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Abstract: Due to the increasing importance of reliability and availability of electric traction drives
in Railway applications, early detection of faults has become an important key for Railway traction
drive manufacturers. Sensor faults are important sources of failures. Among the different fault
diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is
presented. Such strategy is composed of an observer-based approach for direct current (DC)-link
voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors
and a hardware redundancy solution for speed sensors. None of them requires any hardware
change requirement in the actual traction drive. All the fault detection and isolation approaches
have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a
commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace
applications, Railway applications do not need instantaneous detection, and the diagnosis is validated
in a short time period for reliable decision. Combining the different approaches and existing hardware
redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the
sensors installed in the traction drive.

Keywords: sensor fault diagnosis; diagnostic observer; fault injection; railway traction drive;
frequency analysis

1. Introduction

In the last few decades, electric drives have become more important with the increase of
machinery electrification and electric vehicles. Moreover, in Railway applications, the availability of
the traction drive is directly linked to the availability of the complete system, as a train could stop
in case of a failure in the traction drive. Maintenance activities have an important influence on the
availability of the system, being an ideal maintenance the one which prevents a failure [1], based
on the health of the system. A Fault Diagnosis is needed in order to detect faults and implement a
Condition-Based Maintenance.

Fault diagnosis functionalities or tools can differentiate between some industrial applications and
companies from others. With fault diagnosis, we refer to the sequence of actions needed to detect,
locate, and identify the fault mode in a system. Moreover, the severity of the fault can be obtained.
This is known in the literature as Fault Detection and Diagnosis (FDD) [2,3]. If the fault is only being
detected and located, the approach is called Fault Detection and Isolation (FDI) [4]. In this case,
the specific fault mode or the severity is not established.

Different FDI approaches have been presented in the literature. In [5], a classification between
model-based and model free approaches is done. Quantitative model-based FDI approaches, also
referred as Model-based FDI, are based on an analytical redundancy, so the measured value is compared
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to a value obtained from the model. The difference between both values is called residual, and it should
be close to zero in fault-free cases. A comparison among the different Model-based FDI approaches is
presented in [6].

In this research, on-board Model-based FDI approaches are proposed and implemented in a
commercial Traction Control Unit (TCU) for a tram. In complex systems, a fault can concern several
signals, being a Model-Based FDI a suitable solution to improve detection sensitivity [7]. The model
of the traction drive is already available, as it is defined at the beginning of the design phase for
performance simulation, so a Model-based FDI can be validated during this period too. In addition,
the design of FDI approaches based on models can benefit from the knowledge and models gathered
during the common design phase of the system.

On the other hand, as model-free approaches need a large quantity of historical data, on-board
diagnosis has limitation due to computational requirements [8]. On-board diagnosis is closer to
physical systems, improving the diagnosis celerity and reducing the data communications costs.
Moreover, in moving systems, the communication to remote diagnosis cannot be executed at high
frequencies and on-board data storage is limited. Thus, this research is focused on Model-based FDI
approaches implemented in a commercial TCU for a tram.

Once a fault occurs, system performance deteriorates from the nominal zone to the degraded zone.
Thus, a Model-based FDI for early detection of faults in traction drive elements, before the system
passes from degraded mode to failure, is an important point to increase the availability and reliability
of the system. The types of faults in traction drives can be classified as sensor, actuator, and process
faults [9]. Fault Detection and Isolation (FDI) approaches have been implemented in electric drives,
mainly for sensors [10,11], electric machines [12,13] and power converters [14,15]. Traction control
strategy needs the sensor feedback for properly operation, so a faulty sensor can suppose a loss of
availability and performance deterioration [16]. This research is focused on sensor fault detection and
isolation in a traction drive.

In [9] a review of FDI methods for sensor faults in aerospace applications is presented. Recently,
an integrated diagnosis for aerospace application was presented in [17], which includes a sensor fault
diagnosis and performance degradation estimation. There are several recent publications in sensor
diagnosis for different applications in electric and hybrid vehicles [18–20], mainly in order to increase
safety and availability. However, the publications in Railway systems are reduced and limited to
test benches without commercial control units, observer-based FDI for sensor faults are proposed
in [2,21,22].

The aim of this article is to propose an integral FDI solution for sensors in a Railway Traction
drive, based on different FDI approaches. The applied approaches do not imply any hardware change.
Railway applications are not safety-critical systems as aerospace systems. In aerospace applications,
it is critical to react instantaneously to the fault, in order to activate a fault tolerant solution. On the
other hand, in Railway applications, the control system can stop and restart the traction unit in
seconds maintaining the motion of the train. Thus, the proposed approaches in this article for Railway
application should be evaluated during a short time period in order to confirm the fault detection.

