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Abstract: Strap-down inertial navigation system/celestial navigation system (SINS/CNS) integrated
navigation is a high precision navigation technique for ballistic missiles. The traditional navigation
method has a divergence in the position error. A deeply integrated mode for SINS/CNS navigation
system is proposed to improve the navigation accuracy of ballistic missile. The deeply integrated
navigation principle is described and the observability of the navigation system is analyzed.
The nonlinearity, as well as the large outliers and the Gaussian mixture noises, often exists during
the actual navigation process, leading to the divergence phenomenon of the navigation filter.
The new nonlinear Kalman filter on the basis of the maximum correntropy theory and unscented
transformation, named the maximum correntropy unscented Kalman filter, is deduced, and the
computational complexity is analyzed. The unscented transformation is used for restricting the
nonlinearity of the system equation, and the maximum correntropy theory is used to deal with the
non-Gaussian noises. Finally, numerical simulation illustrates the superiority of the proposed filter
compared with the traditional unscented Kalman filter. The comparison results show that the large
outliers and the influence of non-Gaussian noises for SINS/CNS deeply integrated navigation is
significantly reduced through the proposed filter.

Keywords: unscented Kalman filter; maximum correntropy; SINS/CNS deeply integrated navigation;
non-Gaussian noises; ballistic missile

1. Introduction

With the development of missile technology, even higher accuracy of navigation is requested.
Single navigation mode cannot satisfy the application requirement. Because of the uncertainty in the
actual navigation system, a number of algorithms have been designed to improve the accuracy of
state estimation [1]. To sum up, the navigation accuracy of ballistic missile has focused on two parts,
navigation system construction and navigation filter algorithm designation.

For navigation system construction, a number of navigation modes have been designed to improve
navigation accuracy. Among these modes, the strap-down inertial navigation system (SINS) has been
playing an important role among navigation systems for several decades [2–4]. It can autonomously
achieve a navigation mission completely relying on micro electro mechanical systems (MEMS) and has
a strong anti-interference capability. Moreover, the attitude, the velocity, and the position of ballistic
missiles can be easily obtained by its output information. However, the accumulated navigation
errors caused by the inertial components cannot be avoided, especially in the long-term missile
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navigation [5]. Therefore, in the practical situations, some other supporting facilities, including the
Global Navigation Satellite System (GNSS), BeiDou Navigation Satellite System (BDS), the Doppler
Velocity Log (DOL), and the celestial navigation system (CNS), are always integrated with SINS for the
purpose of improving navigation accuracy [6,7]. However, GNSS is always susceptible to interference,
which will have a strong impact on missile performance. DOL is always used underwater and is limited
by the distance, which is not appropriate for long-distance missiles. The CNS is a navigation system
that calculates the accurate attitude on the basis of measuring the azimuth of a celestial body through
the celestial sensor. Because the source of information in the CNS is a celestial body, it has many
merits, such as good concealment, strong autonomy, and high navigation accuracy, but the output
frequency is much lower and discontinuous, and the output information can be easily influenced by
surroundings [8–10]. Hence, the CNS is frequently used for the purpose of assisting the SINS in the
aerospace field, utilizing the SINS/CNS integrated navigation system. The SINS/CNS integrated
navigation system can correct the attitude error and the gyro drift using the starlight information
and greatly improve navigation accuracy [11]. At present, it is an important developing direction
for missile, airplane, and spacecraft navigation technology [12]. Nevertheless, the traditional system
only makes use of the information of star sensors to reckon the gyro drift, but it cannot estimate
the accelerometer bias, which leads to position divergence. Therefore, some improved SINS/CNS
integrated navigation systems have been proposed [4,13,14]. They make use of more astronomical
observation information to realize SINS/CNS deeply integrated navigation systems and effectively
improve their performance.

For navigation filter design, many algorithms have been applied to the navigation system.
The Kalman filter (KF) is the most popular optimal state estimation method used for the linear dynamic
system [15]. However, for navigation systems, the navigation system equation is always nonlinear [16].
The frequently used nonlinear algorithms for solving nonlinear problems mainly include the extended
Kalman filter (EKF) [17] and the unscented Kalman filter (UKF) [18]. EKF is a popular nonlinear
extension of the KF, which uses Taylor series expansions to approximate the nonlinear system.
However, the Taylor series expansions in many navigation systems are cumbersome and always
lead to implementation difficulties [15]. The iterated extened Kalman filter (IEKF) overcomes the
problem and improves the accuracy with the Gauss-Newton method [19]. Furthermore, the nonlinear
iterated filter (NIF) improves the stability of the Jacobian matrix in the EKF and the IEKF through
the Levenberg–Marquardt algorithm [20]. In the UKF, a set of selected sigma points are used to
approximate the probability distribution function of the state and propagate through the nonlinear
process and the measurement equation. Thus, the UKF saves the trouble of calculating the Taylor series
is more accurate than the EKF. The posterior linearization filter (PLF), using statistical linear regression,
is a newly proposed algorithm to improve the filter accuracy based on sigma-point approximations [21].
However, the filters above are always used to deal with Gaussian white noise. Nevertheless, owing to
the operational error or the complex atmospheric environment, the non-Gaussian noises, such as large
outliers and Gaussian mixture noises, often exist during the actual navigation process.

For non-Gaussian process, many nonlinear filters do not perform satisfactorily [22]. However,
the filter robustness can be improved through the approaches as follows:

1. A classical method involves creating filters directly for the systems under the conditions of
non-Gaussian noises to deal with noises with different heavy-tailed distributions [23,24].
However, it is difficult to take effect in multidimensional situations, which limits its
applicability [25].

2. There are two efficient methods to handle non-Gaussian noises based on estimating the a
posteriori probability density with a series of samples. The UKF approximates the mean and the
covariance of the state estimation using unscented transformation (UT) through sigma points [26].
The ensemble Kalman filter (EnKF) is another algorithm to capture state estimation using samples
set for the purpose of handling non-Gaussian noises [27].
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3. Another popular method is the Huber-based Kalman filter. It is a robust state estimator to handle
the non-Gaussian noises based on the robust estimation theory [28]. Many navigation and target
problems were often handled through it under the conditions of non-Gaussian noises in the past
few years [29–32].

4. Chang [33] proposed a new robust Kalman filter in recent years. He defined a judging index
calculating the difference between the observation and the prediction based on Mahalanobis
distance to solve the outliers, which can also successfully solve the observation noises that obey
the thick-tailed distribution during the actual observation process.

