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Abstract: Accurate estimation of gait parameters is essential for obtaining quantitative information on
motor deficits in Parkinson’s disease and other neurodegenerative diseases, which helps determine
disease progression and therapeutic interventions. Due to the demand for high accuracy, unobtrusive
measurement methods such as optical motion capture systems, foot pressure plates, and other
systems have been commonly used in clinical environments. However, the high cost of existing
lab-based methods greatly hinders their wider usage, especially in developing countries. In this study,
we present a low-cost, noncontact, and an accurate temporal gait parameters estimation method by
sensing and analyzing the electrostatic field generated from human foot stepping. The proposed
method achieved an average 97% accuracy on gait phase detection and was further validated by
comparison to the foot pressure system in 10 healthy subjects. Two results were compared using
the Pearson coefficient r and obtained an excellent consistency (r = 0.99, p < 0.05). The repeatability
of the purposed method was calculated between days by intraclass correlation coefficients (ICC),
and showed good test-retest reliability (ICC = 0.87, p < 0.01). The proposed method could be an
affordable and accurate tool to measure temporal gait parameters in hospital laboratories and in
patients’ home environments.

Keywords: electrostatic field sensing; gait measurement; temporal parameters

1. Introduction

Human gait is a coordinated and rhythmic periodic motion produced by an integrated control of
nerve and muscle systems, which is mainly dictated by body features and health conditions. The gait
cycle can be defined as the time interval between two initial contacts of the same foot. The initial
contact (IC) and separate events (SE) segment the gait cycle into gait phases and provide temporal
gait parameters. Temporal gait parameters are essential in many gait analysis applications [1], such as
(1) the evaluation of rehabilitation status in patients [2,3]; (2) the recognition of daily life activities [4];
and (3) distinguishing between a normal and pathological gait [5].

The technological devices used to acquire human gait can be classified into two categories: those
based on non-wearable sensors and those based on wearable sensors [6]. Non-wearable sensor systems
require lab-based facilities where the sensors are located and capture data on the gait while the subject
walks on a certain space. Typical representatives of non-wearable sensors systems are the foot pressure
plate [7] and the optical motion capture system. They are often used as the gold standard for measuring
gait parameters. However, these measurement methods still have a certain degree of limitation when
it comes to commercial measurement products, which are generally expensive. For example, the
market price of the pressure plate is about $2000. Non-commercial laboratory self-made measurement
equipment has relatively complex components such as the walkway in Reference [8]. More than
18,432 sensors arranged under a rubber pad were used for parameter acquisition. They are bulky
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and only suited to capture human gait in a confined space. The optical motion capture system has
the disadvantage of light interference and uses complicated processing algorithms. Furthermore,
laboratory settings are unable to represent the daily environment. For this reason, the subject who is
performing the test will change their inherent gait rhythm due to the fact that they may feel conditioned
by the specialist and the experiment system. The above defects greatly restrict the extensive usage of
these methods, especially in developing countries.

In contrast, wearable sensor systems make it possible to analyze data outside the laboratory and
capture gait parameters during a person’s daily activities. The wearable sensor systems use sensors
attached to several parts of the body such as the ankles, knees, or waist. Different types of sensors are
used to capture gait signals and extract gait parameters. These include accelerometers [9], gyroscopic
sensors [10], electromyography [11], and more. These gait analysis platforms are widely considered to
be viable alternatives and are made possible by the recent progress of integrated circuits and sensing
technology. The prospect of these sensors is to simplify gait analysis, making it relatively cheaper
and no longer constricted to use in a laboratory. Accelerometers and other inertial sensors have been
widely used in gait events estimation [12], gait action recognition [13], and gait analysis because they
are miniaturized, low powered, durable, inexpensive, highly mobile, and readily available [14–18].
Clearly, low-cost wearable accelerometer sensors can be easily integrated into the acts of daily living
and are beneficial for pre-diagnostic and rehabilitation monitoring [19]. With the online gait event
detection algorithm embedded into this device, it simplified the analysis and acquisition of the gait
parameters. This analysis may include operations such as the segmentation of gait signals into
gait cycles, the estimation of temporal gait parameters [20], and the calculation of gait asymmetry,
gait variability, and gait stability [21].

