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Abstract: Embracing the fact that one can recover certain signals and images from far fewer
measurements than traditional methods use, compressive sensing (CS) provides solutions to huge
amounts of data collection in phased array-based material characterization. This article describes
how a CS framework can be utilized to effectively compress ultrasonic phased array images in
time and frequency domains. By projecting the image onto its Discrete Cosine transform domain,
a novel scheme was implemented to verify the potentiality of CS for data reduction, as well as
to explore its reconstruction accuracy. The results from CIVA simulations indicate that both time
and frequency domain CS can accurately reconstruct array images using samples less than the
minimum requirements of the Nyquist theorem. For experimental verification of three types of
artificial flaws, although a considerable data reduction can be achieved with defects clearly preserved,
it is currently impossible to break Nyquist limitation in the time domain. Fortunately, qualified
recovery in the frequency domain makes it happen, meaning a real breakthrough for phased array
image reconstruction. As a case study, the proposed CS procedure is applied to the inspection of an
engine cylinder cavity containing different pit defects and the results show that orthogonal matching
pursuit (OMP)-based CS guarantees the performance for real application.

Keywords: ultrasonic phased array; compressive sensing; image reconstruction; time and frequency
domain; engine cylinder cavity

1. Introduction

Ultrasonic phased array is one of the most widely used imaging modalities in current industrial
non-destructive evaluation (NDE) due to its increased flexibility, faster detection speed, higher
inspection quality and radiation-free operation [1]. With programmable time delays, a single linear
ultrasonic array can be used to undertake various inspections and produce real-time 2D images,
which brings efficiency in the structural health monitoring (SHM) of some industrial components with
complex geometries [2,3].

Performed digitally, it is required that the analog signals first be sampled in the inspection, which
is confined to traditional Nyquist-Shannon sampling limitation. Although the Nyquist rate is defined
as twice the highest frequency component in the signal, in practice, oversampling (generally 4 to
10 times that of the transducer central frequency) is implemented in order to improve resolution,
reduce noise and avoid aliasing. Furthermore, as image techniques developing and the requirement
of inspection accuracy improving, the number of elements involved in phased array typically rises.
Consequently, the A-scan lines in an image increase, leading to a huge amount of data collection
from the system front-end, eventually exerting pressures on data acquisition sensors. Therefore, it is
imperative to develop compression methods to effectively reduce the sampling rate.
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In recent years, Compressive Sensing (CS) has become a challenging field that has driven a lot of
research interests in SHM applications, such as, the sparse recovery optimization in wireless sensor
network [4], the mode separation in Lamb wave-based long-range damage detection [5], the reliable
estimation of vehicular position in general traffic scenarios [6] and the recovery of the lost data in
civil SHM [7]. Exploiting a priori knowledge that many natural measurement signals admit a sparse
representation on proper basis or a redundant dictionary, CS provides one approach to achieve
qualified signal reconstruction with fewer measurements compared with Nyquist sampling criteria [8].
Contrary to the traditional compressions, the CS encoder is based on a very simple and extremely
low-power hardware, while most of the complexity and energy requirements are transferred to the
decoding stage [9].

Up till now, CS has found increasing interests in the ultrasonic inspection community, which
generally falls into two categories: medical ultrasound of diagnostic sonography [10–14] and guided
wave-based NDE applications [15–20]. For the former, by treating ultrasound signals within the
FRI framework, Wagner et al. generalized the concept of compressed beamforming following the
spirit of Xampling [10]. Lorintiu et al. presented a CS-based reconstruction of 3D ultrasound
data using dictionary learning and line-wise subsampling, which confirmed a better performance
than conventional fixed transforms [11]. Foroozan et al. employed wave atom dictionary as a low
dimension projection and the robust Capon beamformer was combined with CS, instead of using the
delay-and-sum method [13]. In the case of ultrasonic NDE, López et al. analyzed the application of
CS techniques in order to achieve faster scanning in the ultrasonic imaging of cargo containers [15].
Di et al. used a random sampling scheme based on CS to minimize the number of points at which
the field is measured [16]. Mesnil et al. proposed a reconstruction technique to estimate the location
of sources and structural features interacting with the waves from a set of sparse measurements [17].
Wang et al. applied a dictionary algorithm on sparse representation for Lamb-wave-based damage
detection [18]. In all cases, some only apply CS in ultrasound single signals [11,12,17,18] while others
extend it to ultrasound images.