The most suitable FDI approach for each sensor has been selected, based on the following factors:
algorithm complexity, hardware and software resources available in the traction drive, tuning difficulty
due to parameter variation/uncertainties and reliability. A simple model for an observer, avoiding
several motor parameter variation during operation [23], the available hardware redundancy and low
computational algorithms, which can be executed in the TCU without demanding an increase of the
execution period, are the preferred choices.

Among the FDI solutions for DC-link voltage and catenary current sensor, an observer-based FDI
approach based on the input filter is proposed. In [21], a similar solution is presented, as an adequate
solution for real time implementation, which avoids problems in the modelling of the power converter
or the need of a FPGA-based FDI [24], allowing an easier implementation in the Digital Signal Processor
available in the TCU. In [25], an Extended Kalman Filter is implemented for FDI, based on induction
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motor model. The author concludes that the performance of the approach deteriorates at very low
speeds and it is affected by parameter variation. The proposed solution in this article does not require
demanding hardware and software resources for real time implementation, due to the simplicity of the
model of the input filter, in comparison to models including a power converter or an electric machine.
Furthermore, among the observer-based approaches, Luenberger observer could be more adequate for
industrial applications due to the possibility to simplify its algorithms [26]. In conclusion, the proposed
solution is justified due to lower algorithm complexity, lower parameter variation and uncertainties of
the input filter in comparison to more complex motor model, capability of the TCU and reliability of
Luenberger observer.

In the Railway Traction drive studied, only two phase measurements are available. Thus, low
computational cost FDI approaches for phase current sensor, such as those based on the sum of three
current measurements cannot be applied [27]. There are few studies with just two phase measurements
which analyze offset and gain faults, as is summarized in [28]. This work proposes a bank of observers
for an induction motor based drive, using a Sliding Mode Observer and a High Gain Observer. In [29]
a Sliding Mode observer is proposed for phase current sensor fault reconstruction for a Permanent
Magnet Synchronous motor based drive. Both research works use the motor model and they assume
that motor parameters are known and constants. On the other hand, in [30], a compensation of the
oscillation generated due to phase current sensor fault is presented. Moreover, the frequency of the
oscillation allows to the ability to distinguish between offset and gain fault. The extraction of the
oscillation can be done by applying to current components id and iq, a low pass filter and a passband
filter. The passband filter will be centered in the fundamental frequency of motor stator current for
offset faults, or at twice this frequency for gain faults. Despite the limitations of this approach, as it
is not possible to isolate faults between both phase current sensors, it allows to reutilize filters and
control strategy algorithm already implemented in the traction control unit. Thus, it requires lower
computational resources compared to the aforementioned observer-based approaches. On the other
hand, as it does not depend on the motor model, it does not need an online motor parameter adaptation
to avoid performance deterioration, as these parameters change during operation [23]. In conclusion,
the proposed solution is considered the most suitable for the Railway Traction drive, due to lower
algorithm complexity in comparison to a bank of observers or a Kalman filter, the reutilization of
available control and filter algorithms, capability of the TCU, and the reliability of the detection.

Finally, in case of the speed sensor, due to the hardware redundancy already available in the
Railway Traction drive configuration, observer-based FDI approaches for speed sensor faults [31], have
not been implemented. Mainly, due the reliability of the hardware redundancy, being the detection
decoupled from parameter variation and uncertainties, as well as the low computational cost and TCU
capability, the solution based on hardware redundancy has been proposed.

Previous works in sensor FDI in Railway applications have been validated in simulation [2,32] or
in an experimental test bench [21,22], but without commercial TCU, and they do not include all the
sensors installed in a railway traction drive.

In contrast to previous works, a commercial Railway control unit was used for
Hardware-in-the-loop simulation (HIL). The HIL platform is composed of a Real Time Simulator
and a Traction Control Unit (TCU) for a Railway application. The TCU is a commercial unit for a
tram developed by CAF Power & Automation (Spain). Thus, the FDI algorithms were implemented
together with the same control software utilized for a real tram application.

The paper has the following structure: Section 2 presents the Railway traction drive description
and problem statement. Section 3 presents the integral sensor fault diagnosis structure. Section 4
proposes a FDI approach for DC-link voltage and catenary current sensors. Section 5 presents a
FDI approach for motor phase current sensors. In Section 6, an approach for speed sensor based on
hardware redundancy is presented. In Section 7 the validation in a HIL platform is presented. Finally,
the discussion and conclusions are given.
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2. Railway Traction Unit Description and FDI Strategy Objectives

There are different traction unit topologies but this research has been applied to the traction unit
shown in Figure 1.
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Figure 1. Railway traction unit.