However, accelerometers are susceptible to researchers’ placement skill and minor variations in
the attachment site. The same sensor placed in five anatomical foot locations could obtain different
evaluation accuracies of gait parameters [22]. Moreover, installation error will also lead to an inaccuracy
of the gait parameter measurement. Unlike accelerometers, careful placement of the sensor on the
body segments is not mandatory when using gyroscopic sensors [10]. When using the sensor output
of different positions of the tester especially on the shank and thighs, more than 90% of the temporal
gait parameters’ measurement accuracy can be obtained [23]. However, these wearable sensors share a
defect, in that they all require devices to be placed on the subject’s body, which may be uncomfortable
or obtrusive. Moreover, wireless systems usually store data on SD cards or transmit data through
Bluetooth or Zigbee devices to personal computers, which demands a high energy consumption.
The most commonly used energy sources are lithium batteries and, if gait is to be monitored over a
long period of time, the capacity of the batteries may be a problem.

Due to this background, there is a need for affordable non-wearable and long-time monitoring
technologies for gait analysis, which may be capable of continuously monitoring gait parameters
during daily activities and reducing the stress and anxiety in testers subjected to gait studies. Such
systems can accurately acquire a certain number of gait parameters and identify changes in gait
patterns. Due to this, specialists can use the information to predict adverse events and diagnose early
symptoms of some specific diseases, which encourages timely medical interventions. Accordingly,
these technologies can complement traditional gait analysis systems.

Actually, electrostatic field sensing (EFS) technology may be an effective solution to this problem.
The use of a non-contact EFS method for gait measurement has become a hot topic in recent years.
In Reference [24], Koichi Kurita measured the electrostatic signals when walking with the electrostatic
induction method and a correlation analysis of the gait signals was implemented by combining with the
frequency domain information of the signal. We established the human body equivalent capacitance
model through theoretical derivation, verified the correctness of the model through simulation, and
measured the gait signal [25]. Previous studies on the human body electrostatic sensing method have
proven that the gait signal can be obtained by the EFS method. However, no studies have explored
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how to extract the temporal parameters from the gait signal nor conducted an investigation on the
validity and repeatability of this method.

In this study, an algorithm for extracting temporal gait parameters in the EFS gait signal was
suggested. The effectiveness of the method was verified by comparison with the results of the foot
pressure system. The repeatability of the EFS method was calculated between days by intraclass
correlation coefficients (ICC), and showed a good test-retest reliability. The rest of the paper is
organized as follows. In Section 2, we present the principle of the EFS method, the details of the system
setup, the algorithm, and the data collection procedures. In Section 3, we briefly show the results
and the error comparison of two measurement methods. In Section 4, we discuss the results of the
validation and repeatability study. The paper is concluded in Section 5, with final remarks and future
research directions.

2. Method

2.1. Principle of Electrostatic Field Sensing

The human body becomes charged with static electricity due to the creation of friction between
the body and clothing [26–28]. Furthermore, friction, contact, and separation between the human
foot and ground during walking also charges the human body [29–31]. The phenomenon of the
human body becoming electrically charged leads to a corresponding change in the electric field around
the human body with the foot movement during walking [32,33]. Based on this, we established an
equivalent capacitance model of the human body and the surrounding environment [25]. When the
human body is in a certain space, due to a certain amount of charge on the body, the human body and
the surrounding environment produces an equivalent capacitance—including the left and right foot
capacitance Cf1 and Cf2—to the ground when standing still and Cri (i = 1, 2, ...) between other parts of
the human body and the surrounding environment, which together constitute the total capacitance of
the human body (Equation (1)), where Cf = Cf1 + Cf2 = 2εsSs/de. Here, εs, Ss, and de are the dielectric
constant of the shoe sole, the equivalent area of the floor capacitance formed by the shoe sole and
ground, and the thickness of the shoe sole. The human body equivalent capacitance model is shown in
Figure 1a.

