7, by {20.09%, 0.61%} on AID, by {15.61%, 7.80%} on Outex-00013,
by {41.91%, 20.95%} on Outex-00014 and by {49.51%, 49.51%} on ETHZ-53. Meanwhile, it can
also be observed that the {APR, ARR} of HHD outperforms PUH by {7.35%, 0.18%} on RSSCN7,
by {7.09%, 0.21%} on AID, by {4.81%, 2.40%} on Outex-00013, by {6.68%, 3.34%} on Outex-00014,
and by {0.08%, 0.08%} on ETHZ-53, respectively. The main reason is that HHD integrates the merits of
PUH and MCH effectively. Based on the above results, it can be asserted that HHD performs better
than MCH and PUH significantly.

Table 7. Average precision rate (APR) and average recall rate (ARR) of the proposed descriptors.

Descriptor Performance (%)
Data Set

RSSCN7 AID Outex-13 Outex-14 ETHZ-53

MCH
APR 64.10 38.04 68.60 40.91 48.38
ARR 1.60 1.15 34.30 20.46 48.38

PUH
APR 72.22 51.04 79.40 76.14 97.81
ARR 1.81 1.55 39.70 38.07 97.81

HHD
APR 79.57 58.13 84.21 82.82 97.89
ARR 1.99 1.76 42.10 41.41 97.89

4.7. Comparison with Other Fusion-Based Descriptors

To illustrate the effectiveness and robustness of hybrid histogram descriptor (HHD), it is compared
with nine fusion-based feature descriptors and the fusion of the perceptually uniform histogram and
motif co-occurrence matrix (flagged as “PUH + MCM”) on the RSSCN7, AID, Outex-00013, Outex-00014
and ETHZ-53 datasets. All comparative methods are detailed as follows:
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(1) mdLBP [30]: The 2048-dimensional multichannel adder local binary patterns by combining three
LBP maps extracted from the R, G and B channels.

(2) maLBP [30]: The 1024-dimensional multichannel decoded local binary patterns by combining
three LBP maps extracted from the R, G and B channels.

(3) CDH [15]: The 90-dimensional color histogram obtained by quantizing the L*a*b* color space
and the 18-dimensional edge orientation histogram extracted from the L*a*b* color space.

(4) MSD [14]: The 72-dimensional color histogram obtained by quantizing the HSV color space and
the 6-dimensional edge orientation histogram extracted from the HSV color space.

(5) LNDP + LBP [31]: The 512-dimensional local neighborhood difference pattern extracted from the
grey-scale space and the 256-dimensional LBP extracted from the grey-scale space.

(6) MPEG-CED [25]: The 256-dimensional color histogram descriptor (CHD) extracted from the RGB
color space, and the 5-dimensional edge histogram extracted from the HSV color space.

(7) Joint colorhist [12]: The 512-dimensional color histogram obtained by combining the quantized R,
G and B channels.

(8) OCLBP [47]: The fusion of the 1536-dimensional opponent color local binary patterns extracted
from the RGB color space.

(9) IOCLBP [46]: The fusion of the 3072-dimensional improved opponent color local binary patterns
extracted from the RGB color space.

(10) PUH + MCM: The fusion of the 148/364-dimensional perceptually uniform histogram (PUH)
extracted from the L*a*b* color space and the 36-dimensional motif co-occurrence matrix (MCM)
extracted from the grey-scale space.

(11) HHD: The fusion of the 148/364-dimensional perceptually uniform histogram (PUH) and the
81-dimensional motif co-occurrence histogram (MCH) extracted from the L* channel.

Quantitative and Qualitative performance valuations are performed from the following seven
perspectives: the average precision rate (APR) value, the average recall rate (ARR) value, the average
precision rate versus number of top matches (APR vs. NTM), the average recall rate versus number
of top matches (ARR vs. NTM), the top-10 retrieved images, the precision–recall curve and the
computational complexity. Meanwhile, the robustness of rotation, illumination and resolution is
also illustrated in our comparative experiments. To guarantee the accuracy of the experiments,
all experiments are performed under the principle of leave-one-out cross-validation.