On the other hand, there are several reports concentrating on the use of CS in frequency domain
recently. Chernyakova et al. [21] demonstrated on in vivo cardiac data that reductions up to 1/28 of the
standard rates are possible, using only a portion of the beamformed signal’s bandwidth. Their study was
also extended to the 3D beamforming in frequency domain and satisfactory results can be obtained [22].
Mishra et al. [23] demonstrated a significant superiority of frequency domain CS reconstruction but no
further explanation was offered.

Compared with a large number of literatures on medical ultrasound or guided wave-based NDE
fields, the CS applications on ultrasonic phased array are still inadequate and deserve more attentions.
In this work, we applied the CS framework to a general phased array image reconstruction in both
time and frequency domain, aiming at verifying the feasibility and potentiality of CS in this field.
Employing the peak signal to noise ratio (PSNR, in dB) and the structural similarity (SSIM) as the
evaluation criteria, images of different sampling rate (SR) are recovered under various compression
ratios (CR). The results comparisons between time and frequency domain are presented and the causes
behind the performances are explained, especially the superiority in frequency domain. In order to
investigate the influence of SR level on the recovery performance, we compare the PSNR of different
SRs when keeping the measurement points the same. Besides, considering the presence of close defects
in real-world components, the recoveries when the distance of defects is different are also included,
accompanied by results analysis. Here, the Orthogonal Matching Pursuit (OMP) was utilized to
reconstruct all images. Simulations based on CIVA platform, experiments on three kinds of artificial
flaws (through-holes, electrical discharge machining (EDM) notches and flat-bottom holes) and real
application of engine cylinder cavity inspection are exploited to demonstrate the performance of the
proposed framework. Figure 1 illustrates the simplified procedure of the proposed CS-based scheme
for ultrasonic phased array image reconstruction in time and frequency domain.
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Figure 1. The simplified architecture of the proposed compressive sensing (CS)-based scheme.

The paper is structured as the following: Section 2 presents an introduction of the CS theory,
including sparsity of transform coding, measurement with incoherence and reconstruction via
optimization. Section 3 shows the simulated study based on images obtained from CIVA. Section 4
contains the details of experiment setup and of the implementation process. Finally, Section 5
summarizes the main findings of this work and ends the paper.

2. Overview of CS

CS, as a novel sampling paradigm that goes against the common wisdom in data acquisition,
successfully combines sampling and compression together. To make this possible, two fundamental
prerequisites play a critical role: sparsity, which relates to the signal essence; and incoherence, which
associates with sensing modality.

2.1. Sparsity of Transform Coding

Although many natural signals are not sparse in their own domain, they admit a sparse
representation when expressed in a proper basis. Mathematically speaking, given a basis or dictionary
Ψ ∈ RN×N , we represent vector f ∈ RN as a linear combination of a few atoms:

f = Ψx =
N

∑
i=1

xiψi (1)

where xi are coefficients and xi = 〈f, ψi〉 = ψi
Tf. If at most K components of xi are nonzero, we say that

f is K-sparse. In practice, there is a strong possibility that these coefficients are close to 0, rather than
equal to 0, we regard it as compressible. At present, the commonly used sparse transformation bases
include Discrete Fourier transform (DFT), Wavelet basis, redundant dictionaries [24] and adaptive
sparse decomposition.

In the following simulations and experiments, DFT, the most typical orthogonal transformation is
employed. It can be expressed as

f =
N−1

∑
n=0

x(n)e−j2πkn/N , 0 ≤ k ≤ N − 1 (2)

2.2. Measurement with Incoherence

With consideration of noise, this section begins with a measurement system that acquire M linear
measurements data:

y = Φf + n (3)
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where n is an unknown error term and Φ ∈ RM×N can play a role of dimensionality reduction, for M
is typically much smaller than N.

For a sparse or compressible signal f, we can rewrite Equation (3) as

y = Ax + n (4)

where A = ΦΨ is denoted as the sensing matrix. To guarantee the robustness and validity of the
K-sparse signal recovery, a sufficient condition is that matrix A satisfies the restricted isometry property
(RIP) of order k if there exists a δk ∈ (0, 1) such that [8]

(1− δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2 (5)

holds for all K-sparse vectors x.
It has been proved that an equivalent condition of RIP is the incoherence between Φ and Ψ [25].

