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Abstract: Inspired by the recent spatio-temporal action localization efforts with tubelets (sequences
of bounding boxes), we present a new spatio-temporal action localization detector Segment-tube,
which consists of sequences of per-frame segmentation masks. The proposed Segment-tube detector
can temporally pinpoint the starting/ending frame of each action category in the presence of
preceding/subsequent interference actions in untrimmed videos. Simultaneously, the Segment-tube
detector produces per-frame segmentation masks instead of bounding boxes, offering superior spatial
accuracy to tubelets. This is achieved by alternating iterative optimization between temporal action
localization and spatial action segmentation. Experimental results on three datasets validated the
efficacy of the proposed method, including (1) temporal action localization on the THUMOS 2014
dataset; (2) spatial action segmentation on the Segtrack dataset; and (3) joint spatio-temporal action
localization on the newly proposed ActSeg dataset. It is shown that our method compares favorably
with existing state-of-the-art methods.

Keywords: action localization; action segmentation; 3D ConvNets; LSTM

1. Introduction

Joint spatio-temporal action localization has attracted significant attention in recent years [1-18],
whose objectives include action classification (determining whether a specific action is present),
temporal localization (pinpointing the starting/ending frame of the specific action) and spatio-temporal
localization (typically bounding box regression on 2D frames, e.g., [6,12]). Such efforts include local
feature based methods [1], convolution neural networks (ConvNets or CNNs) based methods [2,14,15],
3D ConvNets based methods [4,11] and its variants [19-21]. Recently, long short-term memory (LSTM)
based recurrent neural networks (RNNs) are added on top of CNNs for action classification [5] and
action localization [7].

Despite the successes of the prior methods, there are still several limiting factors impeding
practical applications. On the one hand, a large number of methods [2,3,5,13] conduct action recognition
only on trimmed videos, where each video contains only one action without interferences from other
potentially confusing actions. On the other hand, many methods [1,7-11,15-17] emphasize only on
temporal action localization with untrimmed videos, without depicting the spatial locations of the
target action in each video frame.

Although there are several tubelet-style (which outputs sequences of bounding boxes)
spatio-temporal action localization efforts [6,12,22], they are restricted to trimmed video only.
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For practical applications, untrimmed videos are much more prevalent, and sequences of bounding
boxes might not offer enough spatial accuracy, especially for irregular shapes. This motivated us
to propose a practical spatio-temporal action localization method, which is capable of spatially and
temporally localizing the target actions with per-frame segmentation in untrimmed videos.

With applications in untrimmed videos with improved spatial accuracy in mind, we propose the
spatio-temporal action localization detector Segment-tube, which localizes target actions as sequences
of per-frame segmentation masks instead of sequences of bounding boxes.

The proposed Segment-tube detector is illustrated in Figure 1. The sample input is an untrimmed
video containing all frames in a pair figure skating video, with only a portion of these frames belonging
to a relevant category (e.g., the DeathSpirals). Initialized with saliency [23] based image segmentation
on individual frames, our method first performs temporal action localization step with a cascaded
3D ConvNets [4] and LSTM, and pinpoints the starting frame and the ending frame of a target
action with a coarse-to-fine strategy. Subsequently, the Segment-tube detector refines per-frame spatial
segmentation with graph cut [24] by focusing on relevant frames identified by the temporal action
localization step. The optimization alternates between the temporal action localization and spatial
action segmentation in an iterative manner. Upon practical convergence, the final spatio-temporal
action localization results are obtained in the format of a sequence of per-frame segmentation
masks (bottom row in Figure 1) with precise starting/ending frames. Intuitively, the temporal action
localization and spatial action segmentation naturally benefit each other.

Input

Spatio-temporal Action Localization

Temporal Action Localization < Spatial Action Segmentation

I

Iterative Optimization

Segment-tube

>
4 e

i BRI SR I S R N S

Output

Background ’% DeathSpirals ——————| Background

Figure 1. Flowchart of the proposed spatio-temporal action localization detector Segment-tube. As the
input, an untrimmed video contains multiple frames of actions (e.g., all actions in a pair figure skating
video), with only a portion of these frames belonging to a relevant category (e.g., the DeathSpirals).
There are usually irrelevant preceding and subsequent actions (background). The Segment-tube
detector alternates the optimization of temporal localization and spatial segmentation iteratively.
The final output is a sequence of per-frame segmentation masks with precise starting/ending frames
denoted with the red chunk at the bottom, while the background are marked with green chunks at
the bottom.

We conduct experimental evaluations (in both qualitative and quantitative measures) of the
proposed Segment-tube detector and existing state-of-the-art methods on three benchmark datasets,
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including (1) temporal action localization on the THUMOS 2014 dataset [25]; (2) spatial action
segmentation on the SegTrack dataset [26,27]; and (3) joint spatio-temporal action localization on
the newly proposed ActSeg dataset, which is a newly proposed spatio-temporal action localization
dataset with per-frame ground truth segmentation masks, and it will be released on our project website.
The experimental results show the performance advantage of the proposed Segment-tube detector and
validate its efficacy in spatio-temporal action localization with per-frame segmentation.