Maximum correntropy criterion (MCC) is an information theoretic method proposed in recent
years. It has been applied to the Bayesian estimation and the error analysis [34,35]. The maximum
correntropy Kalman filter (MCKF), which is an improved Kalman filter algorithm using the MCC
theory, is one of the latest designed estimators for the purpose of solving non-Gaussian noises.
In addition, the maximum correntropy extended Kalman filter (MCEKF) and the maximum correntropy
unscented Kalman filter (MCUKF) are proposed for the nonlinear system [36], and the MCUKF has
been proven to show a better performance than MCEKF [37]. However, its robustness is not analyzed
and it has not been applied to SINS/CNS deeply integrated navigation.

The key contributions of this paper are expressed as follows. First of all, the observability of the
new deeply integrated navigation system is analyzed. The MCUKF is then deduced on the basis
of maximum correntropy theory and unscented transformation to deal with the nonlinearity and
non-Gaussian noises in the navigation system. The computational complexity of it is also analyzed.
Furthermore, the robustness of the MCUKF is discussed under the condition of the non-Gaussian
noises. Finally, the conditions of non-Gaussian noise, mainly including the large outliers and the
Gaussian mixture noises, existing in SINS/CNS deeply integrated navigation are effectively handled
by the MCUKF.

The organization of this paper proceeds as follows. SINS/CNS deeply integrated navigation is
briefly reviewed and the observability is analyzed in Section 1. In Section 2, the algorithm steps are
designed for the MCUKF and the robustness performance is analyzed compared with a Huber-based
filter. In Section 3, simulations are demonstrated to compare the performances using several filter
methods under the conditions of different kinds of noises. Finally, we draw conclusions in Section 4.

2. SINS/CNS Deeply Integrated Navigation System

2.1. Integrated Navigation Principle

The traditional SINS/CNS integrated navigation system outputs the attitude, the velocity, and the
position information of a missile through the IMU (including a gyro and an accelerometer). The star
sensor of the CNS outputs the attitude information of the missile after star capturing and star
identification. The attitude information calculated by the star sensor and the gyro is then integrated,
and the integrated information is served as the measurement equation. The optimal estimation
methods are then used to estimate the gyro drift to correct the gyro. Figure 1 shows the traditional
SINS/CNS integrated navigation principle.

Although SINS/CNS integrated navigation system can correct the gyro drift to some extent,
the error of the state variables still has a divergence [4,13,14,16]. SINS/CNS deeply integrated
navigation can solve the problem. Based on the traditional integrated navigation system, the height,
the pitching angle, and the azimuth angle are added as the measurement information according to the
altimeter and the astronomical information. In fact, these three new measurements are the function of
the position of the navigation target. Therefore, the estimation of the gyro drift and the accelerometer
bias can be gained to correct the acceleration information of SINS. Figure 2 shows the navigation
principle of the SINS/CNS deeply integrated mode.
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Figure 1. Traditional strap-down inertial navigation system/celestial navigation system (SINS/CNS)
integrated navigation principle.

Figure 2. SINS/CNS deeply integrated navigation principle.

The deeply integrated SINS/CNS integrated navigation system has not yet been realized in real
scenarios. When it is applied on the missile, the star sensor measures not only the attitude information
but also the partial position information of the missile. The attitude can be calculated through star
identification. The position can be calculated by measuring the height angle and the azimuth angle
of the star. An altimeter needs to be installed on the system to measure the height information of the
missile. The altimeter can be a radar altimeter [38], a pressure altimeter [39], or a laser altimeter [40],
decided according to the specific case. Combined with the position information from the star sensor,
the position of the missile can be obtained. In this way, the deeply SINS/CNS integrated navigation
system can be realized and applied to practical situations. The detailed principle of the system is
introduced in the next section.
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2.2. System Model

2.2.1. State Equation

Suppose that the navigation frame is the launch point frame (l-frame) and the SINS is
strapdown-installed along the three axles of the missile. Then the state equation is identical to
the traditional algorithm:

Ẋ (t) = F (t) X (t) + G (t)W (t) , (1)

where X(t) =
[

Ψ(t) δv(t) δrl(t) ε(t) ∇ (t)
]T

denotes the system state, Ψ(t) =[
φx(t) φy(t) φz(t)

]
denotes the platform angles error (the navigation frame misalignment angle)

in the l-frame; δv(t) =
[

δvxl(t) δvyl(t) δvzl(t)
]

denotes the velocity error in the l-frame; δrl(t) =[
δxl(t) δyl(t) δzl(t)

]
denotes the position error in the l-frame; ε(t) =

[
εx(t) εy(t) εz(t)

]
denotes the gyro constant drift; ∇(t) =

[
∇x(t) ∇y(t) ∇z(t)

]
denotes the accelerometer constant

bias; W(t) =
[

εsx(t) εsy(t) εsz(t) ∇sx(t) ∇sy(t) ∇sz(t)
]T

denotes the process noise vector,
including the random noises of the gyro and the accelerometer; G(t) denotes the process noise input
matrix; F(t) denotes the process input matrix. The detailed information of F(t) and G(t) can be found
in [41]— Equations (6-5) and (6-6), respectively. The solution of the differential Equation (1) for the
discrete mode can be expressed as:

X (k) = f (X (k− 1) , W (k− 1)) , (2)

Equation (2) can be obtained through the Laplace transformation which is introduced in Chapter 2 of
Reference [41]. In simulation, the equation is solved through Runge-Kutta algorithm.

And the linear version for Equation (2), which is used for MCEKF [36] can be expressed as:

X (k) = Φ (k− 1) X (k− 1) + Γ (k− 1)W (k− 1) , (3)

where k denotes the epoch, Φ (k− 1) and Γ (k− 1) are the discrete versions of f (X (k− 1)) and
G (k− 1), respectively, which can be expressed as:

Φ(k− 1) = I + F (k− 1) T + 1
2! F2 (k− 1) T2

Γ(k− 1) = T
(

I + 1
2! F (k− 1) T + 1

3! F2 (k− 1) T2
)

G (k) .
(4)

2.2.2. Measurement Equation

(1) Measurement of Attitude Error

Suppose that the attitude output of the gyro is θg (k) =
[

θg (k) ϕg (k) ψg (k)
]T

, and the

attitude output of the star sensor is θs (k) =
[

θs (k) ϕs (k) ψs (k)
]T

. The three angles are
equivalent to the three Euler angles, denoting roll angle, pitch angle, and yaw angle, respectively.
The difference between the two sets of attitude angles can be denoted as δθ (k) = θg (k) − θs (k),
which can be transformed into the error-angles of the platform and can be expressed as the function of
the state Ψ(k). Denote Z1(k) = δθ(k) as the attitude error measurement, which can be expressed as:

Z1(k) = M(k)X(k) + V1(k), (5)
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where M(k) =
[

M0 (k) O3 × 12

]
, and M0 (k) denotes the attitude error transition matrix, which can

be expressed as:

M0(k) =

 0 cos ϕ(k) − cos ψ(k) sin ϕ(k)
0 sin ϕ(k) cos ψ(k) cos ϕ(k)
1 0 sin ψ(k)

 , (6)

where ϕ(k) denotes the pitch angle, ψ(k) denotes the yaw angle, and V1(k) represents the measurement
noises of the star sensor. The detailed derivation process of M0 (k) can be obtained in [42].