The traction unit is supplied from a 750 V DC catenary. The traction unit can be divided into:

• Main and pre-charge contactors, represented as K1 and K3.
• Input filter, composed of LF, CB and RF, with functions being the catenary current ripple reduction,

protection against catenary voltage changes, and a DC-link voltage setting.
• Braking unit given by IGBT T7 and braking resistor.
• IGBT-based inverter that supplies two induction motors in parallel.
• Traction control unit, where software for the control strategies, protections and alarms, is executed.

The list of sensors in the traction unit is given in Table 1. The objective of the integral supervision
is to present FDI approaches based on hardware and analytical redundancy, without including
additional sensors.

Table 1. Summary of sensors in the Railway unit.

Sensor Description

vcat Catenary voltage sensors
icat Catenary current sensor
iret Return current to catenary sensor
vbus DC-link voltage sensor
icrw Braking unit current sensor
iu,v Motor phase current sensors

Encoder 1,2 Motor speed sensors

3. Integral Sensor Fault Diagnosis Structure

The proposed Integral Sensor Fault Diagnosis strategy provides the most suitable solution for
each sensor, based on the architecture of the traction unit shown in Figure 1. In some cases, the addition
of an additional sensor might be a new solution, more suitable, but it can have drawbacks too, due to
new hardware or software requirements for the Traction control unit. Thus, approaches which provide
analytical or hardware redundancy without hardware changes are proposed.

Among the several FDI strategies developed for the traction drive, the ones presented in this
article are shown in Figure 2, and explained in following sections. These strategies are centered in
the FDI for DC-link voltage, catenary current, motor phase current and speed sensors. Solutions
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for the rest of sensor (catenary voltage, return current, and crowbar current) are not discussed here,
as they are based on similar FDI approaches. Catenary voltage sensor faults can be isolated using
hardware redundancy, since more than one sensor is installed in the train. Return current sensor
faults are isolated using the redundancy with catenary current sensors. Finally, crowbar current sensor
fault detection can be performed during braking with the observer based FDI approach presented in
Section 4. With the combination of different FDI approaches, sensor faults can be isolated.
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Figure 2. Integral Sensor Fault Diagnosis structure for traction unit.

The different FDI strategies are executed in parallel. A suitable feedback gain selection for
observer based FDI, makes residual for detecting catenary current sensor faults sensitivity low to
DC-link voltage sensor faults, and residual for detecting DC-link voltage sensor faults sensitivity low
to catenary current sensor faults. Thus, both residuals are decoupled.

In order to avoid any false detection, as observer based residual sensitivity depends on observer
gains selection, a procedure is proposed to implement the integral diagnosis strategy for FDI in current
and voltage sensors.

The estimation of fault severity is not deeply described in this article. In case of current and
voltage sensors faults, a previous fault injection and analysis, for developing an enhanced Failure
mode and effects analysis (FMEA) is needed [33]. This analysis links the amount of deviation of the
sensor with the root failure mode. Then statistical tools as likelihood ratio are applied in order to
estimate the fault severity.

4. FDI Approach for DC-Link Voltage Sensor and Catenary Current Sensor

Several FDI approaches were presented for DC-link sensors. In [34], a comparison between power
and estimated motor input power is used for DC-link sensor fault FDI. This method has limitations
for low speed and it depends on the stator resistance and inverter losses estimation. In [25] an
Extended Kalman filter is proposed for DC-link voltage sensor FDI. This method is based on the motor
model, which needs accurate parameter configuration and has high computational costs. On the other
hand, [21] proposes an Observer-based FDI method, which is not dependent on the motor model. It is
based on a Luenberger observer [35] applied to a single phase PWM rectifier input filter. These kind of
strategies has the advantage of modelling the input LC filter of the traction drive, which has a linear
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model, based on manageable first order differential equations. In [22], a Sliding mode observer (SMO)
is proposed instead of a linear gain observer.

Taking into account the solutions presented in the literature and their advantages and drawbacks,
a FDI approach that is independent of motor parameters and based on the input filter of the traction
unit was proposed.

4.1. Input Filter System Model

Similar to previous publications [36], the model of the input filter in state space is presented in
(1), being xT =

[
icat vbus

]
, uT =

[
vcat iinv icrw

]
and yT =

[
icat vbus

]
. The iinv value is

not directly measured, but it is calculated from T1, T3, and T5 switches states and iu and iv current
sensors measurements.

dx
dt =

[
− RF

LF
− 1

LF
1

CB
0

]
x +

[
1

LF
0 0

0 − 1
CB
− 1

CB

]
u

y =

[
1 0
0 1

]
x.

(1)

Before designing the observers, the observability and controllability of the system, given by (1)
was checked. The controllability for a linear system is given if Expression (2) was fulfilled, n being the
dimension of the state vector x. The rank obtained was 2, so it can be concluded that the system is
fully controllable.

rank
(

B
... AB

)
= n (2)

The next step was to check the observability of the system, given if Expression (3) is fulfilled. The
rank is 2, so it can conclude that the system is fully observable.

rank

 C
· · ·
AC

 = n (3)

Based on [37], the detectability and isolability analysis was done for the configuration represented
in (1). It was assumed that the fault modes were additive and constant during the time window.
In Table 2, the x in the detectable column represents that the fault mode was detectable. The x in each
fault column represents that the fault is isolable respect to each row, whereas the 0 represents that the
fault mode is not isolatable.