In summary, the contributions of this paper are as follows:

o  The spatio-temporal action localization detector Segment-tube is proposed for untrimmed videos,
which produces not only the starting/ending frame of an action, but also per-frame segmentation
masks instead of sequences of bounding boxes.

e  The proposed Segment-tube detector achieves collaborative optimization of temporal localization
and spatial segmentation with a new iterative alternation approach, where the temporal
localization is achieved by a coarse-to-fine strategy based on cascaded 3D ConvNets [4] and LSTM.

o To exactly evaluate the proposed Segment-tube and to build a benchmark for future research,
a new ActSeg dataset is proposed, which consists 641 videos with temporal annotations and
per-frame ground truth segmentation masks.

The remainder of the paper is organized as follows. In Section 2, we review the related work.
In Section 3, we present the problem formulation for spatio-temporal action localization with per-frame
segmentation. In Section 4, the experimental results are presented with additional discussions. Finally,
the paper is concluded in Section 5.

2. Related Works

The joint spatio-temporal action localization problem involves three distinctive tasks simultaneously,
i.e., action classification, temporal action localization, and spatio-temporal action localization.
Brief reviews of related works on these three topics are first provided. In addition, relevant works in
video object segmentation are also introduced in this section.

2.1. Action Classification

The objective of action classification is to determine the presence of a specific action (e.g., jump and
pole vault) in a video. A considerable amount of previous efforts are limited to action classification in
manually trimmed short videos [2,3,5,13,28,29], where each video clip contains one and only one action,
without possible interferences from either proceeding/subsequent actions or complex background.

Many methods [1] rely on handcrafted local invariant features, such as histograms of image
gradients (HOG) [30], histograms of flow (HOF) [31] and improved Dense Trajectory (iDT) [28].
Video representations are typically built on top of these features by the Fisher Vector (FV) [32] or Vector
of Linearly Aggregated Descriptors (VLAD) [33] to determine action categories. Recently, CNNs based
methods [2,14,15] have enabled the replacement of handcrafted features with learned features,
and they have achieved impressive classification performance. 3D ConvNets based methods [4,19-21]
are also proposed to construct spatio-temporal features. Tran et al. [4] demonstrated that 3D
ConvNets are good feature learning machines that model appearance and motion simultaneously.
Carreira et al. [19] proposed a new two-stream Inflated 3D ConvNet (I3D) architecture for action
classification. Hara et al. [21] discovered that 3D architectures (two-stream I3D/ResNet/ResNeXt)
pre-trained on Kinetics dataset outperform complex 2D architectures. Subsequently, long short-term
memory (LSTM)-based recurrent neural networks (RNNs) are added on top of CNNS5s to incorporate
longer term temporal information and better classify video sequences [5,7].

2.2. Temporal Action Localization

Temporal action localization aims at pinpointing the starting and ending frames of a specific
action in a video. Much progress has been made recently, thanks to plenty of large-scale
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datasets including the THUMOS dataset [25], the ActivityNet dataset [34], and the MEXaction2
dataset [35]. Most state-of-the-art methods are based on sliding windows [1,11,32,36,37], frame-wise
predictions [7,15,38,39], or action proposals [22,40,41].

The sliding window-based methods typically exploit fixed-length temporally sliding windows to
sample each video. They can leverage the temporal dependencies among video frames, but they
commonly lead to higher computational cost due to redundancies in overlapping windows.
Gaidon et al. [36] used sliding window classifiers to locate action parts (actoms) from a sequence
of histograms of actom-anchored visual features. Oneata et al. [32] and Yuan et al. [37] both
used sliding window classifiers on FV representations of iDT features. Shou et al. [11] proposed
a sliding window-style 3D ConvNet for action localization without relying on hand-crafted features or
FV/VLAD representations.

The frame-wise predictions-based methods classifies each individual video frame (i.e., predicts
whether a specific category of action is present), and aggregate such predictions temporally.
Singh et al. [38] used a frame-wise classifier for action location proposal, followed by a temporal
aggregation step that promotes piecewise smoothness in such proposals. Yuan et al. [15] proposed
to characterize the temporal evolution as a structural maximal sum of frame-wise classification
scores. To account for the dynamics among video frames, RNNs with LSTM are typically employed.
In [7,39], an LSTM produced detection scores of activities and non-activities based on CNN features at
every frame. Although such RNNs can exploit temporal state transitions over frames for frame-wise
predictions, their inputs are frame-level CNN features computed independently on each frame.
On contrary in this paper, we leverage 3D ConvNets with LSTM to capture the spatio-temporal
information from adjacent frames.

The action proposals-based methods leverage temporal action proposals instead of video clips for
efficient action localization. Jain et al. [22] produced tubelets (i.e., 2D + t sequences of bounding boxes)
by merging a hierarchy of super-voxels. Yu and Yuan [40] proposed the actionness score and a greedy
search strategy to generate action proposals. Buch et al. [41] introduced a temporal action proposals
generation framework that only needs to process the entire video in a single pass.

