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Abstract: To meet the high demand for supporting and accelerating progress in the breeding of
novel traits, plant scientists and breeders have to measure a large number of plants and their
characteristics accurately. Imaging methodologies are being deployed to acquire data for quantitative
studies of complex traits. Images are not always good quality, in particular, they are obtained
from the field. Image fusion techniques can be helpful for plant breeders with more comfortable
access plant characteristics by improving the definition and resolution of color images. In this work,
the multi-focus images were loaded and then the similarity of visual saliency, gradient, and color
distortion were measured to obtain weight maps. The maps were refined by a modified guided
filter before the images were reconstructed. Canola images were obtained by a custom built mobile
platform for field phenotyping and were used for testing in public databases. The proposed method
was also tested against the five common image fusion methods in terms of quality and speed.
Experimental results show good re-constructed images subjectively and objectively performed by
the proposed technique. The findings contribute to a new multi-focus image fusion that exhibits
a competitive performance and outperforms some other state-of-the-art methods based on the visual
saliency maps and gradient domain fast guided filter. The proposed fusing technique can be extended
to other fields, such as remote sensing and medical image fusion applications.

Keywords: image fusion; multi-focus; weight maps; gradient domain; fast guided filter.

1. Introduction

The sharp increase in demand for global food raises the awareness of the public, especially
agricultural scientists, to global food security. To meet the high demand for food in 2050, agriculture
will need to produce almost 50 percent more food than was produced in 2012 [1]. There are many ways
to improve yields for canola and other crops. One of the solutions is to increase breeding efficiency.
In the past decade, advances in genetic technologies, such as next generation DNA sequencing, have
provided new methods to improve plant breeding techniques. However, the lack of knowledge of
phenotyping capabilities limits the ability to analyze the genetics of quantitative traits related to
plant growth, crop yield, and adaptation to stress [2]. Phenotyping creates opportunities not only
for functional research on genes, but also for the development of new crops with beneficial features.
Image-based phenotyping methods are those integrated approaches that enable the potential to greatly
enhance plant researchers’ ability to characterize many different traits of plants. Modern advanced
imaging methods provide high-resolution images and enable the visualization of multi-dimensional
data. The basics of image processing have been thoroughly studied and published. Readers can
find useful information on image fusion in the textbooks by Starck or Florack [3,4]. These methods
allow plant breeders and researchers to obtain exact data, speed up image analysis, bring high
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throughput and high dimensional phenotype data for modeling, and estimate plant growth and
structural development during the plant life cycle. However, with low-cost and low-resolution sensors,
phenotyping would meet some obstacles to solve low-resolution images. To cope with this issue, image
fusion is a valuable choice.

Image fusion is a technique that combines many different images to generate a fused image with
highly informative and reliable information. There are several image fusion types, such as multi-modal
and multi-sensor image fusion. In multi-modal image fusion, two different kinds of images are
fused, for example, combining a high-resolution image with a high-color image. In multi-sensor
image fusion, images from different types of sensors are combined, for example, combining an image
from a depth sensor with an image from a digital sensor. Image fusion methods can be divided into
three levels depending on the processing: pixel level, feature level, and decision level [5,6]. Image
fusion at the pixel level refers to an imaging process that occurs in the pixel-by-pixel manner in
which each new pixel of the fused image obtains a new value. At a higher level than the pixel level,
feature-level image fusion first extracts the relevant key features from each of the source images and
then combines them for image-classification purposes such as edge detection. Decision-level image
fusion (also named as interpretation-level or symbol-level image fusion) is the highest level of image
fusion. Decision-level image fusion refers to a type of fusion in which the decision is made based on
the information separately extracted from several image sources.

Over the last two decades, image fusion techniques have been widely applied in many areas:
medicine, mathematics, physics, and engineering. In plant science, many image fusion techniques are
being deployed to improve the classification accuracy for determining plant features, detecting plant
diseases, and measuring crop diversification. Fan et al. [7] well implemented a Kalman filtering fusion
to improve the accuracy of the prediction on the citrus maturity. In a related work, a feature-level fusion
technique [8] was successfully developed to detect some types of leaf disease with excellent results. In
other similar research, apple fruit diseases were detected by using feature-level fusion in which two
or more color and feature textures were combined [9]. Decision-level fusion techniques have been
deployed to detect crop contamination and plague [10]. Dimov et al. [11] have also implemented
the Ehler’s fusion algorithm (decision level) to measure the diversification of the three critical
crop systems with the highest classification accuracy. These findings suggest that image-fusion
techniques at many levels are broadly applied in the plant science sector because they offer the highest
classification accuracy.

Currently, many multi-focus image fusion techniques have been developed [12,13]. The techniques
can be categorized into two classes: spatial domain methods and frequency domain methods. In the
spatial domain methods, source images are directly fused, in which the information of image pixels are
directly used without any pre-processing or post-processing. In the frequency domain methods, source
images are transformed into frequency domain, and then combined. Therefore, frequency domain
methods are more complicated and time-consuming than spatial domain methods. Many studies
investigated multi-focus image fusion techniques in spatial and frequency domains to improve the
outcomes. Wan et al. [14] proposed a method based on the robust principal component analysis in
the spatial domain. They developed this method to form a robust fusion technique to distinguish
focused and defocused areas. The method outperforms wavelet-based fusion methods and provides
better visual perception; however, it has a high computation cost. In the similar spatial domain,
a multi-focus image fusion method based on region [15] was developed, in which, their algorithm
offers smaller distortion and a better reflection of the edge information and importance of the source
image. Similarly, Liu et al. [16] investigated a fusion technique based on dense scale invariant feature
transform (SIFT) in the spatial domain. The method performs better than other techniques in terms
of visual perception and performance evaluation, but it requires a high amount of memory. In the
frequency domain, Phamila and Amutha [17] conducted a method based on Discrete Cosine Transform.
The process computes and obtains the highest variance of the 8 × 8 DCT coefficients to reconstruct
the fused image. However, the method suffers from undesirable side effects such as blurring and
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artifact. In a recently published article, the authors reviewed the works using sparse representation
(SR)-based methods on multi-sensor systems [18]. Based on sparse representation, the same authors
also developed the image fusing method for multi-focus and multi-modality images [19]. This SR
method learns an over-complete dictionary from a set of training images for image fusion, it may result
in a huge increment of computational complexity.