The coherence is defined as
µ(Φ, Ψ) =

√
N · max

1≤k,j≤N

∣∣〈ϕk, ψj
〉∣∣ (6)

where ϕ and ψ represent any two elements of Φ and Ψ. The less correlated elements they have,
the smaller coherence will be get. It is shown that random matrices with Gaussian or Bernoulli
distributions can satisfy the RIP with high probability [26].

2.3. Reconstruction via Optimization

If the original signal f is rationally sparse and the RIP holds, it is possible to accurately recover x
by convex programming:

x̂ = argmin‖x‖1 subject to ‖Ax− y‖2 ≤ ε (7)

where ‖x‖1 = ∑|xi| is the l1 norm, ‖ · ‖2 represents the standard Euclidean norm and ε2 is a likely
upper bound on the noise power ‖n‖2

2.
For the sake of computing efficiency, one of the most frequently used greedy algorithms, that

is, OMP, will be adopted in our work. The mathematical description of OMP is formally defined in
Algorithm 1 [27].

Algorithm 1 Orthogonal Matching Pursuit (OMP)

Input: A signal y ∈ RN , a matrix A ∈ RM×N .
Initialize: Set the support set Ω0 = ∅, the residual error r0 = y and
put the counter k = 1.
Identify: Find a column an from A that most correlates with
the residual error and record the correlation coefficient:

nk ∈ arg max
n=1,2,...N

|〈rk−1, an〉|, Ωk = Ωk−1 ∪ {nk}

Estimate: compute the best approximating coefficients:

xk = argminx‖y−AΩk x‖2

Iterate: Update the residual and counter:

rk = y−AΩk xk, k = k + 1

Until: Stopping criterion holds.
Output: The vector x̂ with components x̂(n) = xk(n)(n ∈ Ωk) and
x̂(n) = 0 otherwise.
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3. Simulation Results and Discussion

To justify the feasibility of CS framework and to see how it helps for data compression in ultrasonic
phased array imaging, a simulation procedure based on CIVA software (Version 9.0, Paris, France) is
provided in this section.

3.1. Simulation Settings

Developed by CEA (the French Atomic Energy Commission) since the early 90’s, the CIVA gathers
most influential parameters and advanced modeling tools into an expertise platform, making it more
and more widely used in the industrial NDE fields (Ultrasound, Eddy Current, Radiography, ...) [28,29].

As Figure 2a shows, we simulated an array aperture comprising a 64-element linear phased
array transducer of 5 MHz center frequency. A 20 mm thickness flat wedge was used to eliminate the
potential near-field influence. More detailed parameters are shown in Table 1. The aluminum specimen
with three 1 mm diameter through holes was inspected using plane B-scan modality. The horizontal
and vertical space were set as 10 mm, 8 mm, 6 mm, 4 mm and 2 mm, respectively. In the following
implementations, 16 element chips are excited each time, resulting 49 sequences contained in each
image. Figure 2b is the original image of 10 mm-space through holes.
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through holes.

Table 1. Array parameters for simulation study.

Array Parameter Value

Center Frequency 5 MHz
Element Count 64
Element Pitch 0.60 mm

Element Width 0.50 mm
Element Elevation 10.0 mm

Pulse Type Gaussian weighted
−6 dB Bandwidth 50%

3.2. Time Domain Reconstructions

In the simulation, we employed the discrete Fourier basis as sparse basis and the Gaussian random
matrix as sensing matrix, exploiting their properties of calculation efficiency and implementation
simplicity. Due to the restriction of hardware implementation, in our work, various CR levels were
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obtained by removing some parts of the original samples, as many reports generally used [12,30]. Here,
the CR is determined by the ratio:

CR = (1− M
N
)× 100% (8)

where M is the measurement points in the given domain and N represents the signal length of
each sequence.