Ch = C f +
∞

∑
i=1

Cri (1)
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Suppose the human body charge is QB and the two feet alternately leave the ground during
walking. Then the capacitance between the foot and the ground is equivalent to Cf in series with a
capacitance that changes based on the height of the foot from the ground. Although Cf cannot be
measured directly, the law of human foot movement can be obtained through the analysis of changes
in the induced current because the changes in capacitance caused by human body movement are
directly related to the electrostatic induction current signal. Figure 1b shows two typical foot states in
the process of the human body walking. In the figure, the height function of the foot from the ground
in walking is defined as h(t), the equivalent area function of the plate capacitor formed by the foot and
the ground is Ss, and the air dielectric constant is εa. The induced potential of the human body can be
expressed by the equation below.

UB = QB ·
εaSs + h(t)C f

C f εaSs
(2)

Assume the coupling capacitance between the human body and the induction electrode is C.
Then, the charge Q induced by the induction electrode can be defined as below.

Q = C(UB − V) (3)

where V is the induced potential on the induction electrode. Then, the induced current I flowing
through the induction electrode can be deduced from the above equation.

I =
dQ
dt

= C
dUB
dt

∝
1
Ss

d
dt
(h(t))− h(t)

Ss
2

dSs

dt
(4)

Here, we assume that the human body is a good conductor. Equation (4) shows that when the
tester walks in the vicinity of the induction electrode, the change in the induced current caused by
human body movement can be measured under non-contact conditions. The temporal gait parameters
can be obtained by analyzing the induced current waveform.

2.2. Instrumentation and Configurations

2.2.1. Electrostatic Field Sensing Measurement Installation

The induced current is generated on the induction electrode when the charged human body
moves in the vicinity of the induction electrode of the measurement installation. The induced current
is then converted to an observable voltage signal (conversion rate of 10 mV/pA), which is shown
in Figure 2 through I–V conversion via the sampling resistor Rs (Rs is 10 GΩ). The voltage signal
is then amplified by an operational amplifier (op-amp) for observation. Since the voltage signal
obtained by this measurement method is easily disturbed by the power frequency voltage of the grid,
we designed a low-pass filter with a cutoff frequency of 20 Hz before the analog-to-digital (A/D)
conversion. Subsequently, the analog signal is converted into the digital signal through A/D for data
acquisition and processing. The sampling rate adopted in this paper is 1 kHz. The digital signal
obtained after A/D sampling is sent to a personal computer for data processing through the 2.4 GHz
data transmission module.

EFS is a passive detection method. Its only response is to the changes of the surrounding electric
field. The electric field disturbance caused by human foot movement is a low-frequency electric
field with a typical frequency of 1~2 Hz. Based on this, we designed a low-pass filter with a cutoff
frequency of 20 Hz to eliminate the influence of the high-frequency electric field on our measurement
installation. When the measurement installation is carried out in a room with various kinds of
measuring instruments and personal computers, the low-pass filter can effectively filter the interference
of the high-frequency electric field produced by the electrical apparatus and the frequency of the power
grid and can effectively obtain the low-frequency electric field signal produced by human motion.
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In order to avoid the influence of other individuals on the electric field tester, it is necessary to ensure
that no other personnel walk in the effective measurement range of the measurement installation.
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Figure 2. Schematic diagram of the I–V conversion part of the electrostatic measurement installation. Figure 2. Schematic diagram of the I–V conversion part of the electrostatic measurement installation.

In the experiment, it is observed that the induced current flowing through the induction electrode
is inversely proportional to the distance between the human body and the induction electrode. After
repeated adjustment of the measurement installation sensitivity, the effective measurement distance of
installation was adjusted to 3 m so that it can effectively measure the human body gait electrostatic
signal without electric field interference by external equipment. In addition, the intensity of the
induced current is related to the angle between the human body and the induction plate. The test
results show that when the coronal plane of the human body is parallel to the electrode, the induced
current is at a maximum level, as shown in Figure 3a. The induced current signal will be weakened
when the angle between the human body and the induction plate changes, but the reduced amplitude
change is not significant. A diagram illustrating the electrostatic measurement installation is shown in
Figure 3a. The prototype of the electrostatic measurement installation is shown in Figure 3b.
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of electrostatic measurement installation; (b) prototype of electrostatic measurement installation.

