
sensors

Article

A General Cross-Layer Cloud Scheduling Framework
for Multiple IoT Computer Tasks

Guanlin Wu 1,*, Weidong Bao 1, Xiaomin Zhu 1,2 and Xiongtao Zhang 1

1 College of Systems Engineering, National University of Defense Technology, Changsha 410073, China;
wdbao@nudt.edu.cn (W.B.); xmzhu@nudt.edu.cn (X.Z.); zhangxiongtao14@nudt.edu.cn (X.Z.)

2 State Key Laboratory of High Performance Computing, National University of Defense Technology,
Changsha 410073, China

* Correspondence: wuguanlin16@nudt.edu.cn

Received: 12 April 2018; Accepted: 17 May 2018; Published: 23 May 2018
����������
�������

Abstract: The diversity of IoT services and applications brings enormous challenges to improving
the performance of multiple computer tasks’ scheduling in cross-layer cloud computing systems.
Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the
cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for
multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the
features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework
based on the analysis and present detailed models to illustrate the procedures of using the framework.
With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can
dynamically select suitable algorithms and use resources more effectively to finish computer tasks
with different objectives. Finally, the algorithms are given based on the framework, and extensive
experiments are also given to validate its effectiveness, as well as its superiority.

Keywords: IoT services; cross-layer cloud computing; general scheduling framework; computer task;
specific scheduling models and algorithms

1. Introduction

Recently, cross-layer cloud computing systems, as shown in Figure 1, have become more and more
important in people’s daily lives, particularly with the development of various computing technologies.
The cross-layer cloud computing system is a cloud computing environment that uses a mix of the
local edge computing or the fog computing cloud, the remote cloud data center and other types of
cloud platforms to support the device cluster. Edge computing or fog computing is usually deployed
near the users and is in charge of delay-sensitive tasks and basic data pre-processing [1]. The remote
cloud data center is usually responsible for computation-intensive tasks [2]. In this way, organizations
are able to provide computer services with orchestration among these different platforms based on
their requirements.

However, to meet the growing multiple computer demand of IoT services, the diversity of these
multiple computer tasks has become an important feature of the cross-layer cloud computing system,
and it makes achieving great performance more complex. On the one hand, these multiple computer
tasks in the cross-layer cloud computing system differ not only in task type, but also in task scheduling
objective. For instance, a dependent task is one of the most common types of computer tasks in
IoT services. It can be decomposed into different tasks based on logical sequences in the calculation
process, and researchers can obtain these important conclusions faster [3]. On the contrary, there
is also a type of task called an independent task. Besides, long-running tasks in IoT services need
fault-tolerant mechanisms and more time to reduce the expense of high rollback operations when

Sensors 2018, 18, 1671; doi:10.3390/s18061671 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/18/6/1671?type=check_update&version=1
http://dx.doi.org/10.3390/s18061671
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 1671 2 of 20

failures occur, but real-time deadline tasks that are less sensitive to delay need less time [4]. On the
other hand, different tasks in IoT services may also have common performance optimization goals,
such as energy saving and system reliability. Sometimes, different tasks will select some common
scheduling objectives according to their actual demands [5,6]. This makes the required algorithms
comparable, and we must take this into account.

Figure 1. A schematic diagram of a cross-layer cloud computing system.

The diversity of IoT services and applications brings enormous challenges to improving
the performance of multiple computer tasks’ scheduling in cross-layer cloud computing systems.
Unfortunately, the commonly-employed frameworks fail adapt to the new patterns on the cross-layer
cloud. Firstly, the conventional computer task scheduling frameworks do not have the ability to
self-adaptively adjust. The conventional frameworks are always deployed as a monolithic system
component. In this way, it is hard to adjust the optimization goals and select the most appropriate
algorithm after the parameters have been set. Secondly, it is cumbersome and fallible when adding
new scheduling capability in conventional computer task scheduling frameworks for cross-layer cloud
computing systems. That is because there are many computer task scheduling strategies designed
with different optimization objectives that share some common functional components and rely on a
similar software engineering framework for implementation. Mutual influence is a very complicated
phenomenon in the conventional computer task scheduling framework. Finally, the cross-layer cloud
computing system and a single cloud are different in many ways. The characteristics of the cross-layer
cloud computing system would require more thought.

In this study, we propose a new computer task scheduling framework for multiple IoT services
in the cross-layer cloud computing system with the theory of the software engineering framework
to deal with the aforementioned challenges. We first analyze the features of the cross-layer cloud
and multiple computer tasks. Then, we design the scheduling framework based on the analysis
and present detailed models to illustrate the procedures of using the framework. With the proposed
framework, the IoT services deployed in cross-layer cloud computing systems can dynamically
select suitable algorithms and use resources more effectively to finish computer tasks with different
objectives. Finally, the algorithms are given based on the framework and the typical examples of
different computer tasks. Extensive experiments are also given to validate its effectiveness, as well as
its superiority. The main contributions of the study are as follows:

• We analyze the features of the cross-layer cloud and computer tasks. The theoretical analysis
illustrates that these components influence the resource management in the cross-layer cloud
computing system directly, and they are the most basic contents of the computer task scheduling
framework in the cross-layer cloud computing system.

Sensors 2018, 18, 1671 3 of 20

• We design a general computer task scheduling framework for the cross-layer cloud computing
system. With the scheduling framework, the computer tasks in cross-layer cloud computing
systems can dynamically select suitable algorithms and use resources more effectively to solve
these tasks with different restrictions of the objectives.

• We present specific models and examples to illustrate the detailed procedures used, and the
corresponding algorithms are designed as a demonstration based on these theories and models.
These can prove that the framework is actually executable in cross-layer cloud computing systems,
and the scheduling objectives are able to be dynamically matched to different types of tasks.

• We evaluate the framework with extensive experiments. These two examples represent different
typical scenarios, and the experimental results prove its effectiveness, as well as its superiority.

The remaining part of the paper is divided into six sections. Relevant works are briefly reviewed
in Section 2. The features of the cross-layer cloud and multiple computer task and the proposed
framework are presented in Section 3. Section 4 presents specific scheduling models. Section 5 gives
the detail algorithms that are contained in the algorithm pool. Section 6 presents the evaluation results
of the experiments. Section 7 concludes our study.

2. Related Work

Under the background of cross-layer cloud computing, researchers have proposed many computer
task scheduling approaches. The works related to the cross-layer cloud that are helpful to our study
will be evaluated in this section.