2.3. Spatio-Temporal Action Localization

There are many publications about the spatio-temporal action localization problem [6,12,42—-45].
Soomro et al. [43] proposed a method based on super-voxel. Several methods [6,44] formulated
spatio-temporal action localization as a tracking problem with object proposal detection at each video
frame and sequences of bounding boxes as outputs. Kalogeiton et al. [12] proposed an action tubelet
detector that takes a sequence of frames as input and produces sequences of bounding boxes with
improved action scores as outputs. Singh et al. [45] presented an online learning framework for
spatio-temporal action localization and prediction. Despite their successes, all the aforementioned
spatio-temporal action localization methods require trimmed videos as inputs, and only output
tubelet-style boundaries of an action, i.e., sequences of bounding boxes.

In contrast, we propose the spatio-temporal action localization detector Segment-tube for
untrimmed videos, which can provide per-frame segmentation masks instead of sequences of bounding
boxes. Moreover, to facilitate the training of the proposed Segment-tube detector and to establish
a benchmark for future research, we introduce a new untrimmed video dataset for action localization
and segmentation (i.e., ActSeg dataset), with temporal annotations and per-frame ground truth
segmentation masks.

2.4. Video Object Segmentation

Video object segmentation aims at separating the object of interest from the background
throughout all video frames. Previous video object segmentation methods can be roughly categorized
into the unsupervised methods and the supervised counterparts.
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Without requiring labels/annotations, unsupervised video object segmentation methods
typically exploit features such as long-range point trajectories [46], motion characteristics [47],
appearance [48,49], or saliency [50]. Recently, Jain et al. [51] proposed an end-to-end learning
framework which combines motion and appearance information to produce a pixel-wise binary
segmentation mask for each frame.

Differently, supervised video object segmentation methods do require user annotations
of a primary object ( i.e., the foreground), and the prevailing methods are based on label
propagation [52,53]. For example, Marki et al. [52] utilize the segmentation mask of the first frame to
construct appearance models, and the inference for subsequent frames are obtained by optimizing an
energy function on a regularly sampled bilateral grid. Caelles et al. [54] adopted the Fully Convolutional
Networks (FCNs) to tackle video object segmentation, given the segmentation mask for the first frame.

However, all the above video object segmentation methods assume that the object of interest
(or primary object) consistently appears throughout all video frames, which is reasonable for
manually trimmed video dataset. On the contrary, for practical applications with user-generated,
noisy untrimmed videos, this assumption seldom holds true. Fortunately, the proposed Segment-tube
detector eliminates such a strong assumption, and it is robust to irrelevant video frames and can be
utilized to process untrimmed videos.

3. Problem Formulation

Givenavideo V = {f;}; consisting of T frames, our objective is to determine whether a specific
actionk € {1,...,K} appears in V, and if so, temporally pinpoint the starting frame f; (k) and ending
frame f, (k) for action k. Simultaneously, a sequence of segmentation masks B = {bt}{e:(kg(k) within such
frame range should be obtained, with b; being a binary segmentation label for frame f;. Practically,
b; consists of a series of superpixels by = {bt,i}lNzty with N; being the total number of superpixels in
frame f;.

3.1. Temporal Action Localization

A coarse-to-fine action localization strategy is implemented to accurately find the temporal
boundaries of the target action k from an untrimmed video, as illustrated in Figure 2. This is achieved
by a cascaded 3D ConvNets with LSTM. The 3D ConvNets [4] consists of eight 3D convolution layers,
five 3D pooling layers, and two fully connected layers. The fully-connected 7th layer activation feature
is used to represent the video clip. To exploit the temporal correlations, we incorporate a two-layer
LSTM [5] using the Peephole implementation (with 256 hidden states in each layer) with 3D ConvNets.

Coarse Action Localization. The coarse action localization determines the approximate temporal
boundaries with a fixed step-size (i.e., video clip length). We first generate a set of U saliency-aware
video clips {u j}juzl with variable-length (e.g., 16 and 32 frames per video clip) sliding window with
75% overlap ratio on the initial segmentation B, of video V (by using saliency [23]), and proceed to
train a cascaded 3D ConvNets with LSTM that couples a proposal network and a classification network.

The proposal network is action class-agnostic, and it determines whether any actions
(Vk € {1,...,K}) are present in video clip u;. The classification network determines whether a specific
action k is present in video clip u;. We follow [11] to construct the training data from these video clips.
The training details of the proposal network and classification network are presented immediately
below in Section 4.2.

Specifically, we train the proposal network (a 3D ConvNets with LSTM) to score each video clip
T
uj with a proposal score pfm = [pf (1), pf " (0)} € R2. Subsequently, a flag label l{ '@ is obtained for
each video clip u;,
1, if pro 1) > pro 0),

0, otherwise,
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where [ ]fl” = 1 denotes the video clip u; contains an action (Vk € {1,...,K}), and l]f la _ 0 otherwise.
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Figure 2. Overview of the proposed coarse-to-fine temporal action localization. (a) coarse localization.
Given an untrimmed video, we first generate saliency-aware video clips via variable-length sliding
windows. The proposal network decides whether a video clip contains any actions (so the clip is added
to the candidate set) or pure background (so the clip is directly discarded). The subsequent classification
network predicts the specific action class for each candidate clip and outputs the classification scores
and action labels. (b) fine localization. With the classification scores and action labels from prior coarse
localization, further prediction of the video category is carried out and its starting and ending frames
are obtained.