Quantitative evaluation of the proposed CS method was performed with respect to the recovered
two-dimensional image. To quantify the reconstruction performance, we mainly used the PSNR,
given by:

PSNR = 10lg(
2552

MSE
) (9)

Given a m× n original image I and its reconstructed version R, the mean squared error (MSE)
measures the average of the squares of the deviations between I and R:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− R(i, j)]2 (10)

Although a higher PSNR generally indicates a better performance of CS algorithms, PSNR is just
a kind of approximation to human perception of recovery quality. In our work, comparison between
the original and reconstructed images is also performed by calculating the perception-based structural
similarity (SSIM) index [31]:

SSIM(P, Q) = [l(P, Q)]α · [c(P, Q)]β · [s(P, Q)]γ (11)

where l(P, Q), c(P, Q) and s(P, Q) represent luminance comparison function, contrast comparison
function and structure comparison function between images P and Q, respectively. α > 0, β > 0 and
γ > 0 are parameters used to adjust the relative importance of the three components. The resultant
SSIM index is a decimal value between 0 and 1, and value 1 is only reachable in the case of two identical
sets of data.

In any given detection area, different sampling rate (SR) means different signal length of the
time traces. Therefore, the image compression potentiality was explored by varying the SR levels and
20 MHz, 25 MHz, 30 MHz, 40 MHz SR were considered in the simulation. The 40 MHz SR results in an
overall number of 1168 real-valued samples (N = 1168), the data lengths of other SRs are proportional.
To eliminate the negligible difference caused by the randomness of Gaussian matrix, each PSNR or
SSIM data point averaged out the results of 100 runs.

Figure 3 shows the comparative results as a function of CR. It is clear that the reconstruction
quality generally decreases as CR rises. In the case of 65% CR or above, the reduction of SR leads to
lower PSNR as well as SSIM. When SR 25 MHz, the impact of different SRs on the recovery performance
is relatively small, with the PSNR > 43.99 dB and the SSIM > 0.8931 at 60% CR.

Reconstructed images obtained by the proposed CS method, using 50%, 40%, 30% samples per
image line in time domain, are shown in Figure 4. Here, the SR is 25 MHz. As can be seen from
comparison with the original image, shown in Figure 2b, the recovery results when CR is 50% or
60% are in good agreement with our expectation: three defects are clearly preserved and almost
no reconstruction errors exist. However, satisfactory performance cannot be realized if CR is 70%,
although the defect echoes are roughly recognizable.
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Figure 4. The recovery results of 25 MHz SR simulated image in time domain, (a) Compression ratio
(CR) = 50%, PSNR = 45.05 dB; (b) CR = 60%, PSNR = 43.99 dB; (c) CR = 70%, PSNR = 36.71 dB.

Notably, in the case of 25 MHz SR and 60% CR, the measurement points used for gratifying
reconstruction are as many as that of 10 MHz SR original sample (25× (1− 60%) = 10). As the 5 MHz-
center frequency pulses are employed and its −6 dB bandwidth is 50%, the minimum sampling rate
is 15 MHz according to the Nyquist theory. The fact indicates that simulated images can be perfectly
recovered in time domain from fewer samples than the Nyquist sampling limitation. Likewise, for 20 MHz
SR and 50% CR, the conclusion is the same, with PSNR being 43.96 dB and SSIM being 0.9296.

As can be readily seen, either the lower SR or higher CR causes the reconstructed images to distort,
because both cases mean the less measurement points (M) used for recovery. Next, we concentrate our
interest on finding out whether the SR level has impact on the reconstruction performance. In Table 2
we compare the PSNR of different SRs when keeping the measurement points the same. Contrary
to earlier results, for the measurement points up to 260, PSNR decreases with the increase of SR.
This observation illustrates that the reconstruction accuracy of OMP is likely affected by the ratio of
M/N, especially when M is comparatively small. This can be explained by the fact that for low M/N,
the structure of sensing matrix becomes ill-balanced, which has an adverse impact on the recovery.
After increased to 280, we can see that there is no obvious PSNR distinctions between different SRs.

In ultrasonic phased array NDE, there are always defects that are very close to each other.
Therefore, it is indispensable for CS to distinguish these adjacent flaws in the reconstructed image.
Using 25 MHz SR and 60% CR, Figure 5 presents the recovery results when the distance of defects (D)
is different. As can be seen, the reconstructions are all quite qualified, which shows that the proposed
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OMP-based CS guarantees the reconstruction accuracy in terms of close defects. Actually, smaller
defects distance brings about better PSNR.

Table 2. Comparative PSNR of different SRs when keeping the same sampling points, using simulated data.