With the rapid development and application of the cross-layer cloud in actual production,
some scholars have carried out some research on the cloud computer task scheduling framework.
Ergu et al. [7] divided tasks into different task pools and then constructed comparison matrices
according to the task’s network bandwidth requirements, completion time, computational cost and
task credibility. By the method, multiple computer tasks’ scheduling can meet the requirements of
multi-objective tasks. However, when the number of tasks is large, the comparison matrix is larger and
the solution speed is slower. Tang et al. [8] proposed and analyzed a two-sided bidding mechanism
allowing each demander to bid to select a demand resource-price function and each supplier to bid to
select a supply resource-price function. Zhu et al. [9] proposed a universal framework to schedule
tasks and provide resources in the cloud computing systems to improve system performance. It sets
a good example for our work to deal with the challenge in the cross-layer cloud. Wu et al. [10]
proposed a collaborative multiple computer task scheduling architecture, in which heterogeneous
information of nodes was considered and integrated to make decisions. Sun et al. [11] proposed
a real-time and energy-efficient multiple computer task scheduling and optimization framework.
Rao et al. [12] regarded computer task scheduling as a distributed learning task and proposed an
algorithm to efficiently express learning experience as the core of the VM-side learning engine. In
this mechanism, each VM or instance can make any resource request based on its own needs, and
the request can be evaluated and automatically responded to. However, these methods use the
unchangeable task pool to process batch tasks that are not suitable for the task that dynamically joins
the situation. In addition, these frameworks also have the main drawback that the computational
complexity is high and is mainly optimized for isomorphic resources. When the size of resources
increases or heterogeneous resources are used, the performance drops rapidly. This is exactly what the
cross-layer cloud often faces.

There are also some works that study the specific algorithms of computer task scheduling in
the cloud environment. Farahabady et al. [13] explored how resources in the cross-layer-cloud
environment should be used to run bag-of-tasks applications. Considering the deadline and the
cost limitation, Zuo et al. [14] put forward a multi-objective scheduling method oriented by tasks
based on ant colony optimization in a cross-layer cloud environment, with the purpose to optimize the
restricted pool of edge and public cloud computing resources. Yuan et al. [15] proposed a temporal task
scheduling algorithm that combines the energy price of edge cloud resources with the execution price

Sensors 2018, 18, 1671 4 of 20

of public cloud resources. Chang [16] studied the task scheduling algorithm and resource allocation
algorithm to minimize data transmission energy cost in the cross-layer cloud. Zheng et al. [17] focused
on how to improve the performance of social welfare, enlarge cloud bandwidth utilization, as well
as increase the satisfaction ratio of the tenant in their study. The method aims to minimize the
computational cost and time. An optimization model is established, which can obtain the approximate
global optimal solution according to the situation of tasks. The above specific multiple computer
task scheduling methods focus on how to adjust the allocation of resources according to the specific
requirements of a certain service. They do not consider the universal heterogeneity of tasks in an actual
cross-layer cloud system and, therefore, do not meet the diverse needs of cloud users.

Furthermore, traditional methods to solve multi-objectives include the weighting method [18,19],
the restraint method [20] and the linear programming method [21]. In addition, many research
works have studied intelligent optimization algorithms and proposed innovative algorithms
for multi-objective optimization, including multi-objective optimization based on evolutionary
algorithms [22], multi-objective optimization based on particle swarm optimization [23] and
multi-objective optimization based on the ant colony algorithm [24]. Besides, considering multiple
goals and satisfying the impact on task scheduling at the same time, Van et al. [25] proposed a binary
scheduling algorithm based on the key factors in the computing system environment. However, when
the amount of tasks or the type of resources is large, the time required by these algorithms to schedule
resources is quite large. In particular, cloud-edge computing systems often have the characteristics
of a large number of heterogeneous nodes, which makes these algorithms inadequate to meet the
needs of the actual business. Different from previous research, the framework proposed in this
paper pre-processes cloud-edge computing system resources before multi-objective optimization
and combines resources’ heterogeneity characteristics to reasonably divide resources and task types.
Therefore, it can efficiently find out the resource scheduling method to meet the multi-QoS requirements
combined with the multi-objective requirements of users in the heterogeneous resources environment.
This is of great significance for the improvement of cloud-edge computing system performance.

3. General Framework Design

In this section, we analyze the features of the cross-layer cloud and multiple computer tasks firstly,
which includes task scheduling objectives, task types and resource characteristics. Then, based on
these results, a detailed description of the framework is given.

3.1. Task Scheduling Objective

The task scheduling objective is set by a cross-layer computing system to meet the requirements
of certain computer task types and their own goals. The cross-layer computing system, which is
given more flexibility in task scheduling and resource collaboration, is a complex system with many
different objectives in various scenes. Specifically, it can be divided into service level agreement,
energy conservation, reliability and uncertainty.

3.1.1. Service Level Agreement

IoT services issue the Service Level Agreement (SLA) which, as a human-readable document,
is used to give a description of cloud-based IT resources in terms of the guarantees, restrictions
and Quality-of-Service (QoS) features. SLA uses service quality metrics to express measurable QoS
characteristics. The cross-layer computing systems’ mangers put it into these objectives to ensure that
they are fulfilling the contractual QoS requirements that are published in SLAs.

3.1.2. Energy Conservation

Generally, wholesalers will buy products in bulk if the price is low. Similarly, the cross-layer
computing system provides more price options for users. For instance, as we know, both the

Sensors 2018, 18, 1671 5 of 20

unnecessary usage of computational resources and the computing migration between clouds and
sensor clusters consume a large amount of energy [26].

3.1.3. Reliability

Reliability is an important performance measure of cross-layer computing systems and
an important indicator that IoT services must consider. The mission for combining cloud computing
and edge computing is to provide a more efficient method for data processing. At this point,
once errors have appeared, this will bring a devastating disaster to cross-layer IoT services.
Therefore, providing corresponding fault tolerance mechanisms in both cloud computing and edge
computing to improve system reliability is a key issue that cross-layer computing systems must
address [27].

3.1.4. Uncertainty

Controlling uncertainty within an acceptable range is another issue that cross-layer computing
systems need to address. Studying how to measure and control the uncertainty is an indispensable
method to effectively improve the performance of the cross-layer system. For example, the performance
of remote cloud and edge clouds is constantly changing at runtime. If the uncertainty caused of system
performance cannot be accurately measured at this time, the system’s scheduling scheme will be very
difficult to implement and even have a negative effect on tasks’ allocation and operation [28].

3.2. Task Type

The requirements of different computer tasks are transported to the cross-layer system for
processing and scheduling. In general, we divide computer tasks into four aspects to facilitate the
processing and scheduling of computer tasks.

3.2.1. Independent and Dependent Tasks

Dependent task requirements can be divided into different types of tasks or their combinations.
Sometimes, the users’ service needs can be transformed to a single task directly, such as the calculation
service of checking the energy account balance. In addition, sometimes it needs to be divided into
multiple interrelated tasks to operate, e.g., waking up sensors and other devices in smart home can
be decomposed into wake up and initialize different sensors or other devices successively. We define
that a single task as an independent task and the others as dependent tasks (be denoted as a directed
acyclic graph).

3.2.2. Real-Time Tasks and Non-Real-Time Tasks

Based on the time constraint for completion, tasks can be divided into real-time tasks
and non-real-time task. When their deadline is constrained to a certain time, we call them
real-time tasks [29]. Conversely, when their constraint to be completed is infinity, they are called
non-real-time tasks.

3.2.3. Periodic and Aperiodic Tasks

Prediction of the finish time of periodic tasks is available since timeslots between any adjacent
tasks are usually fixed. Therefore, once you know the initial task’s detailed information, you can
calculate the finish time of others. On the contrary, the finish time of non-periodic tasks cannot
be predicted. For instance, some system calibration procedures are typical periodic tasks, and the
processing services for mobile payments are usually aperiodic tasks.