A classification network (also a 3D ConvNets with LSTM) is further trained to predicta (K + 1)-

dimensional classification score p]c»l” for each clip that contains an action {u i |l]f a1 }, based on which

a specific action label l;pe € {k}£_, and score v;pe € [0,1] for u; are assigned,

e = cla ), 2
j arg, max_ p; (k) @)
spe cla

o = max pj (k). 3)

where category 0 denotes the additional “background” category. Although the proposal network
prefilters most “background” clips, a background category is still needed for robustness in the
classification network.

Fine Action Localization. With the obtained per-clip specific action labels I;"* and v/, the fine
action localization step predicts the video category k* (k* € {1,...,K}), and subsequently obtains its
starting frame f;(k*) and its ending frame f, (k*). We calculate the average of specific action scores v;p ¢

over all video clips for each specific action label 5", and take the label k* with the maximum average
predicted score as the predicted action, as illustrated in Figure 3.

Subsequently, we average specific action scores v’/ of each frame f; for the label k* in different
video clips to obtain the action score a;( f;) for frame f;. By selecting an appropriate threshold we can
obtain the action label I; for frame f;. The action score a;(f;|k*) and the action label I; for frame f;
specifically are determined by

spe
0.,
i = b
t(ft = /
{jlj € {fi € uj}}1

(4)
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k*, if ,
I = { i ar > ®)

0, otherwise,

where |{-}| denotes the cardinality of set {-}. We empirically set v = 0.6. f;(I;) and f.(I;) are assigned
as the starting and ending frame of a series of consecutive frames sharing the same label I;, respectively.

Background
Action 1
Action 2
Action K

Video clip 1
Video clip 2
Video clip 3

Video clip U

Average .

Max (k" =2)

Figure 3. The diagrammatic sketch on the determination of video category k* from video clips.

3.2. Spatial Action Segmentation

With the obtained temporal localization results, we further conduct spatial action segmentation.
This problem is cast into a spatio-temporal energy minimization framework,

EB)= Y. Di(by))+ Y SI(byibya)+ Y. SH(by,bu), )

St/iEV st,irst,rle'/\[i St,i/Smn 6./\7,'

where s;; is the ith superpixel in frame f;. D;(b;;) composes the data term, denoting the cost of
labeling s; ; with the label b; ; from a color and location based appearance model. S::Ztm (bti, b)) and
Sinter (b i, by, ) compose the smoothness term, constraining the segmentation labels to be spatially
coherence from a color based intra-frame consistency model, and temporally consistent from a color
based inter-frame consistency model, respectively. ; is the spatial neighborhood of s; ; in frame f;.
N is the temporal neighborhood of s; ; in adjacent frames f;_1 and f; 1. We compute the superpixels
by using SLIC [55], due to its superiority in terms of adherence to boundaries, as well as computational
and memory efficiency. However, the proposed method is not tied to any specific superpixel method,
and one can choose others.

Data Term. The data term D;(b; ;) defines the cost of assigning superpixel s, ; with label b; ; from
an appearance model, which learns the color and location distributions of the action object and the
backgrounds of video V. With a segmentation B for V, we estimate two color Gaussian Mixture
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Models (GMMs) and two location GMMs for the foregrounds and the backgrounds of V, respectively.
The corresponding data term D;(b; ;) based on color and location GMMs in Equation (6) is defined as

Di(by,) = —log (Bh{t!(s1,) + (1 - Bh<(s1,)) @)

where hiff denotes the two color GMM, i.e., h§ for the action object and h{” for the background

across video V. Similarly, hf,‘zf denotes the two location GMMs for the action object and the background
f and location hfft’f

Smoothness Term. The action segmentation labeling B should be spatially consistent in each
frame, and meanwhile temporally consistent throughout video V. Thus, we define the smoothness
term by assembling an intra-frame consistency model and an inter-frame consistency model.

The intra-frame consistency model enforces the spatially adjacent superpixels in the same action
frame to have the same label. Due to the fact that the adjacent superpixels either have similar color or
distinct color contrast [56], the well-known standard contrast-dependent function [56,57] is exploited
to encourage the spatially adjacent superpixels with similar color to be assigned with the same label.

Then, S;:Z”“(bt,i, bt ) in Equation (6) is defined as

across V, i.e., h[ and h. B is a parameter controlling the contributions of color by

3), (8)

S;:Ztm (bt’i' bt’n) =1 [bt,i?ébt/n]exp(_ | |Ct,i — Ctn

where the characteristic function 1y, ,p, | =1 when by; # bt,n, and 0 otherwise. by ; and by, are the
segmentation labels of superpixels s;; and s; ,, respectively. ¢ is the color vector of the superpixel.

The inter-frame consistency model encourages the temporally adjacent superpixels in consecutive
action frames to have the same label. As the temporally adjacent superpixels should have similar color
and motion, we use the Euclidean distance between the motion distributions of temporally adjacent
superpixels along with the above contrast-dependent function in Equation (8) to constrain the labels of
them to be consistent. In Equation (6), S;:Zt‘fr(bt,i, by n) is then defined as

S (by i, b)) = Ly, 2y, (€XP(=leti — Cmn 3) + exp(—|[h}% =y 4[12), )
where h™ is the histogram of oriented optical flow (HOOF) [58] of the superpixel.
Optimization. With D;(b;;), S"(b; ;, by ) and S7" (by ;, byy,,), we leverage graph cut [24] to

minimize the energy function in Equation (6), and can obtain a new segmentation B for video V.