Measurement Points 200 220 240 260 280 300 320 340

20 MHz SR (584 points) 37.50 38.45 40.59 42.57 43.92 43.98 44.37 44.57
25 MHz SR (730 points) 34.99 37.56 37.65 41.06 43.83 44.19 44.23 44.44
30 MHz SR (876 points) 34.31 35.60 37.14 39.81 42.22 44.19 44.23 44.39
40 MHz SR (1168 points) 32.35 33.99 35.70 39.38 43.81 44.13 44.28 44.53
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Figure 5. The recovery results of 25 MHz SR (CR = 60%) images in time domain when the distance
of defects is different (a) D = 2 mm, PSNR = 45.62 dB; (b) D = 4 mm, PSNR = 45.33 dB; (c) D = 6 mm,
PSNR = 45.17 dB; (d) D = 8 mm, PSNR = 44.25 dB.

3.3. Frequency Domain Reconstructions

As a next step, we implemented reconstructions in frequency domain on simulated array images.
Here, the Discrete Cosine transform (DCT), rather than the DFT, is employed in our work. The DCT
only retains the cosine components of DFT, so the operation is more efficient and simplified. In this
work, we use DCT coefficients to conduct CS recovery and the image in time is obtained by performing
an inverse DCT transform. Figure 6 provides a sketch of the procedure used to reconstruct the
undersampled phased array images in frequency domain. The sparse basis and sensing matrix
exploited in the reconstructions are same as the previous section.
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Figure 6. The sketch of the procedure used to reconstruct phased array images in frequency domain.

In Figure 7, the PSNR values are drawn as a function of CR and for different SRs. As an initial
observation, we can note that the recovery performance in frequency domain is highly better than
that in time domain. Except for 20 MHz SR, the PSNR values at 80% CR are all higher than 47 dB,
which is better than any result in time domain. In addition, the SSIMs of all the reconstructed images
in presence of frequency domain are very close to 1, so we would not present here. Contrary to the
situation in time domain, lower SR lends to better PSNR when CR 70%, even if the differences are less
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than 1 dB. From the recovery images shown in Figure 8, it can be say that almost no error occurs in the
reconstruction, using only 20% samples.
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Figure 8. The recovery results of 20 MHz SR simulated image in frequency domain, (a) CR = 70%,
PSNR = 49.73 dB; (b) CR = 80%, PSNR = 44.83 dB.

To explain the superiority of the frequency domain CS, we investigate the sparsity of the
one-dimensional time trace as well as its DCT coefficients, through expressing them in the discrete
Fourier basis. An arbitrary A-scan, shown in Figure 9a, is extracted from 25 MHz SR image and
Figure 9b shows its corresponding Fourier spectrum. In frequency domain CS, the DCT coefficient
of A-scan signal plays the role of input signal and is shown in Figure 9c,d is the corresponding DFT
spectrum. We manually set a threshold to pick out the main elements, that is, only the values that are
bigger than 1% of the maximum can be designated as “Information Value (IV)”. The IV of raw A-scan
signal is 87, and for DCT coefficients, it is 60. The calculated results indicate that the DCT coefficient is
sparser than the original time domain signal, that is, the excellent performance in frequency domain
benefits from its higher sparsity.

Figure 10 considers different situations vary in defects interval distance and compares the PSNRs
in two domains when keeping 70% CR. We note that the results in frequency domain are at least
10.8 dB higher than that in time domain, which confirms the capability of frequency domain CS in
various defects cases.
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Figure 10. Comparative PSNRs between different defects interval spaces, using 25 MHz SR in time
domain and 20 MHz SR in frequency domain, and CR is 70% for both domains.

To conclude, using samples less than the minimum requirements of the Nyquist theorem, both
time domain and frequency domain CS verify their abilities to accurately reconstruct ultrasonic phased
array simulated images. In addition, CS in frequency domain allows one to obtain a more satisfactory
performance due to its inherent higher sparsity.

4. Experimental Results and Discussion

4.1. Apparatus, Real-Time Images and Algorithm Parameters

For experimental testing, the lab setup includes a standard PC, a commercial ultrasonic phased
array detector (Multi 2000, Paris, France), a 5 MHz linear array with 64 elements and specimen with
artificial defects. We particularly chose devices that share the same parameters with simulation for
ease of performance comparison. The phased array was placed on a 20 mm-depth Plexiglas wedge to
protect the probe from wearing excessively. Linear scanning was exploited in the inspection and all
the signals were sampled at 20 MHz, 25 MHz, 33 MHz and 50 MHz, respectively.