(2) Measurement of Position Error
The measurement information relies on the azimuth angle, the pitch angle of the guide star,

and the outputs of the altimeter. The measurement equation of the position error is derived in [4].
The measurement equation is expressed as: δP(k)

δA(k)
δh(k)

 = M1(k)
(

Cl
i C

i
e(k)M2(k)

)−1

 δxl(k)
δyl(k)
δzl(k)

+

 vP(k)
vA(k)
vh(k)

 , (7)

where δP(k) is the pitch angle difference between the measurement and the computation value; δA(k)
is the azimuth angle difference between the measurement and the computation value; δh(k) is the
difference between the height measurement of the altimeter and the computation value; C1

i stands for
the rotation matrix from the l-frame (the launching point coordinate frame which is also the navigation
frame) to the i-frame (the geocentric inertial coordinate frame), which is a constant matrix and can be
expressed as:

Cl
i =

 − cos ζ sin γ0 cos φ0 − sin ζ sin φ0 cos γ0 cos φ0 sin ζ sin γ0 cos φ0 − cos ζ sin φ0

− cos ζ sin γ0 sin φ0 + sin ζ cos φ0 cos γ0 sin φ0 sin ζ sin γ0 sin φ0 + cos ζ cos φ0

cos ζ cos γ0 sin γ0 − sin ζ cos γ0

 , (8)

where ζ denotes the launching angle of missile, φ0 and γ0 denote the longitude and the latitude of
the launching point, respectively, Ci

e(k) denotes the rotation matrix from the i-frame to the e-frame
(the earth-based frame), which can be expressed as:

Ci
e(k) =

 cos ωet(k) sin ωet(k) 0
− sin ωet(k) cos ωet(k) 0

0 0 1

 , (9)

where ωe is the earth’s rotation angular velocity, t(k) denotes the time in the k-th epoch. δrl(t) =[
δxl(k) δyl(k) δzl(k)

]
denotes the position error in three directions; vP(k) and vA(k) are the

observation noises of the pitch angle and the azimuth angle, respectively; vh(k) is the measurement
noise of the altimeter; M1(k) and M2(k) are as follows:

M1(k) =

 − cos A(k) − sin A(k) cos ϕb(k) 0
− tan P(k) sin A(k) tan P(k) cos A(k) cos ϕb(k)− sin ϕb(k) 0

0 0 1

 , (10)

M2(k) =

 − (h(k) + Re) sin ϕb(k) cos λb(k) − (h(k) + Re) cos ϕb(k) sin λb(k) cos ϕb(k) cos λb(k)
− (h(k) + Re) sin ϕb(k) sin λb(k) (h(k) + Re) cos ϕb(k) cos λb(k) cos ϕb(k) sin λb(k)

(h(k) + Re) cos ϕb(k) 0 sin ϕb(k)

 , (11)

where P(k) is the pitch angle of the guide star, A(k) is the azimuth angle of the guide star, h(k) is
the height of the missile, Re is the earth radius, ϕb(k) is the latitude of the missile, and λb(k) is the

longitude of the missile. Denote Z2(k) =
[

δP(k) δA(k) δh(k)
]T

, that is,

Z2(k) = T(k)δrl(k) + V2(k), (12)
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where T(k) = M1(k)
(
C1

i Ci
e(k)M2(k)

)−1, and V2(k) =
[

vP(k) vA(k) vh(k)
]T

.
Combined with Equations (5) and (12), the total measurement equation can be expressed:

Z(k) =

[
Z1(k)
Z2(k)

]
= H(k)X(k) + V(k), (13)

where the measurement matrix H(k) is:

H(k) =

[
M0(k) O3 × 3 O3 × 3 O3 × 6

O3 × 3 O3 × 3 T(k) O3 × 6

]
, (14)

and O is the zero matrix. The measurement noises V(k) are expressed as:

V(k) =
[

V1(k) V2 (k)
]T

, (15)

and it is independent of the state noises W(k) in Equation (3). Compared with the traditional mode,
the deeply integrated mode adds the dimension of the measurements. In this way, the computational
complexity will increase, which is analyzed in Section 3.3.

In many cases, V(k) denotes the Gaussian white noises [4,13,14,43–45]. However, in practice,
due to the sensor faults or the complex environment, the measurement noises may be contaminated
noises with different distributions or include large outliers. It can be shown as follows:

V(k) = V (1)
k + V (2)

k (16)

or
V(k) = V (1)

k + ∆Vk (17)

where V (1)
k denotes the Gaussian white noises, V (2)

k is distributed differently from V (1)
k , and ∆Vk is

the outlier.
The non-Gaussian noises can influence the performance of the navigation system; therefore, it is

necessary to use the robust filter to solve the problem. The maximum correntropy Kalman filter is
newly designed to effectively tackle the non-Gaussian noise.

2.2.3. Observability Analysis

The observability analysis is needed to determine the efficiency of the Kalman filter designed
for the purpose of estimating the system state variable [46]. If the system observability is poor,
the estimation of the state will be inaccurate. Therefore, it is necessary to analyze the observability of
the new integrated navigation system.

Considering the state Equation (3) and the measurement Equation (13), according to [47],
the observability matrix U1 of the deeply integrated navigation system is as follows:

U1 =


H

HΦ
...

HΦnX−1

 (18)

where H is the measurement matrix of the deeply integrated method, Φ denotes the discrete version
of the state transition matrix, nx is the dimension of state variable, which is 15 in the deeply integrated
navigation system, as described in Equation (1), so rank (U1) = nx = 15. Hence, the SINS/CNS deeply
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integrated navigation mode is observable. For comparison, the observability matrix of the traditional
navigation mode U2 is analyzed as follows:

U2 =


M

MΦ
...