To deal with these obstacles mentioned above, a new multi-focus image fusion based on the
image quality assessment (IQA) metrics is proposed in this paper. The proposed fusion method is
developed based on crucial IQA metrics and a gradient domain fast guided image filter (GDFGIF).
This approach is motivated by the fact that visual saliency maps, including visual saliency, gradient
similarity, and chrominance similarity maps, outperform most of the state-of-the-art IQA metrics in
terms of the prediction accuracy [20]. According to Reference [20], visual saliency similarity, gradient
similarity, and chrominance maps are vital metrics in accounting for the visual quality of image fusion
techniques. In most cases, changes of visual saliency (VS) map can be a good indicator of distortion
degrees and thus, VS map is used as a local weight map. However, VS map does not work well for
the distortion type of contrast change. Fortunately, the image gradient can be used as an additional
feature to compensate for the lack of contrast sensitivity of the VS map. In addition, VS map does
not work well for the distortion type change of color saturation. This color distortion cannot be well
represented by gradient either since usually the gradient is computed from the luminance channel of
images. To deal with this color distortion, two chrominance channels are used as features to represent
the quality degradation caused by color distortion. These IQA metrics have been proved to be stable
and have the best performance [20]. In addition, gradient domain guided filter (GDGIF) [21] and
fast guided filter (FGF) [22] are adopted in this work as the combination of GDGIF and FGF and
can offer fast and better fused results, especially near the edges, where halo artifacts appear in the
original guided image filter. This study focuses on how to fuse multi-focus color images to enhance the
resolution and quality of the fused image using a low-cost camera. The proposed image fusion method
was developed and compared with other state-of-the-art image fusion methods. In the proposed
multi-focus image fusion, two or more images captured by the same sensor from the same visual angle
but with a different focus are combined to obtain a more informative image. For example, a fused
image with clearer canola seedpods can be produced by fusing many different images of a canola plant
acquired by the same Pi camera at the same angle with many different focus lengths.

2. Methodology

2.1. Data Acquisition System

This image fusion work is part of the development of a low-cost, high throughput phenotyping
mobile system for canola in which a low-cost Raspberry Pi camera is used as a source of image
acquisition. This system includes a 3D Time-of-Flight camera, a Pi camera, a Raspberry Pi3 (RP3),
and appropriate power supplies for the cameras and the mini computer (Raspberry Pi3). A built-in
remote control allows the user to start and stop image recording as desired. Figure 1 shows various
components of the data acquisition system. Data are recorded in the SD card of the RP3 and retrieved
using USB connection to a laptop before the images are processed. The Kuman for Raspberry Pi 3
Camera Module with adjustable focus is used in this system. This camera is connected to the Raspberry
Pi using the dedicated CSI interface. The Pi camera equips to the 5 megapixels OV5647 sensor. It is
capable of capturing 2592 × 1944 pixels static images; it also supports video capturing of 1080 p at
30 fps, 720 p at 60 fps, and 640 × 480 p at 60/90 formats.

The testing subjects were the canola plants at different growing stages. The plants were growing
in a controlled environment and also in the field. To capture images of the canola, the plants were
directly placed underneath the Pi camera that fixed on the tripod at a distance of 1000 mm (Figure 1).
Each canola plant was recorded at 10 fps for 3 s. The time between each change of the focal length is
10 s. Only frame number 20 of each video stream acquired from the Pi camera was extracted to store in
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the database for later use. The reason for selecting the 20th frame is that the plants and the camera are
required to be stable before the images are being captured and processed. Only the regions containing
the plant in the selected images were cropped and used for multi-focus image fusion methods.Sensors 2018, 18, x FOR PEER REVIEW  4 of 17 
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Figure 1. (a) Low-cost mobile phenotyping system; (b) Adjustable focus Pi camera; (c) System mounted
on a tripod looking down to the canola plants.

2.2. Image Fusion Algorithm

In the proposed fusion approach, three image quality assessment (IQA) metrics: visual saliency
similarity, gradient similarity, and chrominance similarity (or color distortion) are measured to obtain
their weight maps. Then these weight maps are refined by a gradient domain fast guided filter in
which, a gradient domain guided filter proposed by Reference [21] and a fast guided filter proposed
by Reference [22] are combined. The workflow of the proposed multi-focus image fusion algorithm is
illustrated in Figure 2. The detail of the proposed algorithm is described as follows.
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First, each input image is decomposed into a base and detailed component, which contain the
large-scale and small-scale variations in intensity. A Gaussian filter is used for each source image to
obtain its base component, and the detailed component can be easily obtained by subtracting the base
component from the input image, as given by:

Bn = In ∗ Gr,σ (1)

Dn = In − Bn (2)

where Bn and Dn are the base and detail component of the nth input image, respectively. ∗ denotes
convolution operator, and Gr,σ is a 2-D Gaussian smoothing filter.

Several measures were used to obtain weight maps for image fusing. Visual saliency similarity,
gradient similarity, and chrominance maps are vital metrics in accounting for the visual quality of
image fusion techniques [20]. In most cases, changes of visual saliency (VS) map can be a good
indicator of distortion degrees and thus, VS map is used as a local weight map. However, VS map
does not work very well for the distortion type of contrast change. Fortunately, the gradient modulus
can be used as an additional feature to compensate for the lack of contrast sensitivity of the VS map.
In addition, VS map does not work well for the distortion type change of color saturation. This color
distortion cannot be well represented by gradient either since usually gradient is computed from the
luminance channel of images. To deal with this color distortion, two chrominance channels are used as
features to represent the quality degradation caused by color distortion. Motivated by these metrics,
an image fusion method is designed based on the measurement of the three key visual features of
input images.

2.2.1. Visual Saliency Similarity Maps

A saliency similarity detection algorithm proposed by [23] is adopted to calculate visual saliency
similarity due to its higher accuracy and low computational complexity. This algorithm is constructed
by combining three simple priors: frequency, color, and location. The visual saliency similarity maps
are calculated as

VSk
n = SFk

n ·SCk
n·SDk

n (3)

where SFk
n , SCk

n, SDk
n are the saliency at pixel k under frequency, color and location priors. SFk

n is
calculated by

SFk
n = (ILk

n ∗ g)2 + (Iak
n ∗ g)

2
+ (Ibk

n ∗ g)2)1/2 (4)

where ILk
n, Iak

n, Ibk
n are three resulting channels transformed from the given RGB input image, In to

CIEL*a*b* space. * denotes the convolution operation. CIEL*a*b* is an opponent color system that
a* channel represents green-red information while b* channel represents blue-yellow information.
If a pixel has a smaller (greater) a* value, it would seem greenish (reddish). If a pixel has a smaller
(greater) b* value, it would seem blueish (yellowish). Then, if a pixel has a higher a* or b* value,
it would seem warmer; otherwise, colder. The color saliency SCn at pixel k is calculated using

SCk
n = 1− exp (− (Iak

n)
2
+ (Ibk

n)
2

σ2
C

) (5)

where σC is a parameter. Iak
n = Iak

n−mina
maxa−mina , Ibk

n = Ibk
n−minb

maxb−minb , mina(maxa) is the minimum (maximum)
value of the Ia and minb (maxb) is the minimum (maximum) value of the Ib.