2.2.2. Foot Pressure Measurement System

In the design in Reference [34], we established a foot pressure system using two FSR406 pressure
sensors of Interlink Electronics. This sensor features a low thickness (<0.05 inches), high dynamic
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response speed, insensitivity to temperature changes, resistance to high overload, and other advantageous
characteristics.

Two pressure sensors with an effective area of 1.5 inches × 1.5 inches are fixed to the bottom of
the insoles with medical tape and the insoles are cut from the transparent folder according to the foot
bottom contour. One of the sensors is fixed in the front of the insole and roughly positioned under
the toes while the other sensor is fixed in the rear part of the insole and roughly positioned under the
heel. The two pressure sensors are connected in parallel and are actually used as a single pressure
sensor. The system is powered by a 5 V battery. The two sensors are connected in series with the
divider resistance and the changes in voltage values caused by pressure change are amplified by the
operational amplifier before output. Experimental results show that the signal output is in the range
of 0~2.5 V. The conditioning circuit together with the battery is fixed on the tester’s legs. The signal
output after A/D conversion is sent to a personal computer for data processing with a 2.4 GHz data
transmission module.

2.3. Algorithm Development

2.3.1. Pressure-Based Foot Events Calculation Algorithm

The algorithm employed to determine the initial contact and separate events of the gait is divided
into three steps. Since the pressure sensor output voltage is proportional to the foot pressure, we first
determine the pressure time zone when the human foot is in the stance phase using the output voltage
threshold. Afterward, we search for the minimum pressure signal near the threshold point, which is an
important reference for determining the initial contact and separate events of the gait. Lastly, the time
point determined in the previous step is compensated to determine the final contact and separation
moments. The specific algorithm is described as follows. (1) Determine the time zone of the gait stance
phase according to the rising and falling edges of the signal. The monotonically increasing signal
above the fixed threshold can be determined as a rising edge and the monotonically reducing signal
below the fixed threshold can be determined as a falling edge. In this paper, the threshold selected is
1 V, which is much smaller than the full load output of the pressure sensor when the foot fully contacts
the ground and is much larger than the no load output; (2) Find out the minimum value of the signal
in the rising and falling edges of the signal. With the human body walking movement, the output
value of the pressure sensor under no load may drift. Therefore, we cannot use a fixed output value
as the standard by which one can judge a moment. To find out the minimum value, we can derive
the signal and find out the zero point from the peak point of the derivative, as shown in Figure 4b;
(3) Lastly, the contact and separation moments are corrected by the local minimum point of the signal.
The specific offset is 3% of the difference between the local maximum value and the local minimum
value of the voltage signal in a gait cycle, and the local minimum point obtained in the previous step is
shifted. The signal output, its derivative, and local minimum values, as well as the gait contact and
separation moments determined by the offset during a test, are shown in Figure 4.

2.3.2. Electrostatic Signal-Based Foot Events Calculation Algorithm

In one test process, the time-domain waveform obtained by the electrostatic sensing system is
shown in Figure 5.



Sensors 2018, 18, 1737 7 of 15

Sensors 2018, 18, x FOR PEER REVIEW  6 of 14 

 

divider resistance and the changes in voltage values caused by pressure change are amplified by the 

operational amplifier before output. Experimental results show that the signal output is in the range 

of 0~2.5 V. The conditioning circuit together with the battery is fixed on the tester’s legs. The signal 

output after A/D conversion is sent to a personal computer for data processing with a 2.4 GHz data 

transmission module. 