MΦnX−1

 , (19)

where M is the measurement matrix of the traditional method. Thus, rank (U2) = 6 < nx. Therefore,
the traditional integrated navigation system is unobservable. In other words, the new navigation
system, compared with the traditional one, will have a more precise estimation.

3. The Maximum Correntropy Unscented Kalman Filter

3.1. Maximum Correntropy Criterion

Correntropy [48] denotes the measure of an information entropy field, which defines the novel
metric in the sample space, using the information available in the higher-order statistics of the signals.
Given two random variables with the joint probability density function (PDF) p (a, b), the definition of
correntropy is expressed as follows.

Definition 1. Given two random variables A and B, the correntropy is defined as:

Cλ (A, B) = E [κ (A, B)] =
∫∫

κλ (a, b) p (a, b)dadb, (20)

where E denotes the expectation, κλ (�, �) denotes a real-valued continuous, symmetric, and nonnegative definite
kernel function λ > 0 denotes the kernel bandwidth.

The Gaussian kernel, which is expressed as follows, is used as the kernel function in Definition 1:

κλ (a, b) = Gλ (e) = exp
(
− e2

2λ2

)
, (21)

where e = a− b.
In many practical cases, there are a finite amount of samples to estimate the unknown joint PDF

p (a, b). Hence, the sample mean estimator can calculate the correntropy as follows:

Ĉλ (A, B) =
1
N

N

∑
i=1

Gλ (ei), (22)

where
ei = ai − bi, (23)

{ai, bi}N
i=1 denotes N samples, which are drawn from p (a, b).

Assuming λ = 0.5, ai ∈ [0, 5], bi ∈ [0, 5], and p (a, b) = 1
2 e−(a2 + b2). The current correntropy

value is depicted in Figure 3.
According to Figure 3, correntropy is considered a correlation scale in the joint space,

which reaches maximum under the conditions that a (i) = b (i). Based on this, the cost function
can be defined to represent the maximum correntropy criterion (MCC) as follows:

JMCC = max
N

∑
i=1

Gλ (ei). (24)
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Figure 3. Correntropy when λ = 1.

From Figure 3, it is manifest that MCC represents a local similarity criterion that reflects the
maximum error probability density from the view of probabilistic meaning [48]. Non-Gaussian noises,
such as large outliers and Gaussian mixture noises, can be handled effectively on the basis of the
property [49]. That is to say, MCC reaches the maximum value on the joint space’s bisector because
the value of Gaussian kernel maximizes on the line A = B, which is different from the mean square
error (MSE) estimation [50]. Based on this, MCC has been used for parameter estimation in recent
years [34,35,51].

3.2. The Maximum Correntropy Unscented Kalman Filter

The MCUKF is a novel algorithm combined with a UKF framework based on the MCC, and can
perform better for nonlinear systems in non-Gaussian noise environments [37].

Consider the state equation and the measurement equation described in Equations (2) and (13) in
Section 2: {

X (k) = f (X (k− 1) , W (k− 1))

Z (k) = H (k) X (k) + V (k) ,
(25)

W (k− 1) and V (k) are mutually uncorrelated process noises and measurement noises, respectively.
The mean of both noises are zero and the covariances of them are expressed as:

E
[
W (k− 1)WT (k− 1)

]
= Q (k− 1) , E

[
V (k)VT (k)

]
= R (k) . (26)

Similar to the Kalman filter, the MCUKF includes the time update and the measurement update.

3.2.1. Time Update

The sigma points set are generated from the estimated state X̂ (k− 1|k− 1) and the covariance
matrix P (k− 1|k− 1) at the previous step (k− 1).

χ(0) (k− 1|k− 1) = X̂ (k− 1|k− 1)

χ(i) (k− 1|k− 1) = X̂ (k− 1|k− 1) +
(√

(nx + λ)P (k− 1|k− 1)
)

i
, i = 1, 2, ..., nx

χ(i) (k− 1|k− 1) = X̂ (k− 1|k− 1)−
(√

(nx + λ)P (k− 1|k− 1)
)

i−n
, i = nx + 1, nx + 2, ..., 2nx,

(27)
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where nx denotes the dimension number of the state,
(√

(nx + λ)P (k− 1|k− 1)
)

i
denotes the i-th

column of
√
(nx + λ)P (k− 1|k− 1) , and the composite scaling factor λ is expressed as:

λ = α2 (nx + κ)− nx, (28)

where κ is a parameter that is set to (3− nx) [37], and α controls the distribution conditions of the
sigma points.

The unscented transformed points are given as:

χ(i) (k|k− 1) = f
(

χ(i) (k− 1|k− 1) , W (k− 1)
)

, i = 0, 1, ..., 2nx. (29)

The predicted state and the covariance matrix are estimated as:

X̂ (k|k− 1) =
2nx

∑
i=0

ω
(i)
c χ(i) (k|k− 1) (30)

P (k|k− 1) =
2nx

∑
i=0

ω
(i)
c

[
X̂ (k|k− 1)− χ(i) (k|k− 1)

][
X̂ (k|k− 1)− χ(i) (k|k− 1)

]T
+ Q (k− 1)

(31)

where the weights of the sigma points are as follows:

ω
(0)
m =

λ

n + λ

ω
(0)
c =

λ

n + λ
+
(

1− α2 + β
)

ω
(i)
m = ω

(i)
c =

λ

2(n + λ)
, i = 1, 2, ..., 2nx,

(32)

where α is expressed in Equation (28) and β is a weighted parameter that is non-negative. When the
measurement data are not avaliable, X̂ (k|k− 1) can replace the current state estimation.

The sigma points of the prior state mean and the predicted covariance are set as:

χ(0) (k|k− 1) = X̂ (k|k− 1)

χ(i) (k|k− 1) = X̂ (k|k− 1) +
(√

(nx + λ)P (k|k− 1)
)

i
, i = 1, 2, ..., nx

χ(i) (k|k− 1) = X̂ (k|k− 1)−
(√

(nx + λ)P (k|k− 1)
)

i−n
, i = nx + 1, nx + 2, ..., 2nx.