3.3. Iterative and Alternating Optimization

With an initial spatial segmentation B, of video V using saliency [23], the temporal action
localization first pinpoints the starting frame f; (k) and the ending frame fse(k) of a target action k
from an untrimmed video V by a coarse-to-fine action localization strategy, and then the spatial action
segmentation further produces the spatial per-frame segmentation B by focusing on the action frames
identified by the temporal action localization. With the new segmentation B of video V, the overall
optimization alternates between the temporal action localization and spatial action segmentation.
Upon the practical convergence of this iterative process, the final results B are obtained. Naturally,
the temporal action localization and spatial action segmentation benefit each other. In the experiments,
we terminate the iterative optimization after practical convergence is observed, i.e., the relative
variation between two successive spatio-temporal action localization results are smaller than 0.001.

4. Experiments and Discussion

4.1. Datasets and Evaluation Protocol

We conduct extensive experiments on multiple datasets to evaluate the efficacy of the proposed
spatio-temporal action localization detector Segment-tube, including (1) temporal action localization
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task on the THUMOS 2014 dataset [25]; (2) spatial action segmentation on the SegTrack dataset [26,27];
and (3) spatio-temporal action localization task on the newly proposed ActSeg dataset.

The average precision (AP) and mean average precision (mAP) are employed to evaluate the
temporal action localization performance. If an action is assigned the same category label with the
ground truth, and, simultaneously, its predicted temporal range overlaps the ground truth at a ratio
above a predefined threshold (e.g., 0.5). Such temporal localization of an action is deemed correct.

The intersection-over-union (IoU) value is utilized to evaluate the spatial action segmentation
performance, and it is defined as
|Seg N GT|

ou = 12811511
oU |Seg UGT|’

(10)
where Seg denotes the binary segmentation result obtained by a detector, GT denotes the binary
ground truth segmentation mask, and | - | denotes the cardinality ( i.e., pixel count).

4.2. Implementation Details

Training the proposal network. The proposal network is to predict each video clip u; either

contains an action (l]f l 1) or the background (l{ L 0), and thus can remove the background video
clips, as described in Section 3.1. We build the training data as follows to train the proposal network.
For each video clip from trimmed videos, we assign its action label as 1, denoting it contains some
action k (Vk € {1,...,K}). For each video clip from untrimmed videos with temporal annotations,
we set its label by using the IoU value between it and the ground truth action instances. If the IoU
value is higher than 0.75, we assign the label as 1, denoting that it contains an action; if the IoU value is
lower than 0.25, we assign the label as 0, denoting that it does not contain an action.

The 3D ConvNets [4] components (as shown in Figure 2) are pre-trained on the training split of
the Sports-1M dataset [59], and used as the initializations of our proposal and classification networks.
The output of the softmax layer in the proposal network is of two dimensions, which corresponds to
either an action or the background. In all the following experiments, the batch size is fixed at 40 during
the training phase, and the initial learning rate is set at 10~* with a learning rate decay of factor 10
every 10 K iterations.

For the LSTM component, the activation feature of the fully-connected 7th layer of the 3D
ConvNets [4] is used as the input to the LSTM. The learning batch size is set to be 32, where each sample
in the minibatch is a sequence of ten 16-frame video clips. We use RMSprop [60] with a learning rate of
10~*, a momentum of 0.9 and a weight decay factor of 5 x 10~*. The number of iterations depends on
the size of the dataset, and will be elaborated in the following temporal action localization experiments.

Training the classification network. The classification network is to further predict whether each
video clip u; contains a specific action (l;p ¢
data for the classification network is built similarly to that of the proposal network. The only difference
is that, for the saliency-aware positive video clip, we assign its label as a specific action category
ke {1,...,K} (e.g., “LongJump”), instead of 1 for training the above proposal network.

As to the 3D ConvNets [4] (see Figure 2), we train a classification model with K actions plus one
additional “background” category. The learning batch size is fixed at 40, the initial learning rate is
10~ and the learning rate is divided by 2 after every 10 K iterations.

To train the LSTM, the activation feature of the fully-connected 7th layer of the 3D ConvNets [4] is
fed to the LSTM. We fix the learning batch size at 32, where each sample in the minibatch is a sequence
of ten 16-frame video clips. We also use RMSprop [60] with a learning rate of 10~#, a momentum of
0.9 and a weight decay factor of 5 x 107,

€ {k}X_,) or not, as described in Section 3.1. The training

4.3. Temporal Action Localization on the THUMOS 2014 Dataset

We first evaluate the temporal action localization performance of the proposed Segment-tube
detector on the THUMOS 2014 dataset [25], which is dedicated to localizing actions in long untrimmed
videos involving 20 actions. The training set contains 2755 trimmed videos and 1010 untrimmed
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validation videos. For the 3D ConvNets training, the fine-tuning stops at 30 k for the two networks.
For the LSTM training, the number of training iterations is 20 k for two networks. For testing, we use
213 untrimmed videos that contain relevant action instances.