2.3. Algorithm Development 

2.3.1. Pressure-Based Foot Events Calculation Algorithm 

The algorithm employed to determine the initial contact and separate events of the gait is divided 

into three steps. Since the pressure sensor output voltage is proportional to the foot pressure, we first 

determine the pressure time zone when the human foot is in the stance phase using the output voltage 

threshold. Afterward, we search for the minimum pressure signal near the threshold point, which is an 

important reference for determining the initial contact and separate events of the gait. Lastly, the time 

point determined in the previous step is compensated to determine the final contact and separation 

moments. The specific algorithm is described as follows. (1) Determine the time zone of the gait stance 

phase according to the rising and falling edges of the signal. The monotonically increasing signal above 

the fixed threshold can be determined as a rising edge and the monotonically reducing signal below the 

fixed threshold can be determined as a falling edge. In this paper, the threshold selected is 1 V, which 

is much smaller than the full load output of the pressure sensor when the foot fully contacts the ground 

and is much larger than the no load output; (2) Find out the minimum value of the signal in the rising 

and falling edges of the signal. With the human body walking movement, the output value of the 

pressure sensor under no load may drift. Therefore, we cannot use a fixed output value as the standard 

by which one can judge a moment. To find out the minimum value, we can derive the signal and find 

out the zero point from the peak point of the derivative, as shown in Figure 4b; (3) Lastly, the contact 

and separation moments are corrected by the local minimum point of the signal. The specific offset is 

3% of the difference between the local maximum value and the local minimum value of the voltage 

signal in a gait cycle, and the local minimum point obtained in the previous step is shifted. The signal 

output, its derivative, and local minimum values, as well as the gait contact and separation moments 

determined by the offset during a test, are shown in Figure 4. 

 

 

(a) (b) 

 
(c) 

Figure 4. The process extracting the start and end moments of the support phase from the data measured
by the foot pressure test system. (a) Pressure data time-domain waveform measured at normal speed by
the foot pressure system as well as the rising edge and the falling edge of the signal from the threshold
judgment; (b) signal local minimum point determined through the derivation of the signal in one cycle;
(c) the initial contact and separate event of the gait cycle obtained by offsetting the minimum point.
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Figure 5 shows the changes in body potential as the human body comes in contact with and
is separated from the ground during stepping movements. The time-domain waveform includes
the time parameters during the stepping movement. It can be determined using Equation (4) that
the denominator of the left term is Ss and the denominator of the right term is Ss

2. Therefore, the
right-hand term affects slightly more than the induced current I and the left-hand term mainly affects
the induced current I. For example, when the right foot toe is about to leave the ground, the equivalent
area Ss between the sole and the ground decreases. The distance h(t) between the right foot and
the ground increases, so the induced current through the induction electrode increases when the
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right foot leaves the ground. The rate of change of h(t) is at the maximum level and the electrostatic
signal reaches the local maximum level. Therefore, the results are consistent with the forecast from
Equation (4). Subsequently, the induced current decreases as the lifting speed slows down. In the
latter part of the swing phase, h(t) decreases rapidly and leads to the decrease of the induced current,
which is consistent with the prediction made by the left side of Equation (4). The equivalent area Ss of
the heel contact area increases, which results in a rapid decrease in the induced current. Therefore,
Equation (4) can effectively describe the variation trend of the induced current obtained on the
induction electrode during the step process. The peak of the time-domain waveform of the electrostatic
signal coincides with the moments when the foot separates from the initial contact with the ground.
The moments of foot separation from and initial contact with the ground can be obtained by extracting
the corresponding peak information.

2.4. Subjects

The current study was approved by the institutional academic board. A total of 10 testers
participated in the gait measurement (seven are male and three are female). They have an average
weight of 64.8 kg (weight range: 45~77 kg), and an average height of 1.7 m (height range: 1.58~1.79 m).
Exclusion criteria included neurological or lower extremities conditions, respiratory or cardiovascular
problems, insanity or mental disorder, and pregnancy. All subjects were informed of the purpose as
well as the methods and instructions to complete the experiment measuring temporal gait parameters
and all subjects signed informed consent paperwork.