Sensors 2018, 18, 1671 6 of 20

3.2.4. Priority and Non-Priority Tasks

The priority of tasks can be given by the cross-layer computing system or the users directly.
It comes from the agreement between services and the cross-layer computing system or can be
calculated based on task characteristics in a specific system [30]. For example, the deadline of tasks can
be the reason for giving priority. As for the non-priority tasks, they only need to wait to be executed in
normal process queues.

3.3. Resource Characteristics

In the cross-layer computing system, there are two main features that should be considered in the
resource scheduling process, and their differences between the local edge cloud and remoter cloud
data center should be compared. We use virtualization to address those resources that process tasks
in different clouds and dynamic resource provisioning to demonstrate the resource’s characteristics
while provisioning by different clouds.

3.3.1. Virtualization

Virtualization is the foundation of the cross-layer system to provide resilient computing services
and capabilities. Although the virtualization degree of the remote cloud data center is usually
higher than the local edge cloud, we can regard all of them as one big virtualized resource pool.
When providing computing services, multiple Virtual Machines (VMs) or containers are established
directly at hosts in the local edge cloud or remote cloud data center. Then, they are used as the basic
instances of resources to handle tasks rather than physical hosts.

3.3.2. Dynamic Resource Provisioning

The edge cloud can use resources from remote clouds through task migration. In this way,
through migrating tasks from edge clouds to the remote data center or vice versa, resources supported
by the cross-layer computing system can be dynamic and scalable based on the sensor’s demand and
the cloud’s status. Dynamic resource provisioning is one of the main features of the cross-layer system,
which is a significant advantage compared with conventional patterns [31].

3.4. Scheduling Framework

Based on the results of the feature analysis, we design a new multiple computer task scheduling
framework for cross-layer cloud computing systems, and it has the ability to be dynamically
customizable. Figure 2 shows the overview of the scheduling framework, and it works with the
following steps:

Step 1: Demands of different IoT services and applications are decomposed into different computer
task types, and a snapshot is created by the service divider, in which the relationship between tasks is
described by a directed graph.

Step 2: The task analyzer analyzes the features of computer tasks and attributes various labels to
them, including task scheduling objectives, task type, and so forth.

Step 3: The task analyzer distributes the snapshot of tasks to the Scheduling Management
Objectives (SMO) analyzer and task scheduler. Besides, tasks are also distributed to the task scheduler.

Step 4: The SMO analyzer can tell the differences between the objectives of each task. The SMO
analyzer is an important component that we design for our proposed scheduling framework. The SMO
analyzer is responsible for deciding which objectives should be selected. The SMO decision can be
derived from three aspects, i.e., task nature, resource state and system hierarchy. The SMO analyzer
creates a corresponding objective controller form. The objective controller selects objectives from the
objective pool based on the objective controller form.

Step 5: Thisobjective controller monitors the task scheduler to make sure the output of each task
is acceptable.

Sensors 2018, 18, 1671 7 of 20

Step 6: The task scheduler performs arithmetic functions with the algorithms from the
algorithm pool. Then, it sends information from the resource monitor and the related algorithms’
results to the resource scheduler.

Step 7: The resource scheduler allocates resources to these tasks based on the algorithms’ results
from the task scheduler.

Task
Analyzer

Services

Service Level
Agreements UncertaintyRelability

Remote Cloud Resource Pool

Tasks

Service
Divider

SMO
analyzer

SLA
Controller

Relability
Controller

Uncertainty
Controller

Task Scheduler

Create

Resource
Scheduler

Edge Cloud 1
 Resource Pool

Task

Task

Queue VM 1

Resource
Monitor

Resource Pool

Control

Schedule

Objective Pool

Task

Task

Queue VM n

Task

Task

Queue VM 1

Task

Task

Queue VM n
Host 1 Host n

Task

Task

Queue VM 1

Task

Task

Queue VM 2

Task

Task

Queue VM 1

Allocate

Edge Cloud n
Resource Pool

Edge Devices

Algorithm Pool

Algorithm 1 Algorithm 2 Algorithm nAlgorithm n-1

Other
Objectives

Controller

Service Level
Agreements UncertaintyRelability

SMO
analyzer

SLA
Controller

Relability
Controller

Uncertainty
Controller CreateCreCre

ScheScheSchedule

Objective Pool

Task
Analyzer

ServicesTasks

Service
Divider

Task Scheduler

Resource
Scheduler

Resource
Monitor

Control

duleduledule

Allocate

Algorithm Pool

Algorithm 1 Algorithm 2 Algorithm nAlgorithm n-1

Other
Objectives

Controller

Scheduling Model

Bandwidth
Resource Pool

Figure 2. The overview of the scheduling framework.

It is also worth noting that the purpose of the task scheduler is to decide how much of the
resources should be allocated to the task, and the resource scheduler schedules resources to perform
tasks according to the requests from the task scheduler.

4. Specific Examples and Models

To demonstrate our framework in detail, we use our framework to allocate the computing resource
dynamically based on specific tasks. We use Example 1 as the instance of processing an independent
task, and it focuses on controlling the uncertainty. Example 2 is for dependent tasks with the aim of
good system reliability.

We use ζ as the component in the cross-layer cloud computing system. It can be the remote
cloud C0, a certain edge cloud from the edge cloud set {C1, . . . , Cn} or an end sensor or other
device from the end sensors and other devices set {Ed1, . . . , Edn}. Formally, we have ζ ∈ N,
N = {C0, C1, . . . , Cn, Ed1, . . . , Edn}, and consider that the resources in the cross-layer cloud computing
system are CS(). Assume that both the remote and edge cloud in the cross-layer cloud computing
system have many hosts to provide computing resources, which can be divided into many VMs
or containers. Therefore, a given cloud can be regarded as a set of hosts {H1, H2, . . . , Hn−1, Hn},

Sensors 2018, 18, 1671 8 of 20

and hosts’ computing resource can be regarded as the set of VMs {VM1, VM2, . . . , VMn−1, VMn}.
The relationship of the computing resources between the cloud, host and VM can be denoted as follows:

CS(ζ, H1) =
m
∑

i=1
CS(ζ, H1, VMi),

CS(ζ) =
n
∑

i=1
CS(ζ, Hi).

(1)

4.1. Example 1

Example 1 takes the uncertainty as an important objective. It considers that the time-varying
of CPU performance cpij in VM VMij is the reason for the uncertainty in the resource pool. Besides,
the size of a specific task tak cannot be measured accurately. Furthermore, the start time, execution time
and finish time for tasks in the waiting queue are various, as well. Thus, the uncertainty from tasks
should be calculated. We denote c̃pij as the uncertain performance. Similarly, s̃ize(tak) represents the
uncertain task size; s̃t(VMij, tak) represents the uncertain start time of task tak in VMij; ẽt(VMij, tak)

is marked as the uncertain execution time of task tak in VMij; f̃ t(VMij, tak) is marked as the uncertain
finish time of task tak in VMij. Therefore, we have:

cpij = [cpij
−, cpij

+],
size(tak) = [size(tak)

−, size(tak)
+],

(2)

where size(tak)
−, size(tak)

+, cp−ij , cp+ij > 0. The uncertain execution time ẽt(VMij, tak) is:

ẽt(VMij, tak) = [size(tak)
−/cpij

−, size(tak)
+/cpij

+] (3)

Therefore, the uncertain finish time f̃ t(VMij, tak) is:

f̃ t(VMij, tak) = s̃t(VMij, tak)⊕ ẽt(VMij, tak). (4)

In terms of a real-time task scheduling, if the task tak is completed at or earlier than the
deadline, task tak will be finished successfully. The label of task z(VMij, tak) can be determined
by the following principle: 

1, if ((f t(VMij, tak) ≤ dk)

and (tastatus(t)k = 1)),
0, otherwise.