Five existing temporal action localization methods, i.e., AMA [1], FTAP [9], ASLM [10], SCNN [11],
and ASMS [15], are included as competing algorithms. AMA [1] combines iDT features and frame-level
CNN features to train a SVM classifier. FTAP [9] leverages high recall temporal action proposals.
ASLM [10] uses a length and language model based on traditional motion features. SCNN [11]
is an end-to-end segment-based 3D ConvNets framework, including proposal, classification and
localization network. ASMS [15] localizes actions by searching for the structured maximal sum.

The mAP comparisons are summarized in Table 1, which demonstrate that the proposed
Segment-tube detector evidently outperforms the five competing algorithms with IoU being 0.3 and 0.5,
and is marginally inferior to SCNN [11] with IoU threshold being 0.4. We also present the qualitative
temporal action localization results of the proposed Segment-tube detector for two action instances of
the testing split from the THUMOS 2014 dataset in Figure 4, with IoU threshold being 0.5.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Input:
an untrimmed video

| l
‘ i
| |
i Ground truth: 1088 112.8s i
i action label Background ‘% CliffDiving—— Background i
‘ |
| |
l Output: i
i temporal |
' action localization 109.4 s 1136 s |
‘ :
Input:

an untrimmed video

| |
1 i
| 3
! Ground truth: 5385 70.9s i
} action label Background \% LongJump——|  Background i
| 3
| |
| Output: i
i temporal 1
| action localization 53.1s 713s }
| [E— ) }
i Background} LongJump } Background |

(b) LongJump

Figure 4. Qualitative temporal action localization results of the proposed Segment-tube detector for
two action instances, i.e., (a) CliffDiving and (b) LongJump, in the testing split of the THUMOS 2014
dataset, with intersection-over-union (IoU) threshold being 0.5.
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Table 1. Mean average precision (mAP) comparisons of five state-of-the-art temporal action localization
methods and our proposed Segment-tube detector on the THUMOS 2014 dataset [25]. mAP values are
in percentage. Higher values are better.

IoU Threshold 0.3 0.4 0.5

AMA [1] 146 121 85
FTAP [9] - - 13.5
ASLM [10] 200 232 152
SCNN [11] 363 287 19.0
ASMS [15] 365 278 17.8
Segment-tube  39.8 272 20.7

4.4. Spatial Action Segmentation on the SegTrack Dataset

We then evaluate the performance of spatial action segmentation from trimmed videos on the
SegTrack dataset [26,27]. The dataset contains 14 video sequences with lengths varying from 21 to
279 frames. Every frame is annotated with a pixel-wise ground-truth segmentation mask. Due to
the limitation of the competing methods [47,48,52], a subset of eight videos are selected, all of which
contains only one action object.

We compare our proposed Segment-tube detector with three state-of-the-art video object
segmentation methods, i.e., VOS [48], FOS [47] and BVS [52]. VOS [48] automatically discovers
and groups key segments to isolate the foreground object. FOS [47] separates the foreground object
based on an efficient initial foreground estimation and a foreground-background labeling refinement.
BVS [52] obtains the foreground object via bilateral space operations.

The IoU value comparison of VOS [48], FOS [47], BVS [52] and our proposed Segment-tube
detector on the SegTrack dataset [26,27] is presented in Table 2. Some example results of them are
given in Figure 5, where the predicted segmentation masks are visualized by polygons with red edges.
As is shown in Table 2, our method significantly outperforms VOS [47] and FOS [47], and performs
better than BVS [52] with a small margin of 2.3. The performance of BVS [52] could possibly due to its
exploitation of the first-frame segmentation mask to facilitate the subsequent segmentation procedure.

Table 2. Intersection-over-union (IoU) value comparison of three state-of-the-art video object
segmentation methods (VOS [48], FOS [47] and BVS [52]) and our proposed Segment-tube detector on
the SegTrack dataset [26,27]. IoU values are in percentage. Higher values are better.

Algorithm VOS [48] FOS[47]1 BVS[52] Segment-Tube

bird_of_paradise 924 81.8 91.7 93.1
birdfall2 494 17.5 63.5 66.7
frog 75.7 54.1 76.4 70.2

girl 64.2 54.9 79.1 81.3
monkey 82.6 65.0 85.9 86.9
parachute 94.6 76.3 93.8 90.4
soldier 60.8 39.8 56.4 64.5
worm 62.2 72.8 65.5 75.2

Average 72.7 57.8 76.5 78.8
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VOS FOS BVS Segment-tube

bird_of_paradise

birdfall2
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girl

monkey

parachute

soldier

worm

Figure 5. Example results of three state-of-the-art video object segmentation methods (VOS [48],
FOS [47] and BVS [52]) and our proposed Segment-tube detector on the SegTrack dataset [26,27].