2.5. Experimental Conditions

In the experiment, the insoles carrying the foot pressure system were placed under the right
foot of the testers. The battery and conditioning circuit were fixed to the middle of the calf using
the elastic band and the testers wore their own shoes to ensure the most natural movement. At the
same time, the testers needed to keep the coronal plane parallel to the electrostatic induction electrode
(shown in Figure 3) during walking. Testers were required to carry out the stepping movement at a
slow, normal, and fast pace. An electronic metronome was used to assist testers in completing this
process. In the course of the experiment, the testers were required to implement each type of pace
continuously for at least 20 s in order to collect enough gait data. Since the human body needs to
have an adjustment period before entering a steady step, 2 s at the beginning and 2 s at the end of
each data point were removed to ensure data validity. Lastly, 300 valid gait cycle data were obtained
from the EFS installation and the foot pressure system. At the same time, to rule out the effect of
temperature and humidity on the electrostatic sensing method, the whole experiment was carried out
at a laboratory temperature of 25 ◦C and relative humidity (RH) of 55%.

2.6. Analysis

The concurrent validity of temporal gait parameters obtained by the EFS method and by the
foot pressure system was assessed using Pearson correlation coefficients. In addition, intraclass
correlation coefficients (ICC) (2,1) (two-way random effect, single measure model) were used to assess
the test-retest reliability of the temporal gait parameters obtained by the electrostatic sensing method
between day 1 and day 8. All analyses were conducted with p < 0.05 as the significance level and
performed using SPSS Version20.0 (IBM Corporation, Armonk, NY, USA). For the Pearson coefficient r,
an excellent relationship was considered if r was greater than 0.90, a good relationship if r was between
0.8 and 0.89, a fair relationship if r was between 0.7 and 0.79, and a poor relationship if r was below
0.70 [35]. Regarding the ICC, it was considered excellent if the ICC was greater than 0.90, good if
the ICC was between 0.75 and 0.90, moderate if the ICC was between 0.50 and 0.75, and poor if the
ICC was below 0.50. The data processing and the algorithms were implemented in Matlab (R2016b,
MathWorks Inc., Natick, MA, USA).



Sensors 2018, 18, 1737 9 of 15

3. Results

According to the principle in Section 2.3, we utilized Matlab to process the data from the foot
pressure system and the EFS method. We extracted the initial contact (IC) and separate events (SE)
according to the proposed algorithm. The measurement error of the EFS method was verified with
the date measured by the foot pressure system. Data analysis showed that, in the judgment of initial
contact (IC) with the ground, the measurement error of the EFS method is in the range of ±40 ms
(mean value: −1.5 ± 15 ms). In the judgment of separate events (SE) from the ground, the measurement
error of the EFS method is also within ±40 ms (mean value: −1.3 ± 15 ms).

We counted the difference between moments obtained by the EFS method and the foot pressure
system in 300 cycles of 10 testers, the statistical histogram of which is shown in Figure 6a,b.
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Once gait events are identified, gait cycle (Tg), stance phase duration (Ts), swing phase duration
(Tw), and gait cadence (C) can be calculated, as shown in Equations (5)–(8).

Tg = IC(m + 1)− IC(m) (5)

Ts = SE(n)− IC(m) (6)

Tw = IC(m + 1)− SE(n) = Tg − Ts (7)

C =
60
Tg

× 2 (Steps/Min) (8)

The ratio of Ts over Tg (RS) and the ratio of Tw over Tg (RW) are then computed. These ratios
should represent approximately 60% of the stance phase duration (RS ≈ 60%) and 40% of the swing
phase duration (RW ≈ 40%) if a person has a healthy gait.

Therefore, the gait cycle (Tg) of 10 testers at three different motion speeds are calculated and counted.
The gait cycle (Tg) measured by the foot pressure system during high-speed, normal-speed, and
slow-speed movement are 990 ± 120 ms (range: 870~1153 ms), 1198 ± 110 ms (range 1088~1398 ms),
and 1498 ± 75 ms (range: 1358~1697 ms), respectively. The gait cycle derived from the 10 testers is
illustrated separately in Figure 7.