(5)

Thus, the quantity of successfully-finished tasks is to be maximized:

max
|TA|
∑

k=1

|Ha |
∑

i=1

|VMi |
∑

j=1

z(VMij ,tak)

|TA| |
|Ha |
∑

i=1

|VMi |
∑

j=1
,

s.t. : z(VMij, tak) ≤ 1, ∀tai ∈ TA.
(6)

Then, we consider the energy conservation as another task scheduling objective; the sum of energy
consumption in the system should be minimized while scheduling:

min
|Ha |

∑
i=1

∫ f t

st
(α · powi · xt

i + (1− α) · powi · u(t))dt, (7)

where xt
i ∈ {1, 0} is the “power on” status of host hi in time slot t. α is the rate of energy consumption

in an idle host. powj means the overall power consumption of a host. u(t) represents host hi’s CPU
utilization at time t.

Sensors 2018, 18, 1671 9 of 20

4.2. Example 2

In this example, we create a task scheduling objective based on reliability. As there is a small
chance that two hosts can fail at the same time, it is assumed that when the primary copies are in
the host that fails, backup copies will achieve successful completion. We consider the reliability
when a host fails at once, which can be ensured by a Primary/Backup (PB) model. By using the
PB model, any task tak will have a corresponding backup taB

k . If tak has encountered an accident before
it is finished, taB

k will be wakened. To distinguish parameters between primary and backup, we us ()B

to represent backup as taB
k .

The backup task taB
k can be executed either actively or passively. Its execution mode mode(taB

i) is
determined by the following principle:

mode(taB
i) =

{
passive if dk − f tk ≥ et(VMij, tak)

B,

active otherwise.
(8)

where f tk represents the predicted tak end time. Therefore, the actual execution time eta(VMij, tak)
B

of taB
k is: 

et(VMij, tak)
B z(VMij, tak)= 0.

(0, et(VMij, tak)
B] z(VMij, tak)= 1

andmode(taB
i)= active.

0
z(VMij, tak)= 1
andmode(taB

i)= passive.

(9)

The sum of the actual execution time of the backup tasks is to be minimized. Thus, the objective is:

min
|TA|

∑
k=1

|Ha |

∑
i=1

|VMi |

∑
j=1

et(VMij, tak)
B · acB

ij (10)

where acij = 1 when tai is allocated to resource ζ j at time t.

5. Algorithm Design

We discuss three task scheduling algorithms, EASU (Energy-Aware Scheduling under
Uncertainty), RAS (Reliability-Aware Scheduling) and the basic resource provisioning algorithm
in this section. The EASU and RAS algorithms correspond to Example 1 and Example 2 and can be
easily added into the algorithm pool in the architecture we setup.

5.1. EASU Algorithm

To process the uncertainty in the system, WQ, a waiting queue, and UQ, an urgent queue,
are defined. When the tasks’ deadline is urgent in WQ, they will be sent to UQ. We define that a task
is urgent when its laxity Lk [32] reaches the given threshold Ld. The threshold is the time cost to set up
a VM on a shutdown host. We have the EASU pseudocode as follows:

In this Algorithm 1, the uncertainty is measured by the interval number. f t−ijk and f t+ijk represent

the minima and maxima of the estimated finish time. By checking all VMs’ f t−ijk and f t+ijk (as shown
in Lines 4–9), f tmin and f tmax are recorded. If tak’s deadline dk is larger than or equal to f tmax and is
shorter than or equivalent to dk, then the task will be scheduled for a VM that has minimal energy
consumption (as shown in Lines 10–11). If dk is between f tmax and f tmin, EASU will choose a VM
holding the minimal f t+ijk (as shown in Lines 12–13). Otherwise, the task tak will be rejected, while
Li > Ld means that it is feasible to firstly launch a host and accordingly create a new VM to operate tak
(as shown in Lines 15–18). In the resource provisioning algorithm, the function scaleUpResources()
will be introduced.

Sensors 2018, 18, 1671 10 of 20

Algorithm 1: Pseudocode of EASU.

WQ← ∅; UQ← ∅;
foreach new task tak do

f tMAX ← 0; f tMIN ← +∞;
foreach VM VMij do

calculate the minimum of estimated finish time f t−ijk and maximum of estimated f t+ijk
and energy ecijk;

if f t−ijk < f tmin then
f tMIN ← f t−ijk;

if f t+ijk > f tmax then
f tmax ← f t+ijk;

if f tmax ≤ dk then
allocate tak to the VMij with the minimal ecijk;

else if f tmax > dk and f tmin ≤ dk then
allocate tak to the VMij with minimal f t+ijk;

else
if Lk < Ld then

Reject task tak;
else

call function scaleUpResources() and allocate tak to a new VM;

5.2. RAS Algorithm

Example 2 involves using the PB model to ensure the reliability-aware scheduling, and the
primary tasks and backup tasks need to be respectively scheduled. Algorithm 2 shows the pseudocode
of primary scheduling in RAS.

In this algorithm, the top α% hosts holding less primaries are selected as candidate hosts (as shown
in Line 1), firstly. Then, we choose the VM that can complete primary tasks at the earliest time (as shown
in Lines 4–11). If candidate hosts have no VM to complete primary tasks prior to the deadline, the
next top α% hosts will be selected for the convenience of the next round of the search (as shown in
Lines 12–15). In this way, the primary tasks can achieve an even distribution. In the case of no existing
VMs able to accommodate any primary task, the scaleUpResources() function will be called (as shown
in Line 17).

We omitted the backup scheduling algorithm similar to Algorithm 2. It is worth noting that it
is impossible for a backup to schedule on a host that sees the allocation of primary task. In addition,
a certain number of dependent constraints should be integrated into the backup scheduling algorithm.

Sensors 2018, 18, 1671 11 of 20

Algorithm 2: Pseudocode of primaries scheduling in RAS.

Hcandidate ← top α% hosts in Ha;
e f t← +∞; VM← null;
while all hosts in Ha have been scanned do

foreach hi in Hcandidate do
if hi satisfies tai’s scheduling dependent constraints then

foreach VMij in hi.VmList do
calculate the earliest start time esti;
e f tB

i ← estB
i + eB

ikl ;
if e f tB

i < e f t then
e f t← e f tB

i ;
VM← VMij;

if e f t > dk then
Hcandidate ←next top α% hosts in Ha;

else
break;

if e f t > dk then
if scaleUpResources(tak) then

return true;
else

allocate tak to VMij;

else
allocate taB

k to VMij;

5.3. Resource Provisioning Algorithm

There are two functions in the resource provisioning algorithm, scaleUpResources() and
scaleDownResources(), which are proposed based on the prior algorithms.