Table 8 reports the comparisons between the proposed descriptors and the former schemes
in terms of average precision rate (APR) and average recall rate (ARR). Bold values highlight the
best values. In Table 8, it can be seen that HHD yields the highest APR and ARR compared to
all former existing schemes on five datasets. For example, the {APR, ARR} of HHD on RSSCN7
outperforms mdLBP, maLBP, CDH, MSD, LNDP + LBP, MPEG-CED, OCLBP, IOCLBP and PUH
+ MCM by {6.47%, 0.16%}, {8.69%, 0.22%}, {5.97%, 0.15%} and {11.13%, 0.28%}, {10.11%, 0.25%},
{4.18%, 0.11%}, {6.75%, 0.17%}, {8.87%, 0.24%}, {9.61%, 0.24%} and {5.63%, 0.14%}, respectively. Similarly,
more significant values are reported over AID, Outex-13, Outex-14 and ETHZ-53. From these results,
the effectiveness of the proposed descriptor is demonstrated by comparing with other fusion-based
feature descriptors in terms of APR and ARR. In addition, since there are various rotation and resolution
differences on RSSCN7 and AID datasets (see Figure 5a,b), and various illumination differences on
Outex-00014 dataset (see Figure 5d), the robustness of the rotation, resolution and illumination is also
well illustrated to some extent.
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Table 8. Average precision rate (APR) and average recall rate (ARR) of different methods over RSSCN7,
AID, Outex-00013, Outex-00014 and ETHZ-53.