Many studies found that the regions near the image center are more attractive to human visual
perception [23]. It can thus be suggested that regions near the center of the image will be more likely to
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be “salient” than the ones far away from the center. The location saliency at pixel k under the location
prior can be formulated by

SDk
n = exp (−‖k− c‖2

σ2
D

) (6)

where σD is a parameter. c is the center of the input image In. Then, the visual saliency is used to
construct the visual saliency (VS) maps, given by

VSm = VS ∗ Gr,σ (7)

where Gr,σ is a Gaussian filter.

2.2.2. Gradient Magnitude Similarity

According to Zhang et al. [24], the gradient magnitude is calculated as the root mean square of
image directional gradients along two orthogonal directions. The gradient is usually computed by
convolving an image with a linear filter such as the classic Sobel, Prewitt and Scharr filters. The gradient
magnitude similarity algorithm proposed by Reference [24] is adopted in this study. This algorithm
uses a Scharr gradient operator, which could achieve slightly better performance than Sobel and
Prewitt operators [25]. With the Scharr gradient operator, the partial derivatives GMxk

n and GMyk
n of

an input image In are calculated as:

GMxk
n = 1

16

 3 0 −3
10 0 −10
3 0 −3

 ∗ Ik
n

GMyk
n = 1

16

 3 0 −3
10 0 −10
3 0 −3

 ∗ Ik
n

(8)

The gradient modulus of the image In is calculated by

GMn =
√

GMx2 + GMy2 (9)

The gradient is computed from the luminance channel of input images that will be introduced
in the next section. Similar to the visual saliency maps, the gradient magnitude (GM) maps is
constructed as

GMm = GM ∗ Gr,σ (10)

2.2.3. Chrominance Similarity

The RGB input images are transformed into an opponent color space, given by L
M
N

 =

 0.06 0.63 0.27
0.30 0.04 −0.35
0.34 −0.6 0.17


 R

G
B

 (11)

The L channel is used to compute the gradients introduced in the previous section. The M and N
(chrominance) channels are used to calculate the color distortion saliency, given by

Mn = 0.30 ∗ R + 0.04 ∗ G− 0.35 ∗ B (12)

Nn = 0.34 ∗ R− 0.6 ∗ G + 0.17 ∗ B (13)
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Cn = Mn·Nn (14)

Finally, the chrominance similarity or color distortion saliency (CD) maps are calculated by

CDm = C ∗ Gr,σ (15)

2.2.4. Weight Maps

Using three measured metrics above, the weight maps are computed as given by

Wn = (VSm)α·(GMm)β·(CDm)
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n =

{
1, i f Wk

n = max
(
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N

)
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0, otherwise,
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where N is the number of input images, Wk
n is the weight value of the pixel k in the nth image.

Then proposed weight maps are determined by normalizing the saliency maps as follows:

Wk
n =

Wk
n

∑N
n=1 Wk

n
, ∀n = 1, 2, . . . , N (18)

These weight maps are then refined by a gradient domain guided filter described in the
next section.

2.2.5. Gradient Domain Fast Guided Filter

The gradient domain guided filter proposed by Reference [21] is adopted to optimize the initial
weight maps. By using this filter, the halo artifacts can be more effectively suppressed. It is also less
sensitive to its parameters but still has the same complexity as the guided filter. The gradient domain
guided filter has good edge-preserving smoothing properties as the bilateral filter, but it does not
suffer from the gradient reversal artifacts. The filtering output is a local linear model of the guidance
image. This is one of the fastest edge-preserving filters. Therefore, the gradient domain guided filter
can apply in image smoothing to avoid ringing artifacts.

It is assumed that the filtering output Q is a linear transform of the guidance image G in a local
window wk centered at pixel k.

Qi = akGi + bk, ∀i ∈ wk (19)

where (ak, bk) are some linear coefficients assumed to be constant in the local window wk with the
size of (2ζ1 + 1)× (2ζ1 + 1). The linear coefficients (ak, bk) can be estimated by minimizing the cost
function in the window wk between the output image Q and the input image P

E(ak ,bk)
= ∑

i∈wk

[(Qi − Pi)
2 +

λ
ˆ
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where ܳ஺ி(݊,݉)  and ܳ஻ி(݊,݉)  are edge information preservation values, weighted by 
 .஻(݊,݉), respectivelyݓ	஺(݊,݉) andݓ

Table 1 illustrates the quantitative assessment values of five different multi-focus fusion 
methods and the proposed method. The larger the value of these metrics, the better image quality is. 
The values shown in bold represent the highest performance. From Table 1, it can be seen that the 
proposed method produces the highest quality scores for all three objectives metrics except for QY 
with “Canola 2” datasets and QAB/F with “Book” (extra images were also run to test the 
performance). These largest quality scores imply that the proposed method performed well, stably, 
and reliably. Overall, it can be concluded that the proposed method reveals the competitive 
performance when compared with previous multi-focus fusion methods both in visual perception 
and objective metrics. Table 2 describes the ranking of the proposed method with others based on the 
quality of fused images. The performance (including quality of the images and the processing time) 
is scaled from 1 to 6. The results show the outperformance of the proposed technique with other 
techniques previously published. 

4. Summary and Conclusions 

To improve the description and quality images, especially images acquired from the digital 
camera or the Pi camera for canola phenotyping, an image fusion method is necessary. A new multi-focus 
image fusion method was proposed with the combination of the VS maps and gradient domain fast 
guided filters. In the proposed algorithm, the VS maps were first deployed to obtain visual saliency, 
gradient magnitude similarity saliency, and chrominance saliency (or color distortions), then the 
initial weight map was constructed with a mix of three metrics. Next, the final decision weight maps 
were obtained by optimizing the initial weight map with a gradient domain fast guided filter at two 
components. Finally, the fused results were retrieved by the combination of two-component weight 
maps and two-component source images that present large-scale and small-scale variations in 
intensity. The proposed method was compared with five proper representative fusion methods both 
in subjective and objective evaluations. Based on the experiment’s results, the proposed fusion 
method presents a competitive performance with or outperforms some state-of-the-art methods 
based on the VS maps measure and gradient domain fast guided filter. The proposed method can use 
digital images which are captured by either a high-end or low-end camera, especially the low-cost Pi 
camera. This fusion method can be used to improve the images for trait identification in phenotyping 
of canola or other species.  