The test specimen was manufactured from Aluminum with three kinds of defects. Measurements
of through-holes and electrical discharge machining (EDM) notches were performed as shown in
Figure 11a. Figure 11b shows how flat-bottom holes were inspected. The specimen geometry and
details of defects distribution are indicated in Figure 11c.
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worse than with the simulated images. To be exact, when CR is 60%, the PSNRs at least reduce 5 dB 
except for 50 MHz SR. For SSIMs, the negative effects are more exposed. In addition, the 
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Figure 11. (a) The inspection of through-holes and electrical discharge machining (EDM) notches;
(b) The inspection of flat-bottom holes; (c) The specimen geometry and defects distribution.

Part of real-time images of 50 MHz SR are shown in Figure 12. For through-holes, it is clear that
the signal intensity decreases with the transmission distance. For flat-bottom holes and EDM notches,
although a strong back wall echo or side reflection echo is quite obvious, the pre-machined flaws are
all well detected. And, more remarkably, the measured depths coincide very well with the actual
positions. All kinds of defects recorded by the linear array ensure an overall understanding of the
detection, location and quantitatively sizing of defects.
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Figure 12. The real-time measurements of three kinds of defects.

4.2. Time Domain Reconstructions

Similar as the simulation, the images sampled from 20 MHz, 25 MHz, 33 MHz and 50 MHz SR
were considered in the experiment. In our work, 16 elements were activated each time, leading to
49 sequences per image (64 − 16 + 1 = 49). We first take the through-holes as an example to perform
time domain recovery. For the ease of calculation and comparison, 512 points containing the main
part of defects zone was intercepted in 50 MHz SR. The average results of 100 runs are illustrated in
Figure 13. Considering the complexity of real experiment, we first note that the overall performances
are worse than with the simulated images. To be exact, when CR is 60%, the PSNRs at least reduce 5 dB
except for 50 MHz SR. For SSIMs, the negative effects are more exposed. In addition, the performances
are more liable to affected by the SR level. For 50 MHz SR, the results are relatively satisfactory when
CR is not more than 60%. By contrast, when the SR drops to 20 MHz, the reconstruction is just barely
good in 20% CR.
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Figure 15a is the original image of 50 MHz SR. The recovered results of 50% CR, 60% CR and 
70% CR are shown in Figures 15b–d, respectively. We can see that, for 50% CR, the recovery is quite 
good and almost no obvious error occurs. In the case of 60% CR, six defects can be easily identified, 
although there are some slight errors in the areas without defect echo. But when CR rise to 70%, the 
reconstruction is so distorted that some defects are almost overwhelmed by errors. 

Figure 13. Comparative (a) PSNR, (b) SSIM between different SRs in time domain, using experimental
through-holes data.

To clearly show the statistic results, the scattered point distribution of 100 releases testing (50 MHz
SR, 60% CR) is shown in Figure 14, combined with the 3σ (σ is the standard deviation) criterion of
reliability theory. It is clear that all the PSNR results lie within three standard deviations on either side
of µ (the mean value), which confirms the reliability of OMP algorithm. By calculating all the standard
deviation values of different SRs and CRs, we show in Table 3 that, except for some failures when SR is
low or CR is high, most of the situations can successfully fit with the 3σ criterion.
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Figure 14. Distribution of 100 OMP runs based on 3σ criterion of reliability theory in time domain,
using 50 MHz SR experimental through-holes data when CR is 60%.

Table 3. The standard deviation values (σ) of different SRs and CRs in time domain (
√

means the
situation fits with 3σ criterion, X means not).