(33)

The sigma points are then transferred using the measurement equation as:

Z(i) (k|k− 1) = H (k) χ(i) (k|k− 1) , i = 0, 1, ..., 2nx. (34)

The predicted measurement mean can be estimated as:

Ẑ (k|k− 1) =
2nx

∑
i=1

ωi
mZ(i) (k|k− 1). (35)
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3.2.2. Measurement Update

Next, the measurement update is calculated based on the MCC. For the model described in the
previous section, we have [

X̂ (k|k− 1)
Z (k)

]
=

[
I

H (k)

]
X (k) + u (k) , (36)

where I denotes the unit matrix, and u (k) =

[
X̂ (k|k− 1)− X (k)

V (k)

]
, with

E
[
u (k) uT (k)

]
=

[
P (k|k− 1) O

O R (k)

]

=

[
Bp (k|k− 1) BT

p (k|k− 1) O
O Br (k) BT

r (k)

]
= B (k) BT (k) ,

(37)

where B (k), Bp (k|k− 1), and Br (k) is calculated on the basis of Cholesky decomposition of
E
[
u (k) uT (k)

]
, the predicted covariance P (k|k− 1) , and the covariance of the measurement noises

R (k), respectively. In fact, u denotes a random variable matrix, which consists of the prior estimation
error of the state and the measurements prediction error. Equation (36) is multiplied by B−1 (k) on the
left of both sides, and we get

D (k) = w (k) X (k) + e (k) , (38)

where D (k) = B−1 (k)

[
X̂ (k|k− 1)

Z (k)

]
, w (k) = B−1 (k)

[
I

H (k)

]
, and e (k) = B−1 (k) u (k). In this

way, e (k) denotes a new random variable matrix, which is just multiplied by a matrix B−1.
Now the MCC for Equation (24) based on the cost function can be rewritten as follows:

JMCC (X (k)) =
1
N

N

∑
i=1

G (ei (k)) =
1
N

N

∑
i=1

G (di (k)−wi (k) X (k)), (39)

where ei (k) denotes the i-th unit of e (k), di (k) denotes the i-th unit of D (k), wi (k) denotes the i-th
row of w (k), and N = nx + nz denotes the entire dimension of D (k), which represents the sum of
the dimension of state variable X (k) and the measurement Z (k). In fact, di (k) is equivalent to ai in
Equation (23), and wi (k) X (k) is equivalent to bi in Equation (23). That is, ei (k) is equivalent to ei in
Equations (22) and (23), and JMCC (X (k)) is equivalent to Ĉλ (A, B) in Equation (22).

In particular, according to Figure 3, when the error ei (k) reaches the minimum, the correntropy
reaches its maximum value. In other words, the optimal estimation of the state can minimize the error
and maximize the correntropy as well. In this way, the optimal estimate of X (k) is considered with
respect to MCC.

Then, the optimal estimate under the MCC criterion of X (k) is

X̂ (k) = arg max
X

JMCC (X(k)) = arg max
X(k)

N

∑
i=1

Gλ (ei (k)). (40)

The optimal solution can thus be obtained by solving

∂JMCC (X(k))
∂X (k)

= 0. (41)
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It follows that

X (k) =
(

N
∑

i=1

[
Gλ (ei (k))wT

i (k)wi (k)
])−1

×(
N
∑

i=1

[
Gλ (ei (k))wT

i (k) di (k)
])

.
(42)

The optimal solution expressed by Equation (42) is actually a fixed-point equation of X (k) and
can be rewritten as:

X (k) = g (X (k)) , (43)

with

g (X (k)) =

(
N

∑
i=1

[
Gλ (di (k)−wi (k) X (k))wT

i (k)wi (k)
])−1

×(
N

∑
i=1

[
Gλ (di (k)−wi (k) X (k))wT

i (k) di (k)
])

.

A fixed-point iterative algorithm can be readily obtained as [51]:

X̂(k)t∗+1 = g
(
X̂(k)t∗

)
(44)

where X̂(k)t∗ denotes the solution at the fixed-point iteration t∗.
The fixed-point Equation (42) can also be expressed in matrix form as:

X (k) =
(

wT (k)C (k)w (k)
)−1

wT (k)C (k) D (k) , (45)

where C (k) =

[
CX (k) O

O CZ (k)

]
, and

CX (k) = diag (Gλ (e1 (k)) , ..., Gλ (enx (k)))

CZ (k) = diag (Gλ (enx+1 (k)) , ..., Gλ (enx+nz (k))) .

Equation (45) can be further expressed as follows (the detailed derivation is in [52]):

X (k) = X̂ (k|k− 1) + K̄ (k)
(
Z (k)− Ẑ (k|k− 1)

)
(46)

K̄ (k) = P̄ (k|k− 1) HT (k)
(

H (k) P̄ (k|k− 1) HT (k) + R̄ (k)
)−1

P̄ (k|k− 1) = Bp (k|k− 1)C−1
X (k) BT

p (k|k− 1)
R̄ (k) = Br (k)C−1

Z (k) BT
r (k)

. (47)

With the above derivations, we summarize the proposed MCUKF algorithm as follows:

Step 1: Choose a proper kernel bandwidth λ and a small positive number ε ; the estimate X̂ (0|0) and
the covariance matrix P (0|0) are initialized; let k = 1.

Step 2: Use Equations (27)–(32) to obtain X̂ (k|k− 1) and P (k|k− 1) , and make use of Cholesky
decomposition to calculate Bp (k|k− 1).

Step 3: According to Equations (32)–(35), compute the predicted measurement Ẑ (k|k− 1) and use
Equations (25) and (30) to construct the model (36).

Step 4: Transform Equation (36) in to Equation (38). Let t* = 1 and X̂(k|k)0 = X̂ (k|k− 1) ,
where X̂(k|k)t∗ denotes the estimated state at the fixed-point iteration t∗.
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Step 5: Use Equations (48)–(54) to compute X̂(k|k)t∗ :

X̂(k|k)t* = X̂ (k|k− 1) + K̃ (k) Ẑ (k|k− 1) (48)

and
K̃ (k) = P̃ (k|k− 1) HT (k)

(
H (k) P̃ (k|k− 1) HT (k) + R̃ (k)

)−1
(49)

P̃ (k|k− 1) = Bp (k|k− 1) C̃−1
X (k) BT

p (k|k− 1) (50)

R̃ (k) = Br (k) C̃−1
Z (k) BT

r (k) (51)

C̃X (k) = diag (Gλ (ẽ1 (k)) , ..., Gλ (ẽnx (k))) (52)

C̃Z (k) = diag (Gλ (ẽnx+1 (k)) , ..., Gλ (ẽnx+nz (k))) (53)

ẽi (k) = di (k)−wi (k) X̂(k|k)t∗−1. (54)

Step 6: Compare the estimation of the current step and the estimation of the last step. If Equation (55)
holds, set X̂ (k|k) = X̂(k|k)t∗ and continue to Step 6. Otherwise, go back to Step 4.