On the other hand, some limitations of the proposed multi-focus image fusion, such as small-blurred 
regions in the boundaries between the focused and defocused regions and computational cost, are 

G(k)
(ak − γk)

2] (20)

where γk is defined as

γk = 1− 1
1 + e
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where ߛ௞ is defined as 

௞ߛ = 1−
1

1 + ݁ɳ൫ఞ(௞)൯ିఓഖ,ಮ
 (21) 

ఞ,ஶߤ)/ఞ,ஶ is the mean value of all ߯(݇). ɳ is calculated as 4ߤ −min	(߯(݇))). 
Ґ෠ீ(݇) is a new edge-aware weighting used to measure the importance of pixel k with respect to the 
whole guidance image. It is defined by using a local variance of 3 × 3 windows and  
1ߞ2) + 1) 1ߞ2)	×	 + 1) windows of all pixels by 

Ґ෠ீ(݇) =
1
ܰ
෍

߯(݇) + ߝ
߯(݅) + ߝ

ே

௜ୀଵ

 (22) 

where ߯(݇) =   .ଵ is the window size of the filterߞ .(݇)఍ଵ,ீߪ(݇)ଵ,ீߪ
The optimal values of ܽ௞ and ܾ௞ are computed by 

(χ(k))−µχ,∞
(21)

µχ,∞ is the mean value of all χ(k).
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Table 1 illustrates the quantitative assessment values of five different multi-focus fusion 
methods and the proposed method. The larger the value of these metrics, the better image quality is. 
The values shown in bold represent the highest performance. From Table 1, it can be seen that the 
proposed method produces the highest quality scores for all three objectives metrics except for QY 
with “Canola 2” datasets and QAB/F with “Book” (extra images were also run to test the 
performance). These largest quality scores imply that the proposed method performed well, stably, 
and reliably. Overall, it can be concluded that the proposed method reveals the competitive 
performance when compared with previous multi-focus fusion methods both in visual perception 
and objective metrics. Table 2 describes the ranking of the proposed method with others based on the 
quality of fused images. The performance (including quality of the images and the processing time) 
is scaled from 1 to 6. The results show the outperformance of the proposed technique with other 
techniques previously published. 

4. Summary and Conclusions 

To improve the description and quality images, especially images acquired from the digital 
camera or the Pi camera for canola phenotyping, an image fusion method is necessary. A new multi-focus 
image fusion method was proposed with the combination of the VS maps and gradient domain fast 
guided filters. In the proposed algorithm, the VS maps were first deployed to obtain visual saliency, 
gradient magnitude similarity saliency, and chrominance saliency (or color distortions), then the 
initial weight map was constructed with a mix of three metrics. Next, the final decision weight maps 
were obtained by optimizing the initial weight map with a gradient domain fast guided filter at two 
components. Finally, the fused results were retrieved by the combination of two-component weight 
maps and two-component source images that present large-scale and small-scale variations in 
intensity. The proposed method was compared with five proper representative fusion methods both 
in subjective and objective evaluations. Based on the experiment’s results, the proposed fusion 
method presents a competitive performance with or outperforms some state-of-the-art methods 
based on the VS maps measure and gradient domain fast guided filter. The proposed method can use 
digital images which are captured by either a high-end or low-end camera, especially the low-cost Pi 
camera. This fusion method can be used to improve the images for trait identification in phenotyping 
of canola or other species.  

On the other hand, some limitations of the proposed multi-focus image fusion, such as small-blurred 
regions in the boundaries between the focused and defocused regions and computational cost, are 

G(k) is a new edge-aware weighting used to measure the importance of pixel k with respect
to the whole guidance image. It is defined by using a local variance of 3 × 3 windows and
(2ζ1 + 1)× (2ζ1 + 1) windows of all pixels by
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methods and the proposed method. The larger the value of these metrics, the better image quality is. 
The values shown in bold represent the highest performance. From Table 1, it can be seen that the 
proposed method produces the highest quality scores for all three objectives metrics except for QY 
with “Canola 2” datasets and QAB/F with “Book” (extra images were also run to test the 
performance). These largest quality scores imply that the proposed method performed well, stably, 
and reliably. Overall, it can be concluded that the proposed method reveals the competitive 
performance when compared with previous multi-focus fusion methods both in visual perception 
and objective metrics. Table 2 describes the ranking of the proposed method with others based on the 
quality of fused images. The performance (including quality of the images and the processing time) 
is scaled from 1 to 6. The results show the outperformance of the proposed technique with other 
techniques previously published. 

4. Summary and Conclusions 

To improve the description and quality images, especially images acquired from the digital 
camera or the Pi camera for canola phenotyping, an image fusion method is necessary. A new multi-focus 
image fusion method was proposed with the combination of the VS maps and gradient domain fast 
guided filters. In the proposed algorithm, the VS maps were first deployed to obtain visual saliency, 
gradient magnitude similarity saliency, and chrominance saliency (or color distortions), then the 
initial weight map was constructed with a mix of three metrics. Next, the final decision weight maps 
were obtained by optimizing the initial weight map with a gradient domain fast guided filter at two 
components. Finally, the fused results were retrieved by the combination of two-component weight 
maps and two-component source images that present large-scale and small-scale variations in 
intensity. The proposed method was compared with five proper representative fusion methods both 
in subjective and objective evaluations. Based on the experiment’s results, the proposed fusion 
method presents a competitive performance with or outperforms some state-of-the-art methods 
based on the VS maps measure and gradient domain fast guided filter. The proposed method can use 
digital images which are captured by either a high-end or low-end camera, especially the low-cost Pi 
camera. This fusion method can be used to improve the images for trait identification in phenotyping 
of canola or other species.  

On the other hand, some limitations of the proposed multi-focus image fusion, such as small-blurred 
regions in the boundaries between the focused and defocused regions and computational cost, are 

G(k) =
1
N

N

∑
i=1

χ(k) + ε

χ(i) + ε
(22)

where χ(k) = σG,1(k)σG,ζ1(k). ζ1 is the window size of the filter.
The optimal values of ak and bk are computed by

ak =
µG�X,ζ1(k)− µG,ζ1(k)µX,ζ1(k) + λ
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performance). These largest quality scores imply that the proposed method performed well, stably, 
and reliably. Overall, it can be concluded that the proposed method reveals the competitive 
performance when compared with previous multi-focus fusion methods both in visual perception 
and objective metrics. Table 2 describes the ranking of the proposed method with others based on the 
quality of fused images. The performance (including quality of the images and the processing time) 
is scaled from 1 to 6. The results show the outperformance of the proposed technique with other 
techniques previously published. 