CR (%) 20 30 40 50 60 70 80

20 MHz SR
σ 0.4322 0.3878 0.4217 0.3930 0.4593 6.4072 9.3127

Fit 3σ criterion
√ √ √ √ √

X X

25 MHz SR
σ 0.3677 0.4539 0.3876 0.4211 0.4125 4.5018 5.3882

Fit 3σ criterion
√ √ √ √ √

X X

33 MHz SR
σ 0.4482 0.3975 0.4421 0.3903 0.3759 0.5225 3.5697

Fit 3σ criterion
√ √ √ √ √ √

X

50 MHz SR
σ 0.3855 0.4203 0.3547 0.3971 0.3632 0.4125 3.4338

Fit 3σ criterion
√ √ √ √ √ √

X

Figure 15a is the original image of 50 MHz SR. The recovered results of 50% CR, 60% CR and
70% CR are shown in Figure 15b–d, respectively. We can see that, for 50% CR, the recovery is quite
good and almost no obvious error occurs. In the case of 60% CR, six defects can be easily identified,
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although there are some slight errors in the areas without defect echo. But when CR rise to 70%,
the reconstruction is so distorted that some defects are almost overwhelmed by errors.Sensors 2018, 18, x FOR PEER REVIEW  13 of 21 
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Figure 15. (a) The original experimental through-holes image of 50 MHz SR and the reconstructed
results in time domain; (b) CR = 50%, PSNR = 45.36 dB; (c) CR = 60%, PSNR = 41.25 dB; (d) CR = 70%,
PSNR = 34.45 dB.

We also perform the PSNR comparison at different SRs when keeping the sampling points
consistent. Table 4 reports the results using experimental data. For measurement points less than 220,
the performance indeed becomes worse with the improvement of SR, which shows similar change
rule compared with that in simulation. Besides, the gap of PSNRs narrows with measurement points’
rise and the difference disappears if measurement points are more than 240. It is therefore natural to
confirm that lower M/N ratio affects the accuracy of OMP, while the reconstruction performance is
independent with SR when measurement points increase to some extent.

Table 4. Comparative PSNR of different SRs when keeping the same sampling points, using
experiment data.

Measurement Points 160 180 200 220 240 260 280 300

25 MHz SR (256 points) 39.44 42.47 44.47 44.52 44.63 N/A N/A N/A
33 MHz SR (341 points) 36.61 41.04 42.10 43.32 43.89 44.68 45.19 45.31
50 MHz SR (512 points) 34.82 36.37 41.01 42.51 43.56 45.36 45.66 45.87

To experimentally demonstrate the image quality in terms of various defects and evaluate its
impact on reconstruction accuracy, we calculated and compared the PSNRs of three typical defects
and showed the results in Figure 16. It turns out that, as expected, the recoveries of EDM notches and
flat-bottom holes reach sufficiently good PSNRs, although suffer some reduction in lower CRs. Since
the detected images of both two defects contain back wall echo or side echo, the preliminary analysis
is that these strong echoes have a negative impact on the performances.
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In Figure 17, we present the original images of EDM notches and flat-bottom holes, as well as the
reconstructed results when CR is 60%. Although the image qualities, corresponding to the proposed
CS method in time domain with OMP-based reconstruction, are reduced compared with the original
versions, important information, for example, the measured defects, essential for structural health
assessment, are all clearly preserved.
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4.3. Frequency Domain Reconstructions

In this section, the performance of the frequency domain reconstruction is given and compared to
the time domain results. Same as the simulation, the DCT transform is employed. Figure 18 shows
the image calculations of different SRs. We first note that the performances, both PSNRs and SSIMs
dramatically outperform the time domain results. To be more specific, the lowest PSNR in 60% CR is
nearly 9.5 dB higher than that in time domain, and for SSIM, that is 0.49. When CR is 70%, the PSNR
of 50 MHz SR image can be 41.61 dB, meaning a comparatively gratifying reconstruction. But for time
domain, a 34.45 dB is obviously insufficient for defects recognition. Another observation is that the SR
level in frequency domain seems no longer as significant as that in time domain. The PSNRs of 20 MHz
SR are, maybe a little bit lower, not very far compared with 50 MHz SR, as for SSIMs, sometimes even
better. Figure 19 shows the distributions of 100 OMP tests when 20 MHz SR experimental data is used
and the CR is 50%, which completely reach the 3σ criterion of reliability theory.
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Figure 19. Distribution of 100 orthogonal matching pursuit (OMP) runs based on 3σ criterion of
reliability theory in frequency domain, using 20 MHz SR experimental through-holes data when CR
is 50%.