∥∥X̂(k|k)t∗ − X̂(k|k)t∗−1
∥∥∥∥X̂(k|k)t∗−1

∥∥ ≤ ε. (55)

Step 7: Update the estimation covariance matrix, make k + 1→ k, and go back to Step 2.

P (k|k) =
(

I − K̃ (k) H (k)
)

P (k|k− 1)
(

I − K̃ (k) H (k)
)T

+ K̃ (k) R (k) K̃T (k) . (56)

For obtaining the optimal solution in Equation (42), the MCUKF updates the state estimation
through a fixed-point algorithm, which is shown as Equation (55). Therefore, the small positive number
ε provides a threshold for the fixed-point iteration. When the result of the iteration is in the threshold
range, we call it convergence and the solution is optimal. The convergence of the solution will be fast
because of the predicted state X̂ (k|k− 1) [52].

3.3. Computational Complexity

For the future implementation on real hardware, it is necessary to analyze the computational
complexity of the proposed approach in the article. In terms of the floating points operations,
the computation complexity of the basic equations of the MCUKF is analyzed in Table 1.

Table 1. Computational complexities of some equations, where n denotes the dimension of the state
variable, m denotes the dimension of the measurements.

Equation Addition/Subtraction and Multiplication Equation Addition/Subtraction and Multiplication

(25) 1
3 n3 + 3n2 (47) 4n2m + 4nm2 − 3nm

(27) 4n3 − n (48) 2n3

(28) 2n2 + 2n (49) 2m3

(29) 4n3 + 5n2 + 2n (50) 2n2

(31) 1
3 n3 + 3n2 (51) 2nm

(32) 4n2m−m (52) 2n
(33) 2nm + 2m (54) 4n3 + 6n2m− 2n2 + 2nm2 − nm
(46) 4mn
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The traditional unscented Kalman filter is analyzed in [53]. The computation complexity of it is

SUKF =
26
3

n3 + 15n2 + 10n2m + 5n + 8nm2 + 6mn + m3 + 3m2 + 3m. (57)

In fact, Equations (27)–(35) in the MCUKF are the same as that in the UKF. Equations (48)–(56) in
the MCUKF mainly involves the different equations expressed by Equations (48)–(56). Equation (55)
gives a fixed-point algorithm to update the posterior estimate of the state that can provide a stop
condition in several steps. Assuming that the fixed-point iteration number is T, then the computation
complexity of MCUKF is

SMCUKF =
( 38

3 + 2
)

Tn3 + (11 + 2T) n2 + (10 + 4T) n2m + (2T + 3) n
+ (4T + 2) nm2 + (1 + 3T)mn + 2Tm3 + m

. (58)

According to Equations (57) and (58), the computational complexity of the MCUKF is much
higher than that of the UKF because of the fixed-point algorithm and more matrix inverse problems.

According to the complexity analysis above, the increasing dimension of the measurements of the
deeply integrated mode has a higher computational complexity than the traditional mode.

3.4. Robustness Analysis

The robustness is a very important feature for the navigation filter algorithm, especially in the
complex space environment. One of the most significant advantages of MCC is robustness that can
tackle non-Gaussian noises. In fact, it uses a method similar to the Huber-based filter (HF) to improve
the robustness [54]. Both of them use the weighted function to tackle the non-Gaussian noises. HF is a
classical method to tackle the non-Gaussian noises, and it has been proved in detail [55]. Additionally,
some articles have demonstrated the ability of MCC in accommodating non-Gaussian noises, especially
outliers and Gaussian mixture noises [56,57]. Next, the algorithm robustness is compared with HF
through the weighting function.

HF is created based on the concept of the robustness through the maximum likelihood method.
Assume that the maximum likelihood estimator (MLE) stems from the data observation Z = {z1, ..., zN}
and the state variable X = {x1, ..., xN}. Then e = Z − HX is drawn from the distribution p (e; X),
which is known apart from the parameters X. In this way, the MLE of X can be defined as:

X̂MLE = arg max
X

p (e1, ..., eN ; X) . (59)

Assuming that e1, ..., eN are i.i.d. observations, then it can be rewritten as:

X̂MLE = arg max
X

N
∏
i=1

p (ei; X) = arg max
X

N
∑

i=1
ln p (ei; X)

= arg min
X

N
∑

i=1
(− ln p (ei; X))

. (60)

Let ρ (ei; X) = a (− ln p (ei; X)) + b, where a > 0 and b is uncorrelated with X. Thus, X̂MLE obeys

N

∑
i=1

ρ (ei; X) =
N

∑
i=1

ρ (zi − Hxi) = min
X

N

∑
i=1

ρ (ei; X). (61)

In fact, the errors in the target track model are always considered as pure Gaussian white noises
with zero mean and constant variance σ2 in some parametric models. In these cases, the maximum
likelihood estimation can be solved. However, in practice, the external environment influences the
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measurement equipment and causes the filter algorithm to break down. Hence, the non-Gaussian
noises in the measurements cannot be avoided. A typical non-Gaussian noises are Gaussian mixture
noises, which obey the Gaussian distributions with different mean values and variances with most
errors. For instance, assume that the distribution is expressed as:

F (ei; X) = (1− υ) F0 (ei; X) + υFc (ei; X) , (62)

where F (�), F0 (�), and Fc (�) denote the Gaussian mixture distribution, the known normal Gaussian
distribution, and an unknown contaminated distribution, respectively, and υ is the contamination
ratio. It is much smaller than 1. For Equation (62), it is of necessity to solve the maximum likelihood
estimation through Equation (61).

For the purpose of solving the problem, Huber proposed that ρ can change freely within limits,
leading to the birth of M-estimation, which is an effective way of solving Equation (61).

M-estimator is defined as a generalization of MLE as:

min
X

N

∑
i=1

ρ (ei; X) or
N

∑
i=1

ϕ (ei; X) = 0 with ϕ (ei; X) =
dρ (ei; X)

dei
, (63)

where ρ (e) denotes the cost or penalty function.
Let

ρMCC (ei) =
(

1− exp
(
−ei

2/2λ2
))/√

2πλ (64)

where λ denotes the kernel bandwidth.
Then

min
N
∑

i=1
ρMCC (ei)

= min
N
∑

i=1

(
1− exp

(
−ei

2/2λ2))/√2πλ

⇔ max
N
∑

i=1
exp

(
−ei

2/2λ2)/√2πλ

= max
N
∑

i=1
Gλ (ei)

. (65)

Therefore, MCC is equivalent to Equation (64):

min
X

N

∑
i=1

ρMCC (ei) is equivalent to MCC = max
X

N

∑
i=1

Gλ (ei).