4. Summary and Conclusions 

To improve the description and quality images, especially images acquired from the digital 
camera or the Pi camera for canola phenotyping, an image fusion method is necessary. A new multi-focus 
image fusion method was proposed with the combination of the VS maps and gradient domain fast 
guided filters. In the proposed algorithm, the VS maps were first deployed to obtain visual saliency, 
gradient magnitude similarity saliency, and chrominance saliency (or color distortions), then the 
initial weight map was constructed with a mix of three metrics. Next, the final decision weight maps 
were obtained by optimizing the initial weight map with a gradient domain fast guided filter at two 
components. Finally, the fused results were retrieved by the combination of two-component weight 
maps and two-component source images that present large-scale and small-scale variations in 
intensity. The proposed method was compared with five proper representative fusion methods both 
in subjective and objective evaluations. Based on the experiment’s results, the proposed fusion 
method presents a competitive performance with or outperforms some state-of-the-art methods 
based on the VS maps measure and gradient domain fast guided filter. The proposed method can use 
digital images which are captured by either a high-end or low-end camera, especially the low-cost Pi 
camera. This fusion method can be used to improve the images for trait identification in phenotyping 
of canola or other species.  

On the other hand, some limitations of the proposed multi-focus image fusion, such as small-blurred 
regions in the boundaries between the focused and defocused regions and computational cost, are 
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initial weight map was constructed with a mix of three metrics. Next, the final decision weight maps 
were obtained by optimizing the initial weight map with a gradient domain fast guided filter at two 
components. Finally, the fused results were retrieved by the combination of two-component weight 
maps and two-component source images that present large-scale and small-scale variations in 
intensity. The proposed method was compared with five proper representative fusion methods both 
in subjective and objective evaluations. Based on the experiment’s results, the proposed fusion 
method presents a competitive performance with or outperforms some state-of-the-art methods 
based on the VS maps measure and gradient domain fast guided filter. The proposed method can use 
digital images which are captured by either a high-end or low-end camera, especially the low-cost Pi 
camera. This fusion method can be used to improve the images for trait identification in phenotyping 
of canola or other species.  

On the other hand, some limitations of the proposed multi-focus image fusion, such as small-blurred 
regions in the boundaries between the focused and defocused regions and computational cost, are 

G(k)

(23)

bk = µX,ζ1(k)− ak µG,ζ1(k) (24)

The final value of Q̂i is calculated by

Q̂i = akGi + bk (25)

where ak and bk are the mean values of ak and bk in the window, respectively. ak and bk are computed by

ak =
1∣∣wζ1(k)

∣∣ ∑
i∈wζ1(k)

ak (26)

bk =
1∣∣wζ1(k)

∣∣ ∑
i∈wζ1(k)

bk (27)

where
∣∣wζ1(k)

∣∣ is the cardinality of wζ1(k).

2.2.6. Refining Weight Maps by Gradient Domain Guided Filter

Due to these weight maps being noisy and not well aligned with the object boundaries,
the proposed approach deploys a gradient domain guided filter to refine the weight maps. The gradient
domain guided filter is used at each weight map Wn with the corresponding input image In. However,
the weigh map W_Dn used W_Bn as the guidance image to improve the W_Dn, it is calculated by

W_Bn = Gr1,ε1(Wn, In) (28)

W_Dn = Gr2, ε2(W_Bn, In) (29)

where r1, ε1 and r2, and ε2 are the parameters of the guided filter. W_Bn and W_Dn are the refined
weight maps of the base and detail layers, respectively. Both weight maps W_Bn and W_Dn are
deployed using mathematical morphology techniques to remove small holes and unwanted regions in
the focus and defocus regions. The morphology techniques are described as bellow,

mask = Wn < threshold
temp1 = im f ill(mask,′ holes′)

temp2 = 1− temp1
temp3 = im f ill(temp2,′ holes′)

Wn(re f ined) = bwareaopen(temp3, threshold)

(30)
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Then, the values of the N refined weight maps are normalized such that they sum to one at each
pixel k. Finally, the fused base and detail layer images are calculated and blended to fuse the input
images, as given by

Bn = W_Bn ∗ Bn (31)

Dn = W_Dn ∗ Dn (32)

Fusedn = Bn + Dn (33)

The fast-guided filter is improved by the guided filter proposed by Reference [22]. This algorithm
is adopted for reducing the processing of gradient domain guided filter time complexity.
Before processing the gradient domain guided filter, the rough transmission map and the guidance
image employ nearest the neighbor interpolation down-sampling. After gradient domain guided filter
processing, the gradient domain guided filter output image uses bilinear interpolation for up-sampling
and obtains the refining transmission map. Using this fast-guided filter, the gradient domain guided
filter performs better than the original one. Therefore, the proposed filter was named as the gradient
domain fast guided filter.

3. Results and Discussion

3.1. Multi-Focus Image Fusion

This section describes the comprehensive experiments conducted to evaluate and verify the
performance of the proposed approach. The proposed algorithm was developed to fit many types of
multi-focus images that are captured by any digital camera or Pi camera. The proposed method was
also compared with five multi-focus image fusion techniques: the multi-scale weighted gradient based
method (MWGF) [26], the DCT based Laplacian pyramid fusion technique (DCTLP) [27], the image
fusion with guided filtering (GFF) [28], the gradient domain-based fusion combined with a pixel-based
fusion (GDPB) [29], and the image matting (IM)-based fusion algorithm [30]. The codes of these
methods were downloaded and run on the same computer to compare to the proposed method.

The MWGF method is based on the image structure saliency and two scales to solve the fusion
problems raised by anisotropic blur and miss-registration. The image structure saliency is used because
it reflects the saliency of local edge and corner structures. The large-scale measure is used to reduce the
impacts of anisotropic blur and miss-registration on the focused region detection, while the small-scale
measure is used to determine the boundaries of the focused regions. The DCTLP presents an image
fusion method using Discrete Cosine Transform based Laplacian pyramid in the frequency domain.
The higher level of pyramidal decomposition, the better quality of the fused image. The GFF method is
based on fusing two-scale layers by using a guided filter-based weighted average method. This method
measures pixel saliency and spatial consistency at two scales to construct weight maps for the fusion
process. The GDPB method fuses luminance and chrominance channels separately. The luminance
channel is fused by using a wavelet-based gradient integration algorithm coupled with a Poisson
Solver at each resolution to attenuate the artifacts. The chrominance channels are fused based on
a weighted sum of the chrominance channels of the input images. The image mating fusion (IM)
method is based on three steps: obtaining the focus information of each source image by morphological
filtering, applying an image matting technique to achieve accurate focused regions of each source
image, and combining these fused regions to construct the fused image.