Table 2. Diagnosability analysis for sensor faults for a time window of two samples.

Detectable ficat fvbus fvcat ficrw finv

ficat x 0 0 x x x
fvbus x 0 0 0 x x
fvcat x 0 0 0 x x
ficrw x 0 0 x 0 0
finv x 0 0 x 0 0

Thus, from the results presented in Table 2, it can be concluded for example that it is not possible
to isolate an additive fault in sensor vbus from an additive fault in sensor vcat. The same happens for
isolating a fault in sensor icrw from a fault in iinv, or isolating a fault in sensor vbus from a fault in sensor
icat without any other redundancy apart from the system given in state space representation (1).

In the following subsection, a FDI approach based on a bank of observers for vbus and icat was
proposed [36], providing analytical redundancy to solve one of the previously mentioned isolation
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problems. Although the diagnosability analysis has been done for additive fault modes, in the
following FDI strategy both fault modes, additive and multiplicative, will be analysed, as offset and
gain faults will be injected.

4.2. FDI Strategy for DC-Link Voltage and Catenary Current Sensors

In order to isolate DC-Link voltage sensor faults from catenary current sensor faults, a bank of two
Luenberger observers was proposed. Observers are based on the model of input filter system in (1), and
in consequence, the strategy is independent from the motor model. The input filter model is simpler
than the motor model and it has fewer uncertainties and parameters, so the observer implementation
was easier and it had less computational requirements.

A different feedback strategy for each observer is used depending on the fault that is being
detected. If the detection is focused on DC-Link sensor faults, the observer equations for DC-link
voltage are given in (4), for C1 = [1 0] and y1 = icat.

.
x̂(t) = Ax̂(t) + Bu(t) + L(y1(t)− C1 x̂(t))

ŷ1(t) = C1 x̂(t).
(4)

In Figure 3, the observer model for DC-link voltage sensor FDI is presented. As it can be seen in
(4), the observer does not take into account the vbus measured, so the v̂bus estimated is not influenced by
the DC-link voltage sensor fault. Thus, in the case of a faulty vbus sensor, the fault will be detected and
isolated in the residual ricat

vbus = v̂bus − vbus. On the other hand, the observer estimation is influenced by
a vcat sensor fault, so hardware redundancy of this sensor, available in distributed railway traction
configurations in the train should be used to discard the vcat sensor fault.
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Figure 3. Diagnostic observer for DC link voltage sensor FDI.

The system dynamic is given by the poles obtained solving the equation presented in (5). Normally
the closed loop poles are fixed to be between three and six times faster than the open loop poles [22].
Higher dynamics make the observer more sensitive to measurement noises. Thus, the L gain matrix is
obtained with the poles placement method. Closed loop poles have been chosen to be five times faster
than open loop poles.

|sI− (A + LC)| = 0. (5)

The traction system and the sensor faults injection blocks have been modelled in Matlab-Simulink.
Based on the most common sensor fault modes [9] and information from the CAF Power & Automation
maintenance team, gain (scaling), and offset (bias and drift) faults have been modelled, as shown in
Figure 4. Disconnection faults were not considered, since the drive protection system shuts itself down
as quickly as possible, when overcurrents and overvoltages, due to hard faults, are detected. The
available time interval between the fault occurrence and system shut down does not allow for any
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FDI task execution. The fault injection model allows injecting different sensor fault modes easily and
quickly. Fault injection has been previously used in electric drives applications [38]. The aim of FDI in
this work was early detection, before the system passes from degraded zone to failure.
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Figure 4. Sensor fault injection.

The real vbus, obtained from the modelled system, the sensor measured vbus, and the observer
estimated v̂bus are displayed for an offset sensor fault in Figure 5 and gain sensor fault in Figure 6.
Despite the faulty measurement of vbus sensor, the estimated v̂bus follows the real value, as the
estimation does not depend on this sensor. Furthermore, the filtered residual

∣∣ricat
vbus

∣∣ is shown too.
Residual ricat

vbus is obtained from comparison of vbus measurement and estimated v̂bus. Thus, the increase
of the residual can be seen when offset or gain faults are injected in vbus sensor, because the estimated
value is decoupled from vbus sensor measurement, as measured value is not use for feedback loop,
so the faulty sensor is easily detected.
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Figure 5. (a) Direct current (DC)-link voltage for 20 V offset fault injection in vbus sensor at 6 s; (b)
∣∣∣ricat

vbus

∣∣∣
filtered from difference between measured and estimated vbus.
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Once, the fault is detected, the isolability of the sensor is analysed. It has to be taken into account
that a faulty DC-Link voltage sensor is not the only one that can change the value of ricat

vbus. Different
fault modes are injected in other sensors in the system, and the residual ricat

vbus is monitored. Thus,
an offset fault in phase current sensor iu, generates an oscillation in system variables, but the estimated
v̂bus keeps on following the real value, and the effect on the average residual is negligible compared to
faulty vbus sensor measurement.