4.5. Spatio-Temporal Action Localization on the ActSeg Dataset

ActSeg dataset. To fully evaluate the proposed spatio-temporal human action localization
detector and to build a benchmark for future research, a new ActSeg dataset is introduced in this
paper, including both untrimmed and trimmed videos. The list of action classes are presented in
Table 3, including single person actions (e.g., “ArabequeSpin”, “PoleVault”, “NoHandWindmill”) and
multi-person actions (e.g., “DeathSpirals”).

Table 3. Statistics on total, untrimmed and trimmed videos in each category of the ActSeg dataset.

Number Total Videos  Untrimmed Videos Trimmed Videos
ArabequeSpin 68 58 10
CleanAndJerk 73 61 12

UnevenBars 67 57 10
SoccerPenalty 82 67 15
PoleVault 72 59 13
TripleJump 62 50 12
NoHandWindmill 68 57 11
DeathSpirals 78 66 12
Throw 71 56 15

Sum 641 531 110

All raw videos are downloaded from YouTube. Typical untrimmed videos contain approximately
10-120 s of irrelevant frames prior and/or after the specific action. The trimmed videos are pruned
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so that they only contain relevant action frames. We have recruited 30 undergraduate students to
independently decide whether a specific action is present (positive label) in the original video or
not (negative label). If four or more positive labels are recorded, the original video is accepted in
the ActSeg dataset and the time boundaries of the action are determined as follows. Each accepted
video is independently distributed to 3~4 undergraduate students for manual annotation (for both
the temporal boundaries and per-frame pixel-wise segmentation labels) and an additional quality
comparison is carried out for each accepted video by a graduate student and the best annotation is
selected as the ground truth.

The complete ActSeg dataset contains 641 videos in nine human action categories. There are
446 untrimmed videos and 110 trimmed videos in its training split, 85 untrimmed videos and no
trimmed video in its testing split. Table 3 presents detailed statistics for the untrimmed/trimmed video
distribution in each category. Some typical samples with their corresponding ground truth annotations
are illustrated in Figure 6.

[R——— [ —— [—
DAUPHINSEMARY C( 3 -I—%)-—%i
| — ? L ?

505

e

=

ArabequeSpin

CleanAndJerk

UnevenBars

. o0
TripleJump ‘ £=

- v
NoHandWindmill | ; = e = g : f ( :
P e ety IRSAT v 2 T B A s X g et : ' |
DeathSpirals 1 -

Figure 6. Sample frames and their ground truth annotations in the ActSeg dataset. Action frames are

marked by green check marks and the corresponding boundaries are marked by polygons with red
edges. The background (irrelevant) frames are marked by red cross marks.

Mixed Dataset. To maximize the number of videos in each category (see Table 3), a mixed dataset
is constructed by combining videos of identical action categories from multiple datasets. The training
split of the mixed dataset consists of all 446 untrimmed videos and 110 trimmed videos in the proposed
ActSeg dataset, 791 trimmed videos from the UCF-101 dataset [61], and 90 untrimmed videos from the
THUMOS 2014 dataset [25]. The testing split of the mixed dataset consists of all the 85 untrimmed
videos from the testing split of the proposed ActSeg dataset.

Temporal Action Localization. SCNN [11] and ARCN [8] are used as competing temporal
action localization methods. All three methods are trained on the training split of the mixed dataset.
For the 3D ConvNets, the fine-tuning stops at 20 k for the proposal and classification networks.
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For LSTM training, the number of training iterations is 10 k for the two networks. Table 4 presents
the mAP comparisons of SCNN [11], ARCN [8] and our proposed Segment-tube detector on the
testing split of the mixed dataset, with IoU threshold being 0.3, 0.4, and 0.5, respectively. The results
show that our proposed Segment-tube method achieves the best mAP with all three IoU thresholds.
These manifest the efficacy of the proposed coarse-to-fine action localization strategy and also the
Segment-tube detector.

Table 4. Mean average precision (mAP) comparisons of two temporal action localization methods
(SCNN [11] and ARCN [8]) and our proposed Segment-tube detector on the testing split of the mixed
dataset, with intersection-over-union (IoU) threshold being 0.3, 0.4, and 0.5, respectively. mAP values
are in percentage. Higher values are better.

IoU Threshold 0.3 0.4 0.5

ARCN [8] 39.1 338 172
SCNN [11] 41.0 359 184
Segment-tube 426 375 212

Spatial Action Segmentation. The spatial action segmentation task is implemented entirely on
the ActSeg dataset, with three competing video object segmentation methods, i.e., VOS [48], FOS [47]
and BVS [52]. The IoU score comparisons of them are summarized in Table 5. Figure 7 presents some
example results of them, where the predicted segmentation masks are visualized by polygons with red
edges. Note that the IoU scores are computed only on frames that contain the target action, which are
localized by the temporal action localization of the proposed Segment-tube detector.

_ VOS R FOS R BVS - _Segment-tu‘bfm
ArabequeSpin [: E: E: =
CleanAndJerk V 7‘
UnevenBars
SoccerPenalty
PoleVault
TripleJump
NoHandWindmill -\ ‘é ‘5 ‘é -
* 5 R £ -— B 5 - - -
DeathSpirals §§ 2\ & §\

mow e e e

Figure 7. Example results of three video object segmentation methods (VOS [48], FOS [47] and BVS [52])
and our proposed Segment-tube detector on the ActSeg dataset.
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The results in Table 5 demonstrate that the Segment-tube detector evidently outperforms VOS [48],
FOS [47], and the label propagation based method BVS [52]. On the videos of PoleVault and TripleJump
categories, the IoU scores of all the methods are low, which is mainly due to severe occlusions.