Descriptor Performance (%)
Data Set

RSSCN7 AID Outex-13 Outex-14 ETHZ-53

mdLBP
APR 73.10 50.81 61.00 48.66 61.43
ARR 1.83 1.54 30.50 24.33 61.43

maLBP
APR 70.88 47.40 62.54 44.53 55.17
ARR 1.77 1.43 31.27 22.27 55.17

CDH
APR 73.60 49.50 79.27 74.03 88.53
ARR 1.84 1.51 39.64 37.02 88.53

MSD
APR 68.44 47.76 70.46 66.32 91.09
ARR 1.71 1.45 35.23 33.16 91.09

LBP + LNDP
APR 69.46 44.12 70.24 43.86 52.45
ARR 1.74 1.33 35.12 21.93 52.45

MPEG-CEH
APR 75.39 53.86 78.48 74.41 94.79
ARR 1.88 1.63 39.24 37.21 94.79

Joint
Colorhist

APR 72.82 50.97 77.46 72.97 93.74
ARR 1.82 1.55 38.73 36.48 93.74

OCLBP
APR 70.70 41.60 77.82 56.13 42.57
ARR 1.75 1.26 38.91 28.06 42.57

IOCLBP
APR 69.96 44.78 79.58 73.58 45.51
ARR 1.75 1.35 39.79 36.79 45.51

PUM +
MCM

APR 73.94 52.45 81.03 78.13 97.74
ARR 1.85 1.59 40.51 39.06 97.74

HHD
APR 79.57 58.13 84.21 82.82 97.89
ARR 1.99 1.76 42.10 41.41 97.89

Figure 6a–j shows the performance comparison between HHD and existing approaches in terms
of average precision rate versus number of top matches (APR vs. NTM) and average recall rate versus
number of top matches (ARR vs. NTM). To guarantee the accuracy and reproducibility, the number
of top matches is set to 100, 200, 20, 20 and 5 on RSSCN7, AID, Outex-00013, Outex-00014 and
ETHZ-53, respectively. In Figure 6a,b, HHD achieves an obviously higher performance than all other
fusion-based feature descriptors on RSSCN7. Meanwhile, we also note that the APR vs. NTM and ARR
vs. NTM curves of mdLBP, maLBP, CDH, MSD, LNDP + LBP, MPEG-CED, Joint Colorhist, OCLBP,
IOCLBP and PUH + MCM are close to one another extremely. The reason is that only seven land-use
categories are very challenging to retrieve the targeted images from RSSCN7. As shown in Figure 6c,d,
the APR vs. NTM and ARR vs. NTM curves of HHD achieve an obviously higher curvature than all
other descriptors on AID. This phenomenon illustrates that the proposed descriptor can acquire better
performance on the large-scale dataset. As expected, as shown in Figure 6e–j, HHD still outperforms
all other existing descriptors over Outex-00013, Outex-00014 and ETHZ-53, respectively. Specifically,
PUM + MCM and HHD are superior to other descriptors on ETHZ-53 obviously. The main reason is
that they not only combine the color and edge information, but also integrate the texture information.
Based on the above results, the effectiveness of the proposed descriptor is demonstrated by comparing
with other fusion-based methods in terms of APR vs. NTM and ARR vs. NTM.

Figure 7a–e shows the performance comparison of the top-10 retrieved images using different
methods. The leftmost image in each row of Figure 7a–e is the query image, and the remaining images
are a set of retrieved images ordered in ascending order from left to right. For clarity, if a retrieved
image owns the same group label as the query, it is flagged as a green frame; otherwise, it is flagged as a
red frame. In Figure 7a, there are 7 related images to the query image “River Lake” from RSSCN7 using
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mdLBP, 8 using maLBP, 8 using CDH, 4 using MSD, 9 using LNDP + LBP, 3 using MPEG-CED, 3 using
Joint Colorhist, 8 using OCLBP, 7 using IOCLBP, 4 using PUH + MCM and 10 using HHD. Note that,
although the images from “Forest” have a similar color to “River Lake”, leading to the error results by
most of the existing schemes, HHD can retrieve the targeted images accurately. In Figure 7b, for the
query image “Baseball Field” from AID, the number of targeted images using mdLBP, maLBP, CDH,
MSD, LNDP + LBP, MPEG-CED, Joint Colorhist, OCLBP, IOCLBP, PUH + MCM, and HHD descriptors
are 7, 7, 9, 6, 5, 9, 5, 8, 9, 9 and 10, respectively. It can be seen that HHD not only displays a better
retrieval result than all other descriptors, but also shows the robustness of rotation and resolution
differences. In Figure 7c, for the query image “Rice” from Outex-00013, the precision achieved by
using mdLBP, maLBP, CDH, MSD, LNDP + LBP, MPEG-CED, Joint Colorhist, PUH + MCM, and HHD
descriptors are 40%, 40%, 80%, 70%, 30%, 80%, 80%, 90% and 100%, respectively. In comparison, we can
see that although all retrieved images show a similar content appearance, yet HHD still outperforms
all other descriptors. In Figure 7d, for the query image “Carpet” from Outex-00014, the precision
obtained by using mdLBP, maLBP, CDH, MSD, LNDP + LBP, MPEG-CED, Joint Colorhist, OCLBP,
IOCLBP, PUH + MCM, and HHD descriptors are 40%, 30%, 70%, 10%, 30%, 40%, 30%, 70%, 50%,
50% and 100%, respectively. As shown in Figure 7e, for the query image “Paper Bag” from ETHZ-53,
HHD still outperforms all other existing descriptors. From the above results, we can conclude that
HHD not only depicts the image semantic information with similar textural structure appearance but
also discriminates the color and texture differences, effectively. In summary, the effectiveness of the
proposed descriptor is demonstrated by comparing with existing approaches in terms of the top-10
retrieved images.
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Figure 6. Precision vs. number of top matches (APR vs. NTM) and Recall vs. number of top
matches (APR vs. NTM) using different methods over: (a,b) RSSCN7; (c,d) AID; (e,f) Outex-00013;
(g,h) Outex-00014; and (i,j) ETHZ-53.
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Figure 7. Results of the top-10 retrieved images by considering different query images: (a) “River
Lake”; (b) “Baseball Field”; (c) “Rice”; (d) “Carpet”; and (e) “Paper Bag” using different descriptors
(Row 1 using mdLBP, Row 2 using maLBP, Row 3 using CDH, Row 4 using MSD, Row 5 using LNDP +
LBP, Row 6 using MPEG-CED, Row 7 using Joint Colorhist, Row 8 using OCLBP , and Row 9 using
IOCLBP, Row 10 using PUH + MCM and Row 11 using HHD).
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Figure 8a–e shows the performance comparison of the proposed HHD with existing approaches
over RSSCN7, AID, Outex-00013 and Outex-00014 in terms of the precision–recall curve. According
to Figure 8a,b, it can be observed that the precision–recall curve of HHD is obviously superior to all
other fusion-based approaches. According to Figure 8c,d, it can be seen that the precision–recall curve
of other fusion-based approaches is inferior to HHD over Outex-00013 and Outex-00014 obviously.
Moreover, as shown in Figure 8e, both HHD and PUH + MCM are higher than mdLBP, maLBP, CDH,
MSD, LNDP + LBP, OCLBP, IOCLBP, and Joint Colorhist on ETHZ-53. The reasons can be summarized
as follows:

(1) Joint Colorhist, mdLBP, maLBP and LNDP + LBP only extract an independent color or
texture information.

(2) CDH, MSD and MPEG-CED consider the color and edge orientation information from different
channels, while the texture information is ignored.

(3) OCLBP and IOCLBP combine the color and texture information, but the edge orientation
information is lost.

(4) Although PUH + MCM integrates the color, edge orientation and texture information as a whole,
the perceptually uniform motif patterns are lost.

(5) HHD not only integrates the merits of the color, edge orientation and texture information, but also
considers the perceptually uniform motif patterns.

Depending upon the above results and analyses, the effectiveness of the proposed descriptor is
demonstrated by comparing with other fusion-based methods in terms of the precision–recall curve.
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Figure 8. Precision–recall curve of different descriptors over five databases: (a) Outex-00013;
(b) Outex-00014; (c) RSSCN7; (d) AID; and (e) ETHZ-53.
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Table 9 shows the feature vector length, average retrieval time, and memory cost per
image of different descriptors to provide an in-depth evaluation of the computational complexity.
All experiments are carried out on a computer with Intel Core i7-7700K@4.20 GHz CPU processor,
4 cores active and 16 GB RAM. The feature vector length is compared by dimension (D). The average
retrieval time is analyzed by seconds (S). The memory cost per image is measured in kilobytes
(KB). Similar to PUM + MCM, the items of 445/229 (D) and 3.48/1.79 (KB) represent HHD with
445 dimensions and 3.48 kilobytes performing retrieval over RSSCN7, AID and ETHZ-53 databases,
as well as HHD with 229 dimensions and 1.79 kilobytes performing retrieval over Outex-00013 and
Outex-00014 databases. For RSSCN7, AID and ETHZ-53, the feature vector length and the memory
cost per image of HHD are inferior to those of MSD, CDH, MPEG-CED and PUM + MCM, while HHD
are superior to Joint Colorhist, maLBP, mdLBP, OCLBP, IOCLBP and LNDP + LBP For Outex-00013 and
Outex-00014, the feature vector length and the memory cost per image of HHD are worse than MSD,
CDH and PUM + MCM, but it is better than MPEG-CED, Joint Colorhist, maLBP, mdLBP, OCLBP,
IOCLBP and LNDP + LBP. For the average retrieval time, HHD is more than MSD, CDH, MPEG-CED
and PUM + MCM, yet HHD is less than Joint Colorhist, maLBP, mdLBP, OCLBP, IOCLBP and LNDP +
LBP. The main reason is that the RSSCN7, AID and ETHZ-53 databases have more complex contents
as compared with the Outex-00013 and Outex-00014 image databases. Although HHD does not
outperform all other fusion-based descriptors, the usability and practicability of HHD is indicated
under the content-based image retrieval framework configuration: adaptive feature vector length,
competitive average retrieval time, and acceptable memory cost per image.