All methods used the same input images as the ones applied in the proposed technique.
Ten multi-focused image sequences were used in the experiments. Four of them were canola images
captured by setting well-focused and manual changing focal length of the Pi camera; the others were
selected from the general public datasets used for many image fusion techniques. These general
datasets are available in Reference [31,32]. In the first four canola database sets, three of them were
artificial multi-focus images obtained by using LunaPic tool [33], one of them was a multi-focus image
acquired directly from the Pi camera after cropping the region of interest as described in Section 2.1.
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The empirical parameters of the gradient domain fast guided filter and VS metrics were adjusted
to obtain the best outputs. The parameters of the gradient domain fast guided filter (see Equation (22))
consisted of a window size filter (ζ1), a small positive constant (ε), subsampling of the fast-guided filter
(s), and a dynamic range of input images (L). The parameters of VS maps (Equation (16)), including
α, β, and γ, were used to control visual saliency, gradient similarity, and color distortion measures,
respectively. These empirical parameters of the gradient domain fast guided filters were experimentally
set as s = 4, L = 9, and two pairs of ζ1(1) = 4, ε(1) = 1.0e− 6 and ζ1(2) = 4, ε(2) = 1.0e− 6 for
optimizing base and detail weight maps. Other empirical parameters of VS maps were set as α = 1,
β = 0.89, and γ = 0.31.

Surprisingly, when changing these parameters of the VS maps, such as, α = 0.31, β = 1, and γ = 0.31,
the fused results had a similar quality to the first parameter settings. It can be thus concluded that
to obtain focused regions, both visual saliency and gradient magnitude similarity can be used as the
main saliencies. In addition, the chrominance colors (M and N) also contributed to the quality of the
fused results. For example, when increasing the parameters of M and N, the blurred regions appeared
in the fused results. Figure 3 shows the outputs of the proposed algorithm, including visual saliency,
gradient magnitude similarity, and chrominance colors. The red oval denotes the defocused region of
the input image (Figure 3a).
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Figure 3. An example of a source image and its saliencies and weight maps: (a) A source image;
(b) visual saliency; (c) gradient saliency; (d) chrominance color (M); (e) chrominance color (N); (f) weight
maps; (g) refined base weight map; (h) refined detail weight map.

3.2. Comparison with Other Multi-Fusion Methods

In this section, a comprehensive assessment, including both subjective and objective assessment,
is used to evaluate the quality of fused images obtained from the proposed and other methods.
Subjective assessments are the methods used to evaluate the quality of an image through many factors,
including viewing distance, display device, lighting condition, vision ability, etc. However, subjective
assessments are expensive and time consuming. Therefore, objective assessments—mathematical
models—are designed to predict the quality of an image accurately and automatically.

For subjective or perceptual assessment, the comparisons of these fused images are shown
from Figures 4–7. The figures show the fused results of the “Canola 1”, “Canola 2”, “Canola 4”
and “Rose flower” image sets. In these examples, (a) and (b) are two source multi-focus images,
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and (c), (d), (e), (f), (g), and (h) are the fused images obtained with the MWGF, DCTLP, GFF, GDPB, IM,
and the proposed methods, respectively. In almost all the cases, the MWGF method offers quite good
fused images; however, sometimes it fails to deal with the focused regions. For example, the blurred
regions remain in the fused image as marked by the red circle in Figure 4c. The DCTLP method offers
fused images as good as the MWGF but causes blurring of the fused images in all examples. The IM
method also provides quite good results; however, ghost artifacts remain in the fused images, as shown
in Figure 4g, Figure 6g, and Figure 7g. Although the fused results of the GFF method reveal good
visual effects at first glance, small blurred regions are still remained at the edge regions (the boundary
between focused and defocused regions) of the fused results. This blurring of edge regions can be seen
in the “Rose flower” fused images in Figure 7e. The fused images of the GDPB method have unnatural
colors and too much brightness. The fused results of the GDPB are also suffered from the ghost artifacts
on the edge regions and on the boundary between the focused and defocused regions. It can be clearly
seen that the proposed algorithm can obtain clearer fused images and better visual quality and contrast
than other algorithms due to its combination of the gradient domain fast-guided filter and VS maps.
The proposed algorithm offers fused images with fewer block artifacts and blurred edges.

In addition to subjective assessments, an objective assessment without the reference image was
also conducted. Three objective metrics, including mutual information (MI) [34], structural similarity
(QY) [35], and the edge information-based metric Q(AB/F) [36] were used to evaluate the fusion
performance of different multi-focus fusion methods.

The mutual information (MI) measures the amount of information transferred from both source
images into the resulting fused image. It is calculated by

MI = 2(
I(X, F)

H(F) + H(X)
+

I(Y, F)
H(F) + H(Y)

) (34)

where I(X, F) is the mutual information of the input image X and fused image F. I(Y, F) is the mutual
information of the input image Y and fused image F. H(X), H(Y), and H(F) denotes the entropies of
the input image X, Y, and used image F, respectively.
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Figure 4. Results: (a) Source image 1 of Canola 1; (b) Source image 2 of canola 1; (c) Reconstructed 
image using MWGF; (d) DCTLP; (e) GFF; (f) GDPB; (g) IM; (h) proposed method. 

The structural similarity (QY) measures the corresponding regions in the reference original 
image x and the test image y. It is defined as 

,ݔ)ܳ ,ݕ (ݓ|݂

= ቊݔ)ܯܫܵܵ(ݓ)ߣ, ݂
(ݓ| + ൫1 − ,ݕ)ܯܫ൯ܵܵ(ݓ)ߣ ,(ݓ|݂ ,ݔ)ܯܫܵܵ	ݎ݋݂ (ݓ|ݕ ≥ 0.75

max{SSIM(x, f|w), SSIM(y, f|w)} , for	ܵܵݔ)ܯܫ, (ݓ|ݕ < 0.75																														
 

(35) 

where 	(ݓ)ߣ = ௦(௫|௪)
௦(ݓ|ݔ)ା௦(௬|௪)

	 is the local weight, and (ݓ|ݔ)ݏ and (ݓ|ݕ)ݏ are the variances of ݓ௫ 

and ݓ௬, respectively. 