In case of an offset fault injection in sensor icat, an oscillation arises during a transient, as it is
shown in Figure 7, but after 50 ms, estimated v̂bus follows the real value. The effect on the residual
ricat

vbus is low, compared to a vbus sensor fault, so a suitable threshold can avoid false vbus sensor fault
detection and isolation. Furthermore, the fault detection and isolation decision is taken after the
residual overpasses the threshold continuously during a short time period, so this allows filtering
transient values in the residual.
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The only shortcoming of this approach occurs when a vcat sensor fault needs to be detected and
isolated. The effect in the estimated v̂bus and ricat

vbus, shown in Figure 8, is similar to the one generated
by a vbus sensor fault. In this case, information coming from other traction drives in the distributed
railway traction system should be analysed, to avoid wrong decisions. In addition to this information,
in case of vcat sensor fault, a transient in the îcat arises, which does not occur in case of vbus sensor fault,
as it is shown in Figure 9. The faulty sensor logic decision is taken when the residual overpasses the
threshold, which should be above it permanently during a predefined time. This produces a delay in
the detection, which is not so critical in this application, but decreases the false detection risk due to
abrupt changes in the residuals, produced by measurement noises.
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Figure 9. (a) Catenary current for 20 V offset fault injection in vbus sensor at 6 s; (b) Catenary current
for 20 V offset fault injection in vcat sensor at 6 s.

Based on the residual obtained during fault injection in steady state, and the likelihood ratio
calculation, it is possible to estimate the fault severity. Thus, in Table 3, the likelihood ratio obtained
for different offset fault injection in vbus is presented. The likelihood ratio has been calculated offline,
and for a 0.5 s time interval in steady state. The likelihood ratio is represented as s, being the subscript
the fault free reference, and the superscript the different faulty cases. A negative likelihood ratio
indicates that the fault free case is more probable, whereas a positive value indicates that the faulty
case is more probable. The higher the value is, the more probable is the case.

Table 3. Likelihood ratio calculation for 10 V and 20 V offset fault in different scenarios.

vbus Measured Scenario sfault 10 V
fault free sfault 20 V

fault free

Fault-free −45.73 −191.23
Offset fault 10 V 50.57 1.41
Offset fault 15 V 100.33 100.98
Offset fault 20 V 154.13 208.66

Similar to the DC-link voltage sensor, a second Luenberger observer can be proposed for icat

sensor fault detection, as shown in (6), being C2 = [0 1], xT =
[

icat vbus

]
and y2 = vbus.

.
x̂(t) = Ax̂(t) + Bu(t) + L(y2(t)− C2 x̂(t))

ŷ(t) = Cx̂(t).
(6)

The observer model is presented in Figure 10. In this case, only the residual due to the difference
between estimated and measured vbus is used for the feedback, so the îcat estimation does not depend
on the icat sensor measurement. The residual rvbus

icat is used for FDI in current sensor icat, as shows
Figure 11.

Although, a transient in îcat and rvbus
icat arises under vbus sensor fault, as it is shown in Figure 12,

this residual sensitivity is low to vbus sensor faults in steady state. On the other hand, a ripple arises in
the residual when a motor phase current sensor fault occurs, shown in Figure 12, so it can be used as
additional information for phase current sensors FDI, which will be analysed in the following section.
A fault in icrw sensor, is detected in rvbus

icat , and it is easily isolated as it only occurs during braking.
In conclusion, if no fault is detected in this residual during traction, but a fault is detected during
braking, there is a fault in icrw sensor.
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5. FDI Approach for Phase Current Sensors

With regard to phase current sensor FDI in electric drives, in [39] a bank of observers is proposed.
Each observer has just one of the phase current sensors as input, so based on the estimation, it is
possible the detection and isolation of faulty sensor. In contrast to this application, the system under
study in this article uses only two phase current sensors, and the third current is calculated from
the other two. Another bank of observers is proposed in [40] for a Double Fed Induction generator,
normally used in wind turbines. In this case, only two phase currents are measured, but rotor current
measurements are needed for stator current estimations, and stator current measurements for rotor
current estimations.