As shown in Algorithm 3, function scaleUpResources() can select a host with the highest
probability of holding the lowest accommodating ability to VMj (as shown in Lines 3–5). With no such
host being observed, it will migrate the VM (see Lines 7–11). Then, it will be checked if this migrated
VM VMj is able to be added to the host. Thus, the VMj will be created to check if the task is able to
achieve completion on VMj prior to the deadline or not (as shown in Lines 12–15). When the migration
is infeasible or tasks are unable to achieve successful completion, h host hi will be launched, and a
VMij will be created. Subsequently, it is necessary to check if tasks can achieve successful completion
on VMij (as shown in Lines 16–20).

As for the scaleDownResources() function shown in Algorithm 4, the VM will be deleted if its
ideal time exceeds the threshold (as shown in Lines 2–4). Host with no VMs will be shut down
(as shown in Lines 5–7). In the case that all VMs on a host in SH are able to be migrated to one or more
hosts in DH, these VMs will be migrated to a destination host, and the outset host will be closed after
the migration. In contrast, all VMs will fail in migrating when a certain number of VMs is unable to
migrate from the outset host (as shown in Lines 10–21).

Sensors 2018, 18, 1671 12 of 20

Algorithm 3: Pseudocode of scaleUpResources().

select a type of VMj with minimal MIPS if tai can be completed prior to the deadline;
sort hosts in Ha following the descending order of the CPU utilization;
foreach host hi in Ha do

if VMj can be added in host hi then
create VMjk; f indTag← TRUE; break;

if f indTag == FALSE then
search host hs with the lowest CPU utilization;
seek out VMps with minimal MIPS in hs;
foreach host hi except hs in Ha do

if VMps will be added in host hi then
migrate VMps to host hi; break;

if VM VMj will be added in host hs then
create VMjs;
if ti will be completed in VMjs prior to the deadline then

f indTag← TRUE;

if f indTag == TRUE then
start up a host hn, and place it in Ha;
create VMjn on hn;
if tai can be finished in VMjn before its deadline then

f indTag←; TRUE;

Algorithm 4: Pseudocode of scaleDownResources().

SH ← ∅; DH ← ∅;
foreach VMij in the system do

if VMij’s idle time itij > THRESH then
remove VMij from host hi, and delete it;

foreach host hi in Ha do
if no on hi then

shut down host hi, and remove it from Ha;

sort the hosts in Ha in the increment order of CPU utilization;
SH ← Ha; DH ← Ha, and sort DH inversely;
foreach host hi in SH do

shutDownTag← TRUE; AH ← ∅;
foreach VM VMij in hi do

migTag← FALSE;
foreach host hp in DH except hi do

if VMij can be added in hp then
migTag← TRUE; AH ← hp; break;

if migTag == FALSE then
shutDownTag← FALSE; break;

if shutDownTag← TRUE then
migrate VMs in hi to destination hosts; SH ← SH − AH − hi; DH ← DH − hi;
shut down host hi, and remove it from Ha;

Sensors 2018, 18, 1671 13 of 20

6. Framework Implementation

In this section, we conduct our simulation experiments with the simulation platform CloudSim
toolkit and set the parameters of the cloud environment on the basis of Apache CloudStack 4.2.0.
CloudStack is a kind of open source software designed to deploy and manage large networks of virtual
machines, as a highly available, highly scalable Infrastructure as a Service (IaaS) cloud computing
platform. CloudStack has been widely deployed in IoT environment to provide multiple cloud services.
By setting the cloud environment parameters based on CloudStack, it can make our method be more
easily deployed in a real system.

The physical host in CloudSim was equipped with 500 G of disk storage, 3.7 G of memory and
a i3, 3.9-GHz quad-core CPU. Its peak power is 200 W. Each VM has two 23.9-GHz CPU cores and
1.5 G of memory. According to [32], the machines operated with a 1-Gbps Ethernet network. CloudSim
is an extensible simulation toolkit that supports both system and behavior modeling of different
cloud system components [33]. It implements generic application provisioning techniques and can be
extended with ease and limited effort. We can easily simulate different clouds in the IoT environment
based on CloudSim. With the simulation platform CloudSim, we set the “cloudletList()” component
to simulate the workload collected from the sensor clusters. Combining the “CloudSim.clock” and
“CloudSim.processEvent()” components, the operating properties of our method under different
conditions can be sufficiently tested with the simulation environment.

In addition, we set different types of workloads for different test targets. For Example 1, the arrival
rate is determined with the Poisson distribution, and the average amount of the task counts is set as
5000. Considering the features of the realistic workload, intervalTime determines the time interval
between two sequential tasks, and intervalTime = 0.5 s in the study. For Example 2, the workload is
represented by the DAG count, and we assume each task set T(or a DAG job) has random precedence
constraints that are generated by the steps in [34]. The DAG size is determined by the message count
M, and we have M = θ × N, where θ represents the degree of task dependence and N is set as 200.
In the experiments, we test the performance impacts of the workload by setting different DAG counts
and values of θ.

6.1. Parameter Setting and Experimental Results of Example 1

Since Example 1 takes the uncertainty as an important objective, we denote vmUncertainty as
the upper bounds of the uncertainty of VMs in the system. The lower bound and upper bound of the
performance of a VM are shown as follows:

cp−ij = cp+ij × (1−U[0, vmUncertainty]). (11)

where U[0, vmUncertainty] represents an evenly-distributed random variable between zero and
vmUncertainty and cp+ij represents the required capacity for VMij of the CPU.

Based on the real-time nature of the tasks, we define the deadlineBase for controlling the deadline
of a task. It is used to check that the task has a loose or tight deadline:

di = ai + U[deadlineBase, a× deadlineBase]. (12)

where deadlineBase is set at 400 s and a is set at four. The arrival rate is determined with the
Poisson distribution. The intervalTime determines the time interval between two sequential tasks,
and intervalTime = 0.5 s in the study.

The EASU is compared to the algorithm NMEASU and the Earliest Deadline First algorithm
(EDF). NMEASU is a scheduling algorithm that schedules tasks to virtual machines with the earliest
starting time, which we developed based on the OUD-OLBmethod in [35]. The algorithm does not use
virtual machine online migration technology to merge virtual machine resources. In addition, all tasks
to be executed by the algorithm are on the virtual machine. We discuss their following three metrics:

Sensors 2018, 18, 1671 14 of 20

a Guarantee Ratio (GR): This refers to the ratio of tasks completed prior to the deadlines;
b Resource Utilization (RU): This refers to the average host utilization. We denote it as:

RU = (
|TA|

∑
k=1

|Ha |

∑
i=1

|Vi |

∑
j=1

etijk · zijk)/(
|Ha |

∑
i=1

cpi · wti), (13)

where wti represents the active time of host hi in the entire experimental process.
c Total Energy Consumption (TEC): This refers to the total energy consumption by hosts for the

execution of the task set T.

6.1.1. Performance Impact of the Task Deadline

As shown in Figure 3a, all three algorithms’ GR climb as deadlineBase rises, as more tasks will
be completed prior to deadlines, and the mechanism of resource scale-up is not needed. It also can
be found that the GR of EASU and NMEASU is higher than EDF. The reasons can be easily found.
Firstly, more tasks satisfy their deadline because EASU and NMEASU have higher priority. Secondly,
EASU and NMEASU are more flexible and are able to achieve the dynamic allocation of resources to
accommodate more tasks. Finally, EASU takes the uncertainties into consideration, and NMEASU has
a better quality of scheduling.