Figure 4. Results: (a) Source image 1 of Canola 1; (b) Source image 2 of canola 1; (c) Reconstructed
image using MWGF; (d) DCTLP; (e) GFF; (f) GDPB; (g) IM; (h) proposed method.
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The structural similarity (QY) measures the corresponding regions in the reference original image
x and the test image y. It is defined as

Q(x, y, f |w) =

{
λ(w)SSIM(x, f |w) + (1− λ(w))SSIM(y, f |w), f or SSIM(x, y|w) ≥ 0.75
max{SSIM(x, f |w), SSIM(y, f |w)}, f or SSIM(x, y|w) < 0.75

(35)

where λ(w) =
s(x|w)

s(x|w)+s(y|w)
is the local weight, and s(x|w) and s(y|w) are the variances of wx and wy,
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Figure 5. (a) Source image 1 of Canola 2; (b) Source image 2 of Canola 2; (c) MWGF; (d) DCTLP;
(e) GFF; (f) GDPB; (g) IM; (h) proposed method.
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(e) GFF; (f) GDPB; (g) IM; (h) proposed method.
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݃஺(௡,௠)	
݃ி(௡,௠)
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(݉,݊)஺ிܣ = 1 −
(݉,݊)஺ߙ| − |(݉,݊)ிߙ

2/ߨ
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From these values, the edge strength and orientation values are derived, as given by 
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Figure 7. Results: (a) Source image 1 of Rose; (b) Source image 2 of Rose; (c) MWGF; (d) DCTLP;
(e) GFF; (f) GDPB; (g) IM; (h) proposed method.

The edge information-based metric QAB/F measures the amount of edge information that is
transferred from input images to the fused image. For the fusion of source images A and B resulting in
a fused image F, gradient strength g(n, m) and orientation α(n, m) are extracted at each pixel (n, m)
from an input image, as given by

gA(n, m) =
√

sx
A(n, m)2 + sy

A(n, m)2 (36)

αA = tan−1(
sy

A(n, m)

sx
A(n, m)

) (37)

where sx
A(n, m) and sy

A(n, m) are the output of the horizontal and vertical Sobel templates centered on
pixel pA(n, m) and convolved with the corresponding pixels of input image A. The relative strength
and orientation values of GAF(n, m) and AAF(n, m) of the input image A with respect to the fused
image F are calculated by

GAF(n, m) =


gF(n,m)

gA(n,m)
i f gA(n,m) > gF(n,m)

gA(n,m)

gF(n,m)
, otherwise

(38)

AAF(n, m) = 1− |αA(n, m)− αF(n, m)|
π/2

(39)

From these values, the edge strength and orientation values are derived, as given by

QAF
g (n, m) =
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Table 1 illustrates the quantitative assessment values of five different multi-focus fusion 
methods and the proposed method. The larger the value of these metrics, the better image quality is. 
The values shown in bold represent the highest performance. From Table 1, it can be seen that the 
proposed method produces the highest quality scores for all three objectives metrics except for QY 
with “Canola 2” datasets and QAB/F with “Book” (extra images were also run to test the 
performance). These largest quality scores imply that the proposed method performed well, stably, 
and reliably. Overall, it can be concluded that the proposed method reveals the competitive 
performance when compared with previous multi-focus fusion methods both in visual perception 
and objective metrics. Table 2 describes the ranking of the proposed method with others based on the 
quality of fused images. The performance (including quality of the images and the processing time) 
is scaled from 1 to 6. The results show the outperformance of the proposed technique with other 
techniques previously published. 

4. Summary and Conclusions 

To improve the description and quality images, especially images acquired from the digital 
camera or the Pi camera for canola phenotyping, an image fusion method is necessary. A new multi-focus 
image fusion method was proposed with the combination of the VS maps and gradient domain fast 
guided filters. In the proposed algorithm, the VS maps were first deployed to obtain visual saliency, 
gradient magnitude similarity saliency, and chrominance saliency (or color distortions), then the 
initial weight map was constructed with a mix of three metrics. Next, the final decision weight maps 
were obtained by optimizing the initial weight map with a gradient domain fast guided filter at two 
components. Finally, the fused results were retrieved by the combination of two-component weight 
maps and two-component source images that present large-scale and small-scale variations in 
intensity. The proposed method was compared with five proper representative fusion methods both 
in subjective and objective evaluations. Based on the experiment’s results, the proposed fusion 
method presents a competitive performance with or outperforms some state-of-the-art methods 
based on the VS maps measure and gradient domain fast guided filter. The proposed method can use 
digital images which are captured by either a high-end or low-end camera, especially the low-cost Pi 
camera. This fusion method can be used to improve the images for trait identification in phenotyping 
of canola or other species.  

On the other hand, some limitations of the proposed multi-focus image fusion, such as small-blurred 
regions in the boundaries between the focused and defocused regions and computational cost, are 

g

1 + eKg(GAF(n,m)−σg)
(40)

QAF
α (n, m) =
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proposed method produces the highest quality scores for all three objectives metrics except for QY 
with “Canola 2” datasets and QAB/F with “Book” (extra images were also run to test the 
performance). These largest quality scores imply that the proposed method performed well, stably, 
and reliably. Overall, it can be concluded that the proposed method reveals the competitive 
performance when compared with previous multi-focus fusion methods both in visual perception 
and objective metrics. Table 2 describes the ranking of the proposed method with others based on the 
quality of fused images. The performance (including quality of the images and the processing time) 
is scaled from 1 to 6. The results show the outperformance of the proposed technique with other 
techniques previously published. 
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To improve the description and quality images, especially images acquired from the digital 
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guided filters. In the proposed algorithm, the VS maps were first deployed to obtain visual saliency, 
gradient magnitude similarity saliency, and chrominance saliency (or color distortions), then the 
initial weight map was constructed with a mix of three metrics. Next, the final decision weight maps 
were obtained by optimizing the initial weight map with a gradient domain fast guided filter at two 
components. Finally, the fused results were retrieved by the combination of two-component weight 
maps and two-component source images that present large-scale and small-scale variations in 
intensity. The proposed method was compared with five proper representative fusion methods both 
in subjective and objective evaluations. Based on the experiment’s results, the proposed fusion 
method presents a competitive performance with or outperforms some state-of-the-art methods 
based on the VS maps measure and gradient domain fast guided filter. The proposed method can use 
digital images which are captured by either a high-end or low-end camera, especially the low-cost Pi 
camera. This fusion method can be used to improve the images for trait identification in phenotyping 
of canola or other species.  