On the other hand, in [40] a FDI approach based on the analysis of the probability density
functions (pdf) of the sensor current signal is proposed. A phase current sensor fault generates a
change in the pdf of id current, obtained from the application of the Park transformation.
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Finally, in [30,41] a compensation of the phase current sensor fault effect is proposed. Based on
the frequency of the oscillations generated due to the sensor fault, it is possible to distinguish offset
and gain faults. These approaches do not allow the fault isolation, but there are not dependent on
motor model.

Based on the actual traction drive configuration, where only two phase current sensor are available
and there is not any phase voltage sensor, the approach selected in this work was the analysis of the
oscillations in the current components id and iq, generated by offset and gain faults. This approach is
simple compared to other strategies, which are dependent on the model of the motor and parameter
variability. Moreover, id and iq are already calculated for the control strategy of the traction motor. The
only shortcoming is that it is not possible to isolate the faulty phase current sensor, and both sensors
should be checked to complete diagnosis.

The residual generation process is divided into three different steps, as it is shown in Figure 13. The
first step consists in eliminating the average value of the current components id and iq. An Exponential
Smoother filter (ES) is used for this task [42]. The filter discrete transfer function is given by (7), being
a = 1− b. It is a recursive filter with an exponential ponderation, decreasing the influence of past
samples as time goes by.

H(z) =
b

1− az−1 . (7)
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The second step is based on two passband filters [42], centered in fs and 2 fs, being fs the
fundamental frequency of motor stator current, which is obtained from flux and torque estimation.
From previous analysis [30], it is known that offset deviations produce an additional oscillation in
the current components id and iq, at fs. Gain deviations generate the oscillation at 2 fs. Due to the
oscillation generated, the first one allows to detect offset faults, whereas the second one detects gain
faults. The discrete transfer function of the passband filter is given by (8), being w0 and b, parameters
to calculate in function of bandpass and sample frequency. Finally, the oscillation envelope is obtained
in step 3.

H(z) =
(1− b)

(
1− z−2)

1− 2bcos(w0)z−1 + (2b− 1)z−2 . (8)

The residuals generated for different motor phase current sensor fault modes injection are shown
next, being the references for torque and speed 600 Nm and 600 rpm, respectively. In Figure 14,
the residuals based on a passband filter centered in fs, and 2 fs for offset fault in sensor iu are presented.
The residual based on a filter centered in fs, is able to detect injected offset faults, whereas the residual
based on 2 fs is not sensitive. As it is shown in Figure 15, the residual based on a passband filter
centered in 2 fs, is able to detect gain faults in iu sensor, whereas the one based on a filter centred in fs,
is not sensitive.

The fault severity estimation should be done as it was explained in previous sections, using
information obtained from FMEA analysis and statistical tools.
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6. FDI for Speed Sensor

Analytical redundancy for speed sensor diagnosis, based on observers, has been previously used
in railway applications [31], but normally hardware redundancy for speed sensors is already available
in distributed traction systems. Thus, based on the two speed sensor measurements available in the
presented traction drive, and the average train speed calculated from different axes, a FDI algorithm
was proposed.

The FDI structure is shown in Figure 16. The sensor fault detection and isolation is based on the
difference among three linear speeds, two calculated form the encoders and the third one calculated
as an average linear speed of all the distributed traction units. Thus, three different residuals (9) are
proposed. Once, any of the residuals overpasses the threshold during an amount of successive samples,
the corresponding logic indicator f is activated:

r12 = |v1 − v2|
r1 = |vtrain − v1|
r2 = |vtrain − v2|.

(9)

Depending on the combination of indicators, the faulty sensor is isolated. A relevant vtrain
measurement deviation is not probable, as it depends on multiple sensor measurements, gathered
from a variety of traction units. Anyway, if f1 and f2 indicators are given, it is recommendable to check
the encoder sensors of another traction drive, in order to discard a multiple speed sensor fault (both
encoders of one traction drive) at the same time. In Table 4, the combination of indicators for speed
sensor isolation is shown.
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Table 4. Combination of indicators for speed sensor fault isolation.

Flag Fault in Sensor wm1 Fault in Sensor wm2 Fault in Sensor vtrain

f1 1 0 1
f2 0 1 1
f12 1 1 0

7. Hardware-in-the-Loop Validation for FDI Approaches

The HIL platform used for validation is composed of a Real Time Simulator, from OPAL-RT
Company, and a commercial Traction Control Unit, develop by CAF Power & Automation, for a
Railway application, as it is shown in Figure 17.
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Figure 17. Hardware-in-the-loop platform.

The TCU is externally connected to the Real Time Simulator through analog and digital ports.
Conditioning modules to adapt the inputs and outputs between TCU and Real Time Simulator
are needed. This platform allows injecting faults, easily and quickly, in order to test the different
FDI approaches.