According to the M-estimation problem, ψMCC (ei), as well as the weighting function of MCC,
can be rewritten as:

ψMCC (ei) =
ρMCC

′ (ei)

ei
, (66)

where ρMCC
′ (ei) =

dρMCC(ei)
dei

. Therefore,

ψMCC (ei) = exp
(
−ei

2/2λ2
)/√

2πλ3. (67)
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On the basis of analysis of the weighting function above, we will compare it with the Huber filter
to prove the superiority of MCC.

The weighted functions of them are shown in Table 2.

Table 2. The weighted functions of two methods.

Item Penalty Function Weighted Function

Huber ρHuber (ei) =

{
e2

i /2 |ei| ≤ δ
δ (|ei| − δ) |ei| > δ

ψHuber (ei) =

{
1 |ei| ≤ δ

δ/ |ei| |ei| > δ

MCC ρMCC (ei) =
(
1− exp

(
−ei

2/2λ2))/√2πλ ψMCC (ei) = exp
(
−ei

2/2λ2)/√2πλ3

Some researchers have performed robustness analysis of MCC in theory. The robustness of two
methods are shown through Figure 4 to intuitively analyze the robustness of MCC.

In Figure 4, the weight of HF decreases rapidly as the estimate residual grows. However,
the weight of MCC approaches zero faster compared with that of the Huber method. In addition,
with the growth of the error, the weight of the Huber method is not zero. In other words, Huber-based
methods can select more measurements containing large errors than MCC-based methods, which may
cause large errors to the filter algorithm, although with small weights. Therefore, the filter based on
the MCC is more robust than the Huber-based filter.

(a) The weighted function of the Huber method

(b) The weighted function of the maximum correntropy
criterion (MCC)

Figure 4. The weight comparison with the error growth of two methods where λ = δ = 1.
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4. Simulation Results

In this section, the superiority of SINS/CNS deeply integrated navigation is proved firstly.
The performances of the MCUKF are then illustrated under the conditions of the Gaussian noises,
the large outliers, and the Gaussian mixture noises, respectively. The estimation performance are
compared on the basis of the following indices:

Residual (k) = X(k)− X̂(k|k), k = 1, ..., m, (68)

RMSE =
L

∑
j=1

√
1
m

m

∑
i=1

(
X (k)− X̂ (k|k)

)2
/

L, j = 1, ..., M, (69)

where m is the simulation time steps and L represents the total simulation numbers. In addition,
the time cost of every method is given to compare the computational complexity. All methods are
implemented in the same precision (64-point floating point) in MATLAB running on a PC with
processor Intel(R) Core(TM) i7-7500U CPU 2.70GHz and with 8 GB of installed memory (RAM).

The simulation parameters are as Table 3.

Table 3. Simulation conditions.

Parameter Values Parameter Values

Initial latitude 39.98◦ Random noise of altimeter 50 m
Initial longitude 116.34◦ Random noise of star sensor 3′′

Initial velocity
vx = 355.49 m/s
vy = vz = 0 Time of the vertical rise 10 s

Initial pitch angle (Launching angle) 90◦ Filter start time 40 s
Gravity acceleration g0 = 9.78 m/s2 Ending time of the powered phase turn 60 s

Constant drifts of the gyro
εx = εy =
εz = 1◦/h Time of the engine shutting off 160 s

Random noise of the gyro
εsx = εsy =
εsz = 0.5◦/h Total flying time 1110 s

Constant biases of the accelerometers
∇x = ∇y =
∇z = 100 ug Filter period 1 s

Random noise of the accelerometers
∇sx = ∇sy =
∇sz = 50 ug Gyro Sample period 0.01 s

Monte Carlo times L =10 Star Sensor Sampling period 1 s

The missile trajectory is shown in Figure 5.

Figure 5. Missile flight trajectory.
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To prove the high performance of the new integrated navigation system, a simulation is done only
under the condition of the Gaussian white noises. Compared with the traditional integrated mode,
the position and the attitude angle residual are shown in Figures 6 and 7.

(a) x-dirction (b) y-direction (c) z-direction

Figure 6. The position residual.

(a) Yaw angle (b) Pitch angle (c) Roll angle

Figure 7. The attitude angle residual.

The RMSE of the position and attitude angle and the time cost of every filter are shown in Table 4.

Table 4. RMSE of the position, attitude, and time cost of the two navigation methods.

Position (m) Attitude (′′) Time (min)
x y z Yaw Pitch Roll

Traditional Method 114.4777 434.0437 245.1516 27.4501 65.9759 6.1114 0.738
Deeply Integrated Mode 30.9459 67.5309 184.4883 27.4490 65.9718 6.1009 0.934

From the Figures and the table above, the navigation position error has evidently improved when
constructing the measurement Z2 in Equation (12). In addition, the SINS/CNS deeply integrated
navigation mode for the ballistic missile can tackle the divergence of the position error effectively,
which obeys the observability analysis results. However, the newly proposed navigation system needs
more time to gain the results.

Next, we will compare the MCUKF performance with other algorithms under the conditions
of the Gaussian noises, the large outliers, and the Gaussian mixture noises for SINS/CNS deeply
integrated navigation.

4.1. Case 1: Gaussian Noises

In this section, we will apply the MCUKF on SINS/CNS deeply integrated navigation under the
conditions of the Gaussian noises to compare performances with other filter algorithms including the
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HKF [55], the IEKF, the NIF, the PLF, the UKF, and the MCEKF [36]. The simulation parameters are set
as Table 1. The simulation results are shown in Figures 8 and 9, and Table 5.

(a) x-dirction (b) y-direction (c) z-direction

Figure 8. The position residual under the condition of Gaussian noise.

(a) Yaw Angle (b) Pitch Angle (c) Roll Angle

Figure 9. The attitude angle residual under the condition of Gaussian noise.

Table 5. RMSE of position, attitude, and time cost of different methods in the presence of Gaussian
noise for SINS/CNS deeply integrated navigation.