150 200 250 300 350 400
75

80

85

90

95

100

deadlineBase

G
R

 (
%

)

EASU
NMEASU
EDF

(a)

150 200 250 300 350 400
60

70

80

90

100

deadlineBase

R
U

 (
%

)

EASU
NMEASU
EDF

(b)

150 200 250 300 350 400
2

2.2

2.4

2.6

2.8

3

deadlineBase

T
E

C
 (

×
1

0
5
J
)

EASU
NMEASU
EDF

(c)

Figure 3. Performance impacts of task deadlines. (a) Impact of deadlineBase on GR, (b) Impact of
deadlineBase on RU, (c) Impact of deadlineBase on TEC.

According to Figure 3b, RU of three algorithms grows as deadlineBase rises. It is helpful due
to the fact that the active hosts’ utilization will be higher and more tasks will be completed inside
currently active hosts with no need to start more hosts, leading to looser deadlines. Similarly, since VM
migration is beneficial for strengthening resources in an effective way, resources can achieve effective

Sensors 2018, 18, 1671 15 of 20

utilization, and the RU of EASU is higher than NMEASU. In addition, no scale-down function is
deployed for EDF, causing the minimal RU.

According to Figure 3c, the TEC numbers of EASU, NMEASU and EDF increase as deadlineBase
increases. The reason is that with the rise of deadlineBase, more tasks require consuming more
energy. EASU consumes less energy compared to NMEASU since NMEASU is inefficient in resource
utilization. EDF requires more energy than EASU once deadlineBase exceeds 200 s because it ignores
energy conservation.

6.1.2. Performance Impact of Uncertainty

Figure 4a indicates that the GR of the three algorithms drops as VMUncertainty increases,
especially the EDF’s trend. This is because EDF fails to deploy strategies to manage uncertainties,
which will cause really bad scheduling quality.

0 0.1 0.2 0.3 0.4
80

85

90

95

100

G
R

 (
%

)

vmUncertianty

EASU
NMEASU
EDF

(a)

0 0.1 0.2 0.3 0.4
65

70

75

80

85

90

95

R
U

 (
%

)

vmUncertianty

EASU
NMEASU
EDF

(b)

0 0.1 0.2 0.3 0.4
2.2

2.4

2.6

2.8

3

T
E

C
 (

×
1
0

5
J
)

vmUncertianty

EASU
NMEASU
EDF

(c)

Figure 4. Performance impacts of task deadlines. (a) Impact of VMUncertainty on GR, (b) Impact of
VMUncertainty on RU, (c) Impact of VMUncertainty on TEC.

Based on Figure 4b, RU of the three algorithms presents an obvious decrease as VMUncertainty
increases because the performance of VMs will obviously decline and require more resources of
physical hosts with the rise of VMUncertainty. EASU is better than the others for deploying the
uncertainty-aware and VM migration strategies.

Based on Figure 4c, the TECs of EASU and NMEASU rise because too many tasks need to be
finished urgently prior to the deadlines in VMs when VMUncertainty increases, and this consumes
more resources. EASU requires more energy compared with EDF when VMUncertainty exceeds 0.3.
This is because EASU tends to manage the uncertainty and process more tasks without considering
the energy consumption.

Sensors 2018, 18, 1671 16 of 20

6.2. Parameter Setting and Experimental Results of Example 2

Since Example 2 pays more attention to the dependent tasks, we denote TA or a DAG job as each
task set. According to [34], we set the random precedence constraints of TA. We denote the message
count M and have M = θ × N when the number of dependent tasks N is given. Other parameters of
Example 2 are the same as Example 1.

The RAS with the algorithm NCRAS (NCRAS simulates a non-fault tolerant real-time scheduling
algorithm that is unable to tolerate any failure. It is proposed for the purpose of comparison.) is
compared with the algorithm eFRD, which is an easy approach to conduct primary, as well as backup
scheduling [34]. We discuss their following three metrics.

(1) Guarantee Ratio (GR): This refers to the ratio of tasks completed prior to their deadlines;
(2) Host Active Time (HAT): This refers to the total running time of all hosts in the cross-layer cloud

computing system;
(3) Ratio of Task time and Host time (RTH): This refers to the rate of the execution time of all of the

tasks with respect to the total active time of hosts.

6.2.1. Performance Impact of the DAG Count

As shown in Figure 5a, RAS and NCRAS are basically unchangeable GRs for various DAG counts.
This is due to RAS and NCRAS taking into account the limitless resources in the cross-layer cloud
computing system. The increase in DAG count will make new hosts dynamically attached to more
DAGs. Because eFRD cannot dynamically manage resources, the GR of eFRD drops with the rise of
the DAG count.

50 100 150 200 250 300
20

40

60

80

100

DAG Count

G
R

 (
%

)

RAS
NCRAS
eFRD

(a)

50 100 150 200 250 300
0

1

2

3

4

DAG Count

H
A

T
 (
×

 1
0

6
)

RAS
NCRAS
eFRD

(b)

50 100 150 200 250 300
0.6

0.8

1

1.2

1.4

DAG Count

R
T

H

RAS
NCRAS
eFRD

(c)

Figure 5. Performance impacts of the DAG count. (a) Impact of the DAG count on GR, (b) Impact of
the DAG count on HAT, (c) Impact of the DAG count on RTH.

Sensors 2018, 18, 1671 17 of 20

Figure 5b illustrates that the HAT of RAS is lower than NCRAS, and it proves that RAS does better
compared to NCRAS in the resource management. Furthermore, without a consolidation mechanism
in NCRAS, the highest resource utilization is caused by the idle state of some resources.

In Figure 5c, the RTHs of RAS and NCRAS ascend. The RTH of eFRD rises first and then drops.
This is because it is assumed that its resources are fixed in eFRD. There are enough resources to
accommodate most DAGs (ranging from 50–100). However, a further rise of the DAG count, DAG
count > 100, leads to the saturation of the system, long running times of hosts and a low level of
resource utilization. It also can be observed that the highest RTH is in RAS, since it considers the
consolidated resource mechanism.

6.2.2. Performance Impact of Task Dependence

As shown in Figure 6a, the GR of all the algorithms modestly drops when the θ rises. The reason
is that the schedulability of the system is degraded with the rise of task dependency. This is similar to
the other experiments such as RAS and NCRAS.

2 3 4 5 6 7
90

92

94

96

98

100

θ

G
R

 (
%

)

RAS
NCRAS
eFRD

(a)

2 3 4 5 6 7
0

0.5

1.0

1.5

2.0

2.5

θ

H
A

T
 (
×

 1
0

6
)

RAS
NCRAS
eFRD

(b)

2 3 4 5 6 7
0.4

0.6

0.8

1.0

1.2

1.4

θ

R
T

H

RAS
NCRAS
eFRD

(c)

Figure 6. Performance impacts of Task Dependence. (a) Impact of Task Dependence on GR, (b) Impact
of Task Dependence on HAT, (c) Impact of Task Dependence on RTH.