The simulation step for model running in the Real Time Simulator is 15 µs. The TCU has a DSP
for high speed execution. The sensor measurements are captured and monitored every 120 µs for
validation purposes.
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7.1. FDI Validation for DC-Link Voltage and Catenary Current Sensors

The Hardware-in-the-loop simulation results for DC-link voltage and catenary current sensors are
shown in Figure 18. First, the residuals for normal operation are shown. The ∞ norm (10) is chosen
for threshold setting, so residual thresholds should be higher than the maximum value of residual
during normal operation. Then, the residuals rvbus

icat for FDI in catenary current sensor and ricat
vbus for FDI

in DC-link voltage sensor are validated.

‖u‖∞,s = sup
i∈[k,k+s]

|u(k)|, (10)
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fault injected in 𝑣𝑏𝑢𝑠 sensor; (d) Measured, and estimated 𝑖𝑐𝑎𝑡 and |𝑟𝑖𝑐𝑎𝑡
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Figure 18. (a) Measured, and estimated vbus and
∣∣∣ricat

vbus

∣∣∣ for fault-free operation; (b) Measured, and

estimated icat and
∣∣∣rvbus

icat

∣∣∣ for fault-free operation; (c) Measured, and estimated vbus and
∣∣∣ricat

vbus

∣∣∣ for fault

injected in vbus sensor; (d) Measured, and estimated icat and
∣∣∣rvbus

icat

∣∣∣ for fault-injected in icat sensor;

(e) Measured, and estimated icat and
∣∣∣rvbus

icat

∣∣∣ for fault-injection in iu phase current sensor; (f) Oscillation

generated in catenary current and
∣∣∣rvbus

icat

∣∣∣ due to fault-injection in iu phase current sensor.

If the diagnostic observer dynamic is fast enough, only transients are appreciated in the residual
rvbus

vbus and ricat
icat. If slower dynamic is chosen, in order to increase the robustness to measurement noises,

steady state error appears in rvbus
vbus, so the threshold rvbus

icat should be increased to avoid false detections.
Finally, it has to be taken into account that a phase current fault injection generates an oscillation in the
catenary current and in the residual rvbus

icat , which can generate a false alarm for catenary current sensor
FDI, so the FDI for phase current sensors should be checked too, before taking decision. A low pass
filter can be implemented too, in order to eliminate the oscillation in the residual.
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7.2. FDI Validation for Phase Current Sensors

The FDI approach was implemented in the TCU and validated in the HIL platform. The following
results are obtained for a torque reference of 600 Nm and motor speed of 600 rpm. The average value
of the envelope depends on the operating point, so for a severity estimation of the fault, a previous
relation between the envelope average value and the fault injected for different operating points should
be obtained in HIL simulation. Thus, an adaptive threshold based on id,q components, motor torque
and speed are needed to estimated fault severity. In the case of fixed threshold, the sensibility of the
FDI approach will be different depending on the operating point. For example, for a torque reference
of 600 Nm, a threshold of 20 A will detect a +50% gain deviation, whereas the threshold needs to be
decrease to 16 A, to detect the same fault for a torque reference of 200 Nm.

In Figure 19 the results of deviations injected, as filtering steps are presented, oscillations in (a) and
envelopes in (b). Different offset faults are injected into the iu sensor current. The current component
average value, the oscillation filtered, generated due to the offset fault injected are shown. The fs

centred filter extracts the oscillation due to an offset fault. Moreover, the envelope of the oscillation,
which will be used as residual to compare to the threshold, is shown.
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Figure 19. Residual generation for a +20 A, +50 A, and +100 A offset faults injected in phase current
sensor, oscillation in (a) and envelope in (b).

In Figure 20, the different filtering steps for a gain fault injected in iu sensor current are presented,
oscillation in (a) and envelope in (b). In this case, the oscillation is extracted by the 2 fs centred filter.
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Figure 20. Residual generation for a 120% gain fault injected in phase current sensor, oscillation in (a)
and envelope in (b).

The sensibility of the FDI approach is better for low speeds, being higher in iq than in id current
component. On the other hand, iq is more sensitive to torque changes, so the filtering of this component
can be more complicated. The FDI approach is able to differentiate between offset and gain fault
modes, but it is not possible to isolate between faults in one phase or the other.
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7.3. FDI Validation for Speed Sensors

In Figure 21 the results for the FDI approach for speed sensors are shown. A gain fault
corresponding to an increase of 27 rpm is set at 59 s and an increase of 54 rpm at 66 s in wm1 speed sensor.
In both cases, the residuals r1 and r12 overpass the thresholds, so the flags f1 and f12 will be activated.
Based on Table 4, it can be concluded that the fault is in sensor wm1. This FDI approach just analyses
steady state residuals, whereas an anti-sliding algorithm processes transient differences among speed
measurements. This kind of algorithms is commonly found in railway traction control systems.
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8. Discussion