We measured the error of the EFS method in the gait cycle (Tg) measurement with the foot
pressure system. The error and the error percentage during high-speed, normal-speed, and low-speed
movement are −0.2 ± 18 ms (range of ±45 ms) and 0.05 ± 2% (range of ±4%), 0.3 ± 18 ms (range
±39 ms) and 0.04 ± 2% (range of ±3%), and 1 ± 13 ms (range of ±30 ms) and 0.07 ± 1% (range of
±2%), respectively. This showed an average accuracy rate of 97%.
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The EFS-derived estimate of the gait cycle (Tg) agreed with the foot pressure system over the entire
range of walking rates (see Figure 8). The two estimates of the gait cycle (Tg) were strongly correlated
(Pearson’s correlation coefficient r = 0.99). This confirmed the high reliability of the electrostatic
sensing-based estimate of the gait cycle.Sensors 2018, 18, x FOR PEER REVIEW  10 of 14 
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Figure 8. Gait cycle (Tg) obtained by the EFS method and the foot pressure system.

Table 1 shows the statistical results of the electrostatic field sensing (EFS) method and the foot
pressure system of the other three temporal gait parameters. The concurrent validity of the EFS method
and the foot pressure system showed that the two methods obtained excellent correlation in these
three gait parameters.

Apart from these results, further validation showed that the average RS for the EFS method is
60.49 ± 2.45%. This value is in accordance with the norm gait parameters in which the stance phase
lasts approximately 60% of the gait cycle for healthy individuals. Based on these results, it can be
deduced that the proposed method can accurately determine temporal gait parameters.



Sensors 2018, 18, 1737 11 of 15

Table 1. The statistical results of the EFS method and the foot pressure system with the Pearson coefficient
value of three gait parameters (p < 0.05).

Gait Parameters EFS Result Foot Pressure Result Pearson Coefficient r

Stance phase duration (Ts) 741.83 ± 117.97 775.03 ± 125.68 0.98
Swing phase duration (Tw) 431.32 ± 94.12 396.58 ± 94.10 0.99

Gait cadence (C) 102.53 ± 15.34 102.66 ± 15.42 0.99

The test-retest reliability of the EFS method on the first and eighth days shows that the ICC is 0.87
(p < 0.001). The scatter plot of the gait cycle measured using the EFS method for the first day and the
eighth day is shown in Figure 9. The ICC values of the remaining gait parameters are illustrated in
Table 2.Sensors 2018, 18, x FOR PEER REVIEW  11 of 14 
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Table 2. The statistical results of the EFS method results on the first and eighth days as well as the
intraclass correlation coefficient (ICC) values of gait parameters.

Gait Parameters Day 1 Day 8 ICC p

Stance phase duration (Ts) 741.83 ± 117.97 805.56 ± 120.64 0.86 <0.001
Swing phase duration (Tw) 431.32 ± 94.12 458.79 ± 102.35 0.87 <0.001

Gait cadence (C) 102.53 ± 15.34 95.23 ± 16.49 0.85 <0.001

4. Discussions

Most existing gait event measurement methods rely on mechanical or kinetic parameters derived
from an optical motion capture system and force plate. However, these devices rely on professional
analyses to obtain gait parameters and can only operate in a confined space. These methods also
require testers to control walking speeds and step length to ensure that the subject’s foot always
comes in contact with the force plate. Data obtained from these methods cannot be fully reflected
in a natural human gait. On the other hand, wearable sensors can meet gait measurement needs
under non-laboratory conditions. However, they all require placing sensors on the subject’s body,
which may be uncomfortable or obtrusive. Therefore, a low-cost, non-wearable EFS method can be a
promising alternative for monitoring and determining gait temporal parameters of individuals outside
the laboratory environment.
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Previous research [25,33] employed the EFS method to detect sports motion signals and
presented a method to recognize the moments of foot contact with a separation from the ground.
However, the study of extracting temporal gait parameters forming the FES signal has not been
explored. In addition, the credibility and test-retest repeatability of this method has not been verified.
An algorithm for extracting temporal gait parameters from gait EFS signals was presented in this paper.
The measuring error of the EFS method was calibrated with the foot pressure system. The study results
showed that temporal gait parameters could be identified through EFS signals in the stepping gait
and two important gait cycle parameters (initial contact and separate event) could be detected with
high accuracy. Based on these detected results, six types of temporal gait parameters were calculated.
These calculated parameters fit well with the results measured by the foot pressure system.