Figure 6b illustrates that the HAT of NCRAS is the highest. Although the small task dependence
is able to allow more tasks to be executed in parallel and some hosts will be released, as well as
closed at an earlier time, NCRAS does not have the advantage, and it requires more resources.
Hence, the difference in HAT between NCRAS and other algorithms drops with the rise of θ

(this means that the number of tasks supporting parallel execution is decreased).
In Figure 6c, RAS has a higher RTH than the others, and the RTH of all the algorithms drops

when θ rises. The reason is due to the high task dependence, which leads to more execution limitations

Sensors 2018, 18, 1671 18 of 20

and fewer tasks that are available for VMs despite their idleness. It is helpful to save resources and
maintain a lower RTH, since the tasks executed in parallel drop with the rise of θ.

7. Conclusions

In this paper, we propose a new cross-layer cloud scheduling framework for multiple IoT
computer tasks, and the IoT services deployed in cross-layer cloud computing systems can dynamically
select suitable algorithms and use resources more effectively to finish computer tasks with different
objectives. The features of the cross-layer cloud and IoT computer tasks are analyzed, and the
scheduling framework is given based on the analysis. Then, two typical examples of different task
scheduling schemes and their detailed models are proposed based on the framework so as to illustrate
the procedures of using the framework. To cope with two typical examples with our framework,
we proposed EASU, the RAS algorithm and the basic resource provisioning algorithm in Section 4.
We compared them to the approaches previously proposed by [34,35]. The experiments’ results validate
its effectiveness, as well as its superiority. Our further studies will focus on the following aspects:
(1) we will combine some intelligent forecast mechanisms into our framework to make the scheduling
results more precise; and (2) we will extend our framework to improve the ability of QoS estimation
and management since different IoT services usually have different SLA levels.

Author Contributions: Conceptualization, Guanlin Wu and Xiaomin Zhu; Methodology, Guanlin Wu and
Weidong Bao; Software, Xiongtao Zhang; Validation, Guanlin Wu, Xiaomin Zhu and Weidong Bao.; Formal
Analysis, Xiongtao Zhang; Resources, Xiaomin Zhu; Data Curation, Xiongtao Zhang; Writing—Original
Draft Preparation, Guanlin Wu; Writing—Review and Editing, Xiaomin Zhu and Weidong Bao; Visualization,
Xiongtao Zhang; Project Administration, Weidong Bao; Funding Acquisition, Weidong Bao

Funding: This research is supported by the National Natural Science Foundation of China under grant
61572511, 91648204 and 71702186, and the China Postdoctoral Science Foundation under grants 2016M602960
and 2017T100796.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vaquero, L. M.; Rodero-Merino, L. Finding your Way in the Fog: Towards a Comprehensive Definition of
Fog Computing. Acm SIGCOMM Comput. Commun. Rev. 2014, 44, 27–32. [CrossRef]

2. Erl, T.; Puttini, R.; Mahmood, Z. Cloud Computing: Concepts, Technology and Architecture; Prentice Hall Press:
Upper Saddle River, NJ, USA, 2013; pp. 236–239.

3. Mehta, G.; Deelman, E.; Knowles, J.A.; Chen, T.; Wang, Y.; Vöckler, J.; Buyske, S.; Matise, T. Enabling Data
and Compute Intensive Workflows in Bioinformatics. In International Conference on Parallel Processing;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 23–32.

4. Dinh, T.; Kim, Y.; Lee, H. A Location-Based Interactive Model of Internet of Things and Cloud (IoT-Cloud)
for Mobile Cloud Computing Applications. Sensors 2017, 17, 489. [CrossRef] [PubMed]

5. Liu, A.; Huang, M.; Zhao, M.; Wang, T. A Smart High-Speed Backbone Path Construction Approach for
Energy and Delay Optimization in WSNs. IEEE Access 2018, 6, 13836–13854. [CrossRef]

6. Liu, Y.; Ota, K.; Zhang, K.; Ma, M.; Xiong, N.; Liu, A.; Long, J. QTSAC: An Energy-Efficient MAC Protocol
for Delay Minimization in Wireless Sensor Networks. IEEE Access 2018, 6, 8273–8291. [CrossRef]

7. Ergu, D.; Kou, G.; Peng, Y.; Shi, Y.; Shi, Y. The analytic hierarchy process: task scheduling and resource
allocation in cloud computing environment. J. Supercomput. 2013, 64, 835–848. [CrossRef]

8. Tang, L.; He, S.; Li, Q. Double-Sided Bidding Mechanism for Resource Sharing in Mobile Cloud. IEEE Trans.
Veh. Technol. 2017, 66, 1798–1809. [CrossRef]

9. Zhu, X.; Zha, Y.; Liu, L.; Jiao, P. General Framework for Task Scheduling and Resource Provisioning in
Cloud Computing Systems. In Proceedings of the The IEEE Computer Society International Conference on
Computers, Software and Applications, Atlanta, GA, USA, 10–14 June 2016; pp. 664–673.

10. Wu, G.; Chen, J.; Bao, W.; Zhu, X.; Xiao, W.; Wang, J. Towards Collaborative Storage Scheduling using
Alternating Direction Method of Multipliers for Mobile Edge Cloud. J. Syst. Softw. 2017, 134, 29–43.
[CrossRef]

http://dx.doi.org/10.1145/2677046.2677052
http://dx.doi.org/10.3390/s17030489
http://www.ncbi.nlm.nih.gov/pubmed/28257067
http://dx.doi.org/10.1109/ACCESS.2018.2809556
http://dx.doi.org/10.1109/ACCESS.2018.2809501
http://dx.doi.org/10.1007/s11227-011-0625-1
http://dx.doi.org/10.1109/TVT.2016.2565505
http://dx.doi.org/10.1016/j.jss.2017.08.032

Sensors 2018, 18, 1671 19 of 20

11. Sun, D.; Zhang, G.; Yang, S.; Zheng, W.; Khan, S.U.; Li, K. Re-Stream: Real-time and energy-efficient resource
scheduling in big data stream computing environments. Inf. Sci. 2015, 319, 92–112. [CrossRef]

12. Rao, J.; Bu, X.; Wang, K.; Xu, C.Z. Self-adaptive provisioning of virtualized resources in cloud computing.
ACM SIGMETRICS Perform. Eval. Rev. 2011, 39, 321–322.

13. Farahabady, M.H.; Lee, Y.C.; Zomaya, A.Y. Randomized approximation scheme for resource allocation in
hybrid-cloud environment. J. Supercomput. 2014, 69, 576–592.

14. Zuo, L.; Shu, L.; Dong, S.; Chen, Y.; Yan, L. A Multi-objective Hybrid Cloud Resource Scheduling Method
Based on Deadline and Cost Constraints. IEEE Access 2016, PP, 1. [CrossRef]

15. Yuan, H.; Bi, J.; Tan, W.; Zhou, M.; Li, B.H.; Li, J. TTSA: An Effective Scheduling Approach for Delay
Bounded Tasks in Hybrid Clouds. IEEE Trans. Cybern. 2016, PP, 1–11. [CrossRef] [PubMed]

16. Chang, Z.; Gong, J.; Ristaniemi, T.; Niu, Z. Energy-Efficient Resource Allocation and User Scheduling
for Collaborative Mobile Clouds With Hybrid Receivers. IEEE Trans. Veh. Technol. 2014, 65, 9834–9846.
[CrossRef]

17. Zheng, Z.; Gui, Y.; Wu, F.; Chen, G. STAR: Strategy-Proof Double Auctions for Multi-Cloud, Multi-Tenant
Bandwidth Reservation. IEEE Trans. Comput. 2015, 64, 2071–2083. [CrossRef]

18. Qi, L.; Ni, J.; Xia, X.; Wang, H.; Yan, C. A Multi-dimensional Weighting Method for Historical Records in
Cloud Service Evaluation. In Proceedings of the IEEE 4th International Conference on Big Data and Cloud
Computing, Sydney, Australia, 3–5 December 2014; pp. 265–266.