Position (m) Attitude (′′) Time (min)
x y z Yaw Pitch Roll

IEKF 29.5693 66.0529 184.5749 27.4483 66.0447 6.0555 0.9748
NIF 29.5635 66.0312 184.2973 27.4483 66.0447 6.0555 1.3277
PLF 25.5944 66.6029 172.7334 27.4425 66.0406 6.0086 1.4536
HKF 29.6274 66.2252 186.4335 27.4483 66.0447 6.0555 0.5878
UKF 29.5598 66.0247 184.2777 27.4483 66.0447 6.0555 0.1124

MCEKF 29.5841 66.0968 185.0428 27.4483 66.0447 6.0555 0.2280
MCUKF 29.5659 66.0427 184.4676 27.4483 66.0447 6.0555 0.3230

According to Table 5, PLF demonstrates the highest accuracy among the seven filters in this
condition because of the a posteriori estimation and the iteration. It can be observed that robust
filters cannot always perform as well as the PLF, the NIF, or the UKF under the condition of the
Gaussian noises.

4.2. Case 2: Large Outliers

In this section, the case in which the measurement value including large outliers is considered.
The attitude outliers are added artificially to the attitude angle data at the 5000th and 9000th epochs,
respectively. The position outliers are also added artificially to the position data at the 5000th epochs.
The constant outliers are added to all epochs between the 4001th to the 4005th to the attitude angle
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data. The constant outliers are added to all epochs between 4001th and the 4005th to the position
data. The obtained position errors and the attitude angle errors are displayed in Figures 10 and 11,
and Table 6.

According to the presented results, it can be concluded that, in the presence of outliers, the filter
results mostly depend on the outliers. In addition, Figures 10 and 11 show that the HKF, the MCEKF,
and the MCUKF can resist the influence of the outliers to some extent. Furthermore, the two figures
show that the MCUKF has better performance than the other algorithms, so the influence of the single
and the constant outliers is reduced using the MCUKF algorithm. The RMSE values and time cost of
all used filters are presented in Table 6.

Compared with other filters, the filtering algorithm of the MCEKF and the MCUKF is improved
to a certain degree, especially for the outliers. The MCUKF has better performance than other filters
and lower time cost than the iterated filters.

(a) x-dirction (b) y-direction (c) z-direction

Figure 10. The position residual under the condition of the large outliers.

(a) Yaw Angle (b) Pitch Angle (c) Roll Angle

Figure 11. The attitude angle residual under the condition of the large outliers.

Table 6. RMSE of position, attitude, and time cost of different methods in the presence of large outliers
for SINS/CNS deeply integrated navigation.

Position (m) Attitude (′′) Time (min)
x y z Yaw Pitch Roll

x y z p ph g time
IEKF 34.9042 70.5450 186.9381 27.5917 66.1098 6.2019 0.4629
NIF 34.8999 70.5382 186.9179 27.5918 66.1098 6.2021 0.8702
PLF 36.1497 73.6876 176.1497 27.5687 66.1091 6.1272 0.9432
HKF 31.5010 68.6713 185.1142 27.5874 66.1095 6.1775 0.2228
UKF 29.6882 67.6938 184.3485 27.5715 66.1088 6.1275 0.1332

MCEKF 30.8100 68.2925 184.7478 27.5852 66.1093 6.1657 0.2257
MCUKF 29.3169 67.5903 184.3414 27.5579 66.1081 6.0574 0.2665
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4.3. Case 3: Gaussian Mixture Noises

In this section, the case in which the measurement noises are the Gaussian mixture noises,
whose distributions are as follows:

Star Sensor Noise: vs ∼ 0.9N
(

0, (3′′)2
)
+ 0.1N

(
0, (30′′)2

)
.

Altimeter Noise: vh ∼ 0.9N
(

0, (50m)2
)
+ 0.1N

(
0, (500m)2

)
.

The obtained position errors and the attitude angle errors are displayed in Figures 12 and 13,
and Table 7.

(a) x-dirction (b) y-direction (c) z-direction

Figure 12. The position residual under the condition of the Gaussian mixture noises.

(a) Yaw Angle (b) Pitch Angle (c) Roll Angle

Figure 13. The attitude angle residual under the condition of the Gaussian mixture noises.

Table 7. RMSE of position, attitude, and time cost of different message under the condition of the
Gaussian mixture noises for SINS/CNS deeply integrated navigation.

Position (m) Attitude (′′) Time (min)
x y z Yaw Pitch Roll

x y z p ph g time
IEKF 30.1388 67.7275 185.7022 26.6707 66.0896 6.6902 0.8293
NIF 30.0166 67.4352 183.6012 27.8260 67.2466 6.6826 1.2689
PLF 30.6610 67.5520 183.6714 27.6757 66.0895 6.6811 2.9075
HKF 30.0526 67.5224 184.2160 27.6750 66.0893 6.6787 1.3422
UKF 30.0090 67.4125 183.4182 27.6757 66.0869 6.6811 0.1277

MCEKF 30.0233 67.4515 183.7159 27.6750 66.0893 6.6787 0.3502
MCUKF 30.0049 67.4062 183.3980 27.6679 66.0696 6.6521 0.3889

Figures 12 and 13 reveal the residual using different filters under the conditions of the Gaussian
mixture noises. In addition, Table 7 illustrates the RMSE of the position, the attitude angle, and the
time cost of every method. It can be observed that the MCUKF achieves better performance than
other filters.
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5. Conclusions

SINS/CNS deeply integrated navigation, which consists in modified SINS/CNS navigation,
is introduced, and the observability of the navigation system was analyzed. However, the simulation
results demonstrate that the new system needs more time. Measurement noises are often the research
focus with regard to navigation systems. The non-Gaussian noises, including the large outliers and
the Gaussian mixture noises, always exist during the measurement process. On the basis of the
maximum correntropy theory, the maximum correntropy unscented Kalman filter (MCUKF) is a newly
designed robust unscented Kalman filter (UKF). The robustness for state estimation, which can resist
the effects of non-Gaussian noises effectively, is also analyzed and compared with a Huber-based
filter. Simulated experimental results demonstrate that the MCC-based filter provides much better
performance when tackling the non-Gaussian noises of SINS/CNS deeply integrated navigation,
but with a higher computational complexity than the traditional UKF.

In practical applications, the added star sensors and the altimeter of the deeply integrated
system will increase the load of the missile. Future work will focus on the installation method of the
measurement facilities and applications in real scenarios. The coupled problem of multiple sensors
may also need to be solved.
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