On the other hand, some limitations of the proposed multi-focus image fusion, such as small-blurred 
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form the edge strength and orientation preservation values (Equations (40) and (41)). Edge information
preservation values are formed by

QAF(n, m) = QAF
g (n, m)QAF

α (n, m) (42)

with 0 ≤ QAF(n, m) ≤ 1. The higher value of QAF(n, m), the less loss of information of the fused image.
The fusion performance QAB/F is evaluated as a sum of local information preservation estimates

between each of the input images and fused image, it is defined as

QAB/F =
∑N

n=1 ∑M
m=1 QAF(n, m)wA(n, m) + QBF(n, m)wB(n, m))

∑N
j=1 ∑M

j=1(wA(i, j) + wB(i, j))
(43)

where QAF(n, m) and QBF(n, m) are edge information preservation values, weighted by wA(n, m) and
wB(n, m), respectively.

Table 1 illustrates the quantitative assessment values of five different multi-focus fusion methods
and the proposed method. The larger the value of these metrics, the better image quality is. The values
shown in bold represent the highest performance. From Table 1, it can be seen that the proposed
method produces the highest quality scores for all three objectives metrics except for QY with “Canola 2”
datasets and QAB/F with “Book” (extra images were also run to test the performance). These largest
quality scores imply that the proposed method performed well, stably, and reliably. Overall, it can
be concluded that the proposed method reveals the competitive performance when compared with
previous multi-focus fusion methods both in visual perception and objective metrics. Table 2 describes
the ranking of the proposed method with others based on the quality of fused images. The performance
(including quality of the images and the processing time) is scaled from 1 to 6. The results show the
outperformance of the proposed technique with other techniques previously published.

4. Summary and Conclusions

To improve the description and quality images, especially images acquired from the digital camera
or the Pi camera for canola phenotyping, an image fusion method is necessary. A new multi-focus
image fusion method was proposed with the combination of the VS maps and gradient domain fast
guided filters. In the proposed algorithm, the VS maps were first deployed to obtain visual saliency,
gradient magnitude similarity saliency, and chrominance saliency (or color distortions), then the
initial weight map was constructed with a mix of three metrics. Next, the final decision weight maps
were obtained by optimizing the initial weight map with a gradient domain fast guided filter at
two components. Finally, the fused results were retrieved by the combination of two-component
weight maps and two-component source images that present large-scale and small-scale variations
in intensity. The proposed method was compared with five proper representative fusion methods
both in subjective and objective evaluations. Based on the experiment’s results, the proposed fusion
method presents a competitive performance with or outperforms some state-of-the-art methods based
on the VS maps measure and gradient domain fast guided filter. The proposed method can use digital
images which are captured by either a high-end or low-end camera, especially the low-cost Pi camera.
This fusion method can be used to improve the images for trait identification in phenotyping of canola
or other species.

On the other hand, some limitations of the proposed multi-focus image fusion, such as
small-blurred regions in the boundaries between the focused and defocused regions and computational
cost, are worthwhile to investigate. Morphological techniques and optimizing the multi-focus fusion
algorithm are also recommended for further study.

Furthermore, 3D modeling from enhancing depth images and image fusion techniques should be
investigated. The proposed fusion technique can be implemented in the phenotyping system which
has multiple sensors, such as thermal, LiDAR, or high-resolution sensors to acquire multi-dimensional
images to improve the quality or resolution of the 2D and 3D images. The proposed system and
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fusion techniques can be applied in plant phenotyping, remote sensing, robotics, surveillance,
and medical applications.

Table 1. Comparison of the proposed method with other methods.

Index Source Images
Methods

MWGF DCTLP IM GFF GDPB Proposed Algorithm

QMI

Canola 1 1.224 1.042 1.124 1.190 0.656 1.288
Canola 2 1.220 0.946 1.164 1.147 0.611 1.230
Canola 3 1.165 0.981 1.043 1.148 0.573 1.212
Canola 4 1.320 0.943 1.400 1.060 0.570 1.400

Doll 0.664 0.918 0.881 0.310 0.732 1.011
Rose 1.049 1.133 1.002 0.440 0.736 1.147
Jug 1.065 1.085 0.974 0.347 0.742 1.094

Diver 1.168 1.207 1.190 0.515 0.910 1.210
Book 0.957 1.188 1.152 0.487 0.900 1.234

Notebook 1.118 1.181 1.141 0.463 0.745 1.190

QY

Canola 1 0.958 0.851 0.812 0.948 0.755 0.970
Canola 2 0.981 0.859 0.901 0.967 0.762 0.980
Canola 3 0.961 0.856 0.752 0.955 0.737 0.970
Canola 4 0.777 0.799 0.980 0.913 0.700 0.980

Doll 0.902 0.950 0.960 0.800 0.872 0.980
Rose 0.973 0.979 0.973 0.829 0.901 0.980
Jug 0.995 0.990 0.970 0.970 0.779 0.995

Diver 0.975 0.971 0.976 0.744 0.918 0.976
Book 0.952 0.956 0.959 0.647 0.850 0.977

Notebook 0.987 0.983 0.991 0.844 0.816 0.992

QAB/F

Canola 1 0.958 0.885 0.938 0.930 0.883 0.974
Canola 2 0.987 0.987 0.981 0.987 0.987 0.987
Canola 3 0.955 0.621 0.937 0.841 0.607 0.970
Canola 4 0.906 0.492 0.915 0.529 0.481 0.915

Doll 0.987 0.986 0.987 0.986 0.987 0.987
Rose 0.987 0.987 0.987 0.986 0.987 0.987
Jug 0.987 0.987 0.987 0.986 0.987 0.987

Diver 0.986 0.986 0.986 0.986 0.986 0.986
Book 0.984 0.980 0.984 0.984 0.983 0.984

Notebook 0.986 0.987 0.987 0.986 0.987 0.987

Table 2. Ranking the performance of fused images of the proposed method with other methods based
on the results from Table 1.

Source Images
Methods

MWGF DCTLP IM GFF GDPB Proposed Algorithm

Canola 1 2 5 4 3 6 1
Canola 2 2 5 4 3 6 1
Canola 3 2 5 4 3 6 1
Canola 4 2 4 1 3 5 1

Doll 5 2 3 6 4 1
Rose 3 2 4 5 6 1
Jug 3 2 4 6 5 1

Diver 4 2 3 6 5 1
Book 4 2 3 6 5 1

Notebook 4 3 2 6 5 1
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