19. Shravan, N.; Vaidehi, V.; Sangeetha, D.; Antony, R.R.; Vaikundam, R.R. Abnormality Detection on Vital
Parameters Using Modified Weighted Average Method in Cloud. In Proceedings of the IEEE International
Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and
Materials, Chennai, India, 2–4 August 2017; pp. 63–68.

20. Xiao, Y.; Wang, J.; Li, Y.; Gao, H. An Energy-Efficient Data Placement Algorithm and Node Scheduling
Strategies in Cloud Computing Systems. J. Comput. Res. Dev. 2013, 42, 59–63.

21. Wang, C.; Ren, K.; Wang, J. Secure Optimization Computation Outsourcing in Cloud Computing: A Case
Study of Linear Programming. IEEE Trans. Comput. 2015, 65, 216–229. [CrossRef]

22. Yusoh, Z.I.M.; Tang, M. Composite SaaS Placement and Resource Optimization in Cloud Computing Using
Evolutionary Algorithms. In Proceedings of the IEEE International Conference on Cloud Computing,
Honolulu, HI, USA, 24–29 June 2012; pp. 590–597.

23. Netjinda, N.; Sirinaovakul, B.; Achalakul, T. Cost optimal scheduling in IaaS for dependent workload with
particle swarm optimization. J. Supercomput. 2014, 68, 1579–1603. [CrossRef]

24. Pacini, E.; Mateos, C.; Garino, C.G. Balancing Throughput and Response Time in Online Scientific Clouds
via Ant Colony Optimization. Adv. Eng. Softw. 2014, 84, 31–47. [CrossRef]

25. Bossche, R.V.D.; Vanmechelen, K.; Broeckhove, J. Cost-Optimal Scheduling in Hybrid IaaS Clouds for
Deadline Constrained Workloads. In Proceedings of the IEEE International Conference on Cloud Computing,
Miami, FL, USA, 5–10 July 2010; pp. 228–235.

26. Tang, J.; Liu, A.; Zhang, J.; Xiong, N.N.; Zeng, Z.; Wang, T. A Trust-Based Secure Routing Scheme Using the
Traceback Approach for Energy-Harvesting Wireless Sensor Networks. Sensors 2018, 18, 751. [CrossRef]
[PubMed]

27. Liu, Y.; Dong, M.; Ota, K.; Liu, A. ActiveTrust: Secure and Trustable Routing in Wireless Sensor Networks.
IEEE Trans. Inf. Forens. Secur. 2017, 11, 2013–2027. [CrossRef]

28. Tao, X.; Ota, K.; Dong, M.; Qi, H.; Li, K. Performance Guaranteed Computation Offloading for Mobile-Edge
Cloud Computing. IEEE Wirel. Commun. Lett. 2017, 6, 774–777. [CrossRef]

29. Liu, Z.; Dong, M.; Zhang, B.; Ji, Y.; Tanaka, Y. RMV: Real-Time Multi-View Video Streaming in Highway
Vehicle Ad-Hoc Networks (VANETs). In Proceedings of the Global Communications Conference, Singapore,
4–8 December 2017; pp. 1–6.

30. Ota, K.; Dong, M.; Gui, J.; Liu, A. QUOIN: Incentive Mechanisms for Crowd Sensing Networks. IEEE Netw.
2018, PP, 1–6. [CrossRef]

31. Wu, G.; Bao, W.; Zhu, X.; Xiao, W.; Wang, J. Optimal Dynamic Reserved Bandwidth Allocation for
Cloud-Integrated Cyber-Physical Systems. IEEE Access 2017, PP, 1. [CrossRef]

32. Chen, H.; Zhu, X.; Guo, H.; Zhu, J.; Qin, X.; Wu, J. Towards energy-efficient scheduling for real-time tasks
under uncertain cloud computing environment. J. Syst. Softw. 2015, 99, 20–35. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2015.03.027
http://dx.doi.org/10.1109/ACCESS.2016.2633288
http://dx.doi.org/10.1109/TCYB.2016.2574766
http://www.ncbi.nlm.nih.gov/pubmed/27411233
http://dx.doi.org/10.1109/TVT.2016.2525821
http://dx.doi.org/10.1109/TC.2014.2346204
http://dx.doi.org/10.1109/TC.2015.2417542
http://dx.doi.org/10.1007/s11227-014-1126-9
http://dx.doi.org/10.1016/j.advengsoft.2015.01.005
http://dx.doi.org/10.3390/s18030751
http://www.ncbi.nlm.nih.gov/pubmed/29494561
http://dx.doi.org/10.1109/TIFS.2016.2570740
http://dx.doi.org/10.1109/LWC.2017.2740927
http://dx.doi.org/10.1109/MNET.2017.1500151
http://dx.doi.org/10.1109/ACCESS.2017.2769665
http://dx.doi.org/10.1016/j.jss.2014.08.065

Sensors 2018, 18, 1671 20 of 20

33. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; Rose, C.A.F.D.; Buyya, R. CloudSim: A toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Softw. Pract. Exp. 2010, 41, 23–50. [CrossRef]

34. Qina, X.; Jiangb, H. A novel fault-tolerant scheduling algorithm for precedence constrained tasks in real-time
heterogeneous systems. Parallel Comput. 2006, 32, 331–356. [CrossRef]

35. Huang, D.; Yuan, Y.; Zhang, L.; Zhao, K. Research on Tasks Scheduling Algorithms for Dynamic and
Uncertain Computing Grid Based on a+bi Connection Number of SPA. J. Softw. 2009, 4, 1102–1109. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1016/j.parco.2006.06.006
http://dx.doi.org/10.4304/jsw.4.10.1102-1109
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	General Framework Design
	Task Scheduling Objective
	Service Level Agreement
	Energy Conservation
	Reliability
	Uncertainty

	Task Type
	Independent and Dependent Tasks
	Real-Time Tasks and Non-Real-Time Tasks
	Periodic and Aperiodic Tasks
	Priority and Non-Priority Tasks

	Resource Characteristics
	Virtualization
	Dynamic Resource Provisioning

	Scheduling Framework

	Specific Examples and Models
	Example 1
	Example 2

	Algorithm Design
	EASU Algorithm
	RAS Algorithm
	Resource Provisioning Algorithm

	Framework Implementation
	Parameter Setting and Experimental Results of Example 1
	Performance Impact of the Task Deadline
	Performance Impact of Uncertainty

	Parameter Setting and Experimental Results of Example 2
	Performance Impact of the DAG Count
	Performance Impact of Task Dependence

	Conclusions
	References