Our proposed EFS method manifested excellent correlation coefficients to the foot pressure
system’s results (r = 0.99, p < 0.05) and test-retest reliability (ICC = 0.87, p < 0.001) across an eight-day
test-retest interval. These results indicate that the suggested EFS method may be a reliable measure of
temporal gait parameters.

Kluge et al. employed an inertial measurement system to evaluate temporal gait parameters [36].
Two Shimmer3 sensors, which contained a three-axis gyroscope and a three-axis accelerometer worn
only on the feet, obtained the temporal gait parameters. A state-of-the-art algorithm was used to
extract the temporal gait parameters. The concurrent validity of the proposed system was compared
with an external camera-based system. Even though their method obtained satisfactory precision in
measuring stride time, the error was 5.4% when measuring the stance time. Contrary to the results
of Kluge et al., our method has an average of 3% error in measuring stance time, which shows better
measurement accuracy. Moreover, the method by Kluge et al. is a contact measuring system, which
may reduce the comfort of the tester.

Cheng et al. used a wearable microphone-sensor-based system to collect footstep sound signals
during walking [37]. Based on this system, a gait analysis algorithm was proposed for estimating
the temporal parameters of gait. Although the purposed method used a non-contact acoustic signal
detection method, the ambient sound noise and sound delay affected the measurement accuracy.
The results showed that only 94.52% of the average accuracy could be obtained when measuring
initial contact. In addition, although a non-contact microphone sensor was used, the tester still was
required to wear the measurement system when testing. Our method uses the variable electrostatic
field information to obtain the gait signal, which has a higher signal-to-noise ratio with a smaller
time delay.

Yong developed a low-cost wearable wireless ultrasonic sensor system for estimating three-dimensional
displacement to extract temporal gait parameters [38]. The lightweight and miniaturized sensor
design could make the patient more unconstrained. Their system had only 3% measurement error
when measuring the stride duration, which basically is the same accuracy as that achieved with our
electrostatic sensing method. However, this ultrasonic-based gait parameter measurement method
relied on a complex signal processing algorithm and lacked a visual representation of the gait signal.
In our study, the induced current signal is strongly correlated with the gait and the algorithm for
extracting the temporal gait parameters is simple.

The results showed that the EFS method can accurately measure the initial and separate events
of walking as well as effectively obtain temporal gait parameters. The limitation of this study is
that we only used a single sensor to estimate gait parameters. A single sensor has a certain effective
measurement range and cannot capture gait parameters beyond the effective measurement range.
The present algorithm can only analyze a single tester’s gait data and cannot analyze the gait data
of multiple testers in the effective measurement range simultaneously. Moreover, we lack gait data
of real neurological patients. However, if the patient is able to completely lift his feet off the ground
in the gait cycle, our method could capture gait events and then calculate the gait parameters.
The differences between gait parameters could be used to diagnose related neurological diseases.
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Despite this limitation, our low-cost, wireless, non-wearable method and estimation algorithm were
proven to be effective and valuable for calculating temporal gait parameters.

With the rise of telemedicine, medical measurement systems will lead to major change. Clinicians
and researchers are working toward long-distance measurement methods to monitor human gait
parameters and provide remote diagnosis and guidance. This method could assist health professionals
to monitor patients’ behavior and prescribe corrective action when performing their activities of daily
living. Although the method presented in this article is capable of detecting several gait parameters,
we will also investigate the potential of expanding this method to extract more gait information or
automatically start the measurement to complete the data capture and gait analysis when the patients
enter the effective sensing area.

5. Conclusions

In this study, we presented a temporal gait parameters estimation method based on EFS, which
uses human walking-generated electrostatic field information. For the first time, the temporal gait
parameters were obtained based on electrostatic field sensing. By comparing the results with those
obtained by a foot pressure system, the validity and test-retest reliability were verified. Due to the
advantages of non-wearable, low-cost, long-term uninterrupted measurement, the proposed method
could provide an affordable and accurate tool for conducting human gait parameters measurement in
clinical laboratories and patients’ home environments.
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