Because existing methods either implement temporal action localization or spatial action
segmentation, but never achieve both of them simultaneously, we do not include performance
comparisons of joint spatio-temporal action localization with per-frame segmentations. To supplement
this, we further present the qualitative spatio-temporal action localization results of the proposed
Segment-tube for two action instances in the ActSeg dataset (testing split) in Figure 8.

Input:
an untrimmed video

Ground truth: Frame 265 Frame 320
action label Background ‘% ArabequeSpin —>‘ Background
Output:
spatio-temporal
action localization Frame 275 Frame 307

Background ‘% ArabequeSpin —>‘ Background

Input: i: 3t B : 3 i) B “;; g B :
an untrimmed video AT (- ,»"/'f \E./ A j/ {’/; ' Y

Ground truth: Frame 98 Frame 252

action label

Background \%NoHandWindmill—ﬂ Background

Output: ) /LE' e NI) 4 ,i b Lkl gl

spatio-temporal
action localization Frame 110 Frame 252

Background ‘% NoHandWindmill —>‘ Background

(b) NoHandWindmill

Figure 8. Qualitative spatio-temporal action localization results of the proposed Segment-tube for two
action instances, i.e., (a) ArabequeSpin and (b) NoHandWindmill, in the testing split of the ActSeg
dataset, with intersection-over-union (IoU) threshold being 0.5.

To summarize, the experimental results on the above three datasets reveal that the Segment-tube
detector produces superior results to existing state-of-the-art methods, which verifies its ability of
collaboratively and simultaneously implementing spatial action segmentation and temporal action
localization with untrimmed videos.
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Table 5. Intersection-over-union (IoU) value comparisons of three video object segmentation methods
(VOS [48], FOS [47] and BVS [52]) and our proposed Segment-tube detector on the ActSeg dataset.
IoU values are in percentage. Higher values are better.

Video VOS [48] FOS[47] BVS[52] Segment-Tube
ArabequeSpin 53.9 82.5 64.0 83.4
CleanAnd]Jerk 20.1 50.0 85.9 87.8

UnevenBars 12.0 40.3 59.0 56.5
SoccerPenalty 54.4 38.5 59.8 54.7
PoleVault 389 41.2 42.6 49.8
TripleJump 30.6 36.1 33.5 58.4
NoHandWindmill 77.1 73.3 81.8 87.9
DeathSpirals 1 66.7 77.9 66.5
Throw 33.8 2 58.7 56.2
Average 35.8 47.8 62.6 66.8

4.6. Efficiency Analysis

The segment-tube detector is highly computational efficient, especially comparing with other
approaches that fuse multiple features. Most video clips containing pure background are eliminated
by the proposal network, thus the computational cost with the classification network is significantly
reduced. On a NVIDIA (NVIDIA Corporation, Santa Clara, CA, USA) Tesla K80 GPU with 12 GB
memory, the amortized time of processing one batch (approximately 40 sampled video clips) is
approximately one second. Video clips have variable length and 16 frames are uniformly sampled from
each video clip. Each input for the 3D ConvNets is a sampled video clip of dimension 3 x 16 x 171 x 128
(RGB channels x frames x width x height).

5. Conclusions

We propose the spatio-temporal action localization detector Segment-tube, which simultaneously
localizes the temporal action boundaries and per-frame spatial segmentation masks in untrimmed
videos. It overcomes the common limitation of previous methods that either implement only temporal
action localization or just (spatial) video object segmentation. With the proposed alternating iterative
optimization scheme, temporal localization and spatial segmentation could be achieved collaboratively
and simultaneously. Upon practical convergence, a sequence of per-frame segmentation masks with
precise starting/ending frames are obtained. Experiments on three datasets validate the efficacy of the
proposed Segment-tube detector and manifest its ability to handle untrimmed videos.

The proposed method is currently dedicated to spatio-temporal localization of a single specific
action in untrimmed videos, and we are planning to extend it to simultaneous spatio-temporal
localization of multiple actions with per-frame segmentations in our future work. One potential
direction is the generation of multiple action category labels in the classification network of the
coarse action localization step, followed by independent fine action localization and spatial action
segmentation for each action category.
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Abbreviations

The following abbreviations are used in this manuscript:

CNNs Convolutional Neural Networks
ConvNets Convolutional Neural Networks

13D Inflated 3D ConvNet

ResNet Deep Residual Convolutional Neural Networks
LSTM Long-Short Temporal Memory

RNNs Recurrent Neural Networks

HOG Histograms of Image Gradients

HOF Histogram of Flow

iDT improved Dense Trajectory

FV Fisher Vector

VLAD Vector of Linearly Aggregated Descriptors
FCNs Fully Convolutional Networks

GMMs Gaussian Mixture Models
HOOF Histogram of Oriented Optical Flow

AP Average Precision

mAP mean Average Precision

IoU Intersection-over-Union

RGB Red Green Blue
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