In this article, different FDI approaches have been presented to build an Integral Sensor Fault
Detection and Isolation for a Railway traction drive. Furthermore, a proposal for the fault severity
estimation has been presented too. An observer based FDI approach has been used for DC-link voltage
and catenary current sensors, a signal analysis based FDI approach for phase current sensors and a
hardware redundancy based FDI for speed sensors. Each approach has been justified as the most
suitable one for the traction drive presented. The FDI approach selection has been done based on the
following factors: algorithm complexity, hardware and software resources available in the traction
drive, tuning difficulty due to parameter variation/uncertainties and reliability. The observer-based
FDI for DC-link voltage and catenary current sensor uses the input filter model instead of the motor
model. As input filter model is simpler, the influence of parameter variations and uncertainties
is lower. Furthermore, a Luenberger observer is proposed, due to lower algorithm complexity in
comparison to other solutions. The signal analysis based FDI for phase current sensors need low
computational resources, as some algorithms are already available in the control strategy. Furthermore,
as it is not based on a motor model, motor parameter estimation during operation is not needed.
Finally, a redundant hardware based FDI is proposed for speed sensor faults, due to reliability and low
computational cost.

Furthermore, the approaches developed in Matlab-Simulink have been simulated and
implemented in a HIL platform with a real Railway TCU, designed for a tram. FDI approaches
have been implemented in the DSP of the TCU, being the execution period 20 µs.

The presented fault severity calculation was not implemented in real time, in order to reduce the
computational requirements for the DSP. The Integral Sensor Fault Detection and Isolation presented,
allows detecting and isolating faults in all the sensors presented in the traction drive.
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The FDI for the DC-link voltage and catenary current sensors is based on the input filter model
of the traction drive, and it is not dependent on the motor model. The uncertainties and variability
of parameters in the input filter are lower than in the motor model, which makes this solution easier
to implement in a real application. Moreover, this FDI approach is not influenced by the operating
point of the motor. The balance between the robustness and the sensitivity of the strategy is given
by the observer feedback gain. Higher gains allow setting lower thresholds to increase the detection
sensitivity, but this implies a lower robustness due to false alarms caused by measurement noises or
other sensor faults. This work has set as a threshold of 20 A for current residual and 20 V for voltage
residual, based on fault free behavior, so lower values should not be considered as a degraded zone.
This FDI approach in combination with hardware redundancy, allows detecting and isolating faults
in catenary current, crowbar current, return current, DC-link voltage and catenary voltage sensors.
The fault severity estimation is calculated offline, based on previously obtained relations between the
injected faults and generated residuals. Then a likelihood ratio is calculated with the residual values
obtained in real time to estimate the most probable fault severity.

The FDI strategy for phase current sensors is able to detect two fault modes, offset and gain. Its
main limitation is that, it is not possible to isolate between the two available phase current sensors,
so both should to be checked to isolate the faulty sensor. Phase current sensors faults generate an
oscillation which depends on the operating point, so in case of fixed threshold, the sensitivity for the
same threshold is different depending on the operating point. An adaptive threshold to maintain the
same sensibility is recommended, based on current components, estimated torque and motor speed.
Residual envelope and fault relation is obtained by fault injection. The oscillation extraction is subject
to motor electrical frequency estimation and bandwidth around it. The extraction filter should be
redesign in case of a change in the execution period.

The FDI algorithm for speed sensors is the least demanding solution in terms of computational
cost for traction drives where more than one speed measurement is available.

The main contribution of this work is the definition of an Integral Sensor Fault Detection and
Isolation for a Railway traction drive, in opposite to most of the research works, which focus on only
one or two kind of sensors. Moreover, it has been validated in a real Railway traction control unit,
whereas the previous works have been validated in test benches without commercial control units,
in rapid control prototyping devices.

Further research should be done with regard to fault severity estimation and fault reconstruction,
in combination with information coming from other available tools in industry as FMEA. Fault injection
and performance analysis under faults can provide information for an enhanced FMEA. This enhanced
FMEA combines with FDI approaches, can provide reliable fault severity estimation. Furthermore, an
adaptive threshold automation should be developed to optimize the sensibility of the detection and
robustness for the different operating points of the motor.

9. Conclusions

This article has presented an Integral Sensor Fault Detection and Isolation for a Railway traction
drive. The research aim was to implement an early fault detection in sensors, which allows improving
the availability of traction drives. Taking into account that the strategy has to be executed by an
embedded commercial traction control unit, low computational cost FDI approaches have been
selected, due to commercial traction control unit limitations. Moreover, the use of easy to tune FDI
algorithms for each application is a key point to obtain a successful industrial acceptance. The FDI
approaches presented here, as well as the proposed Integral Sensor Fault Detection and Isolation, can
be adapted to electric drives in other applications.
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