Table 9. Feature vector length (D), average retrieval time (s) and memory cost per image (KB) of
different descriptors.

Method Feature Vector Length (D) Average Retrieval Time (s) Memory Cost per Image (KB)

mdLBP 2048 3.45 16.00
maLBP 1024 1.74 8.00
CDH 108 0.17 0.84
MSD 78 0.15 0.61

LBP + LNDP 768 1.28 6.00
MPEG-CEH 261 0.45 2.04

Joint Colorhist 512 0.88 4.00
OCLBP 1535 2.55 11.99
IOCLBP 3072 5.24 24.00

PUM + MCM 400/184 0.65 3.13/1.44
HHD 445/229 0.72 3.48/1.79

4.8. Comparison with CNN-Based Descriptors

Apart from the fusion-based descriptors, HHD is also compared with emerging deep neural
networks techniques. Referring to the experimental setting in [48], we first extracted the last
full-connected layer from the pre-trained CNN model (e.g., VGGM1024 and VGGM128). Then,
the extracted feature vectors were L2 normalized. Finally, the normalized feature vectors were sent
to perform the distance measure. To guarantee a fair comparison, the number of query images were
identically set as all images, and the number of retrieved images were set to 10 on RSSCN7, AID,
Outex-00013 and Outex-00014, and 5 on ETHZ-35.

Figure 9 shows the comparisons between the proposed descriptors and the CNN-based schemes.
In the case of the RSSCN7, Outex-00013, Outex-00014 and ETHZ-35 datasets, HHD performs better
than the VGGM1024 and VGGM128 descriptors, and it achieves the highest performance. Particularly,
PUM + MCM also outperforms the VGGM1024 and VGGM128 descriptors on the four datasets.
Regarding the AID dataset, HHD is worse than VGGM1024. This makes sense because the pre-trained
CNN models which are trained on the large-scale imageset, are suitable for the large-scale AID dataset.
In contrast to the CNN-based descriptors, the advantages of HHD can be summarized as follows:

(1) HHD does not require any training process in the feature representation.
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(2) The pre-trained CNN-based models have a high memory cost which limits its application.
(3) HHD performs better than the CNN-based descriptors in four datasets out of five.
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5. Conclusions

In this paper, we propose a fusion method called hybrid histogram descriptor (HHD),
which integrates the perceptually uniform histogram and the motif co-occurrence histogram as a
whole. The proposed descriptor was evaluated under the content-based image retrieval framework on
the RSSCN7, AID, Outex-00013, Outex-00014 and ETHZ-53 datasets. From the experimental results,
it can be concluded that the fitness quantization layers of Ya* and Yb* are computed depending upon
the retrieval accuracy score. It is also deduced that the motif co-occurrence histogram (MCH) exhibits
significantly higher performance than the motif co-occurrence matrix (MCM). The performance of the
proposed descriptor is much improved by confusing the perceptually uniform histogram (PUH) and
the motif co-occurrence histogram (MCH). The performance of the proposed descriptor is superior to
ten fusion-based feature descriptors in terms of the average precision rate (APR), the average recall rate
(ARR), the average precision rate versus number of top matches (APR vs. NTM), the average recall rate
versus number of top matches (ARR vs. NTM), and the top-10 retrieved images. Meanwhile, the feature
vector length, the average retrieval time, and the memory cost per image were also analyzed to give
an in-depth evaluation of the computational complexity. Moreover, compared with the CNN-based
descriptors, the proposed descriptor also achieves comparable performance, but does not require any
training process.

The increased dimension of the proposed descriptor slows down the retrieval time, which will
be addressed in future research, especially using Locality-Sensitive Hashing [49]. Meanwhile,
user relevance feedback, feature re-weight and weight optimization will be considered to
further improve the accuracy of image retrieval. In addition, we will further investigate the
generalization of the proposed method, especially using RawFooT [50] that includes changes in
the illumination conditions.
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