We have explained in simulation section that the better performance in frequency domain, in
comparison with time domain, owes to its higher sparsity. Now, according to the results in experimental
case, we offer an interpretation on the performance similarity between different SRs. It is widely
known that different SR brings about different sampling points. In time domain, the defect information
locates in all the sampling points. When CR is given, lower SR means that the measurement points
used for CS reconstruction are less, hence leads to poor results. Of course, we have confirmed through
simulation and experiment that, if measurement points are not too few, recovery performance has
nothing to do with SR. By contrast, in frequency domain, the ratio SR/N defines the frequency grid in
DFT and N is always proportional to SR. So, the frequency grid is the same for all SRs here. Therefore,
the points with relevant information of the useful band are the same for all SRs. To illustrate intuitively,
the N-point DFT was applied to A-scan signals. We can see the point number of effective band retains
almost the same level for different SRs, as illustrated in Figure 20.
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Before showing the frequency domain recovery performance of different kinds of defects, we show
in Figure 21, one extracted A-scan signal from 20 MHz SR image and its corresponding DFT spectrum.
It can be inferred that, using traditional sampling method, at least 17 MHz SR is required to avoid
aliasing. Remarkably, it is possible to obtain satisfactory recovery using the equivalent of 10 MHz (for
50% CR), even 8 MHz (for 60% CR) samples, employing our proposed frequency domain CS scheme.
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Figure 21. (a) Extracted A-scan signal from 20 MHz SR image; (b) the DFT spectrum of (a).

Figure 22 presents the recovery results of through-holes, EDM notches and flat-bottom holes,
using 20 MHz SR image and 50% CR. The performances are totally comparable with that of 50 MHz
SR in time domain, shown in previous section.
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Figure 22. The recovery results of 20 MHz SR experimental image in frequency domain, (a) through-
holes, PSNR = 42.91 dB; (b) EDM notches, PSNR = 41.50 dB; (c) flat-bottom holes, PSNR = 41.68 dB.

Finally, in Figure 23 we show the comparative results of various defects. We can see that the
performance disparities between different defects are smaller than that in time domain, which confirms
the stabilization of the proposed DCT-based frequency domain reconstruction. As a conclusion, our
proposed CS framework is able to drastically reduce the data in ultrasonic phased array imaging.
What’s more, the results in frequency domain further strengthen the efficiency of CS, based on the fact
that a breakthrough of the Nyquist sampling limitation is feasible.
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4.4. Real Application in Engine Cylinder Cavity Inspection

As a case study, the proposed CS-based scheme was applied to the inspection of engine cylinder
cavity in this part.

The engine cylinder cavity plays the role of flowing the cooling liquid, as shown in Figure 24a.
It can be corroded over time, which may bring about serious hidden dangers and have catastrophic
consequences. To solve this problem, most of the researchers focused their studies on corrosion
behavior or anticorrosion coolant. Despite the fact that these approaches can prevent the corrosions to
an utmost degree, they are still inadequate in gaining the details of the flaws. Accordingly, routine
detection can make some differences by identifying the potential risks and the ultrasonic phased array
has been considered as an effective method for inspection of the cavity [32,33].

Considering the concave cylinder surface of the cavity, we designed a convex wedge installing on
the phased array transducer. An aluminous specimen containing artificial pit defects, regarded as the
most common defects caused by corrosion, was employed for our detection. The pits were machined
with different diameters and taper angles in order to preserve the main characteristics of real defects.
Figure 24b shows the experimental system and Figure 24c exhibits the details of a pit. The specific
dimensions and angles of pit defects are tabulated in Table 5. It is noted that all the phased array
configurations remain same with that in the last section.
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Table 5. The diameters (R) and taper angles (θ) of pit defects.

No. 1 2 3 4 5 6 7 8 9 10 11 12

R (mm) 2 3 4 5 2 3 4 5 2 3 4 5
θ (◦) 120 120 120 120 90 90 90 90 60 60 60 60

In Figure 25, the original image of No. 3 pit and its reconstructed versions in time and frequency
domain are given and compared. For time domain, 50 MHz SR image was used for the reconstruction
and the CR is 60%. Figure 25b shows that, for this real application, the performance is generally
satisfactory. Quite evidently, the recovery quality is much better in frequency domain, with the fact
that lower measurement points (20 MHz SR, 50% CR) was used. A more important observation is that,
from the reconstructed image shown in Figure 25c, frequency domain CS can inherently filter part
background noises and enhance image quality.
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5. Conclusions 

Ultrasonic phased array imaging has always been a promising method for NDE applications 
because of its unique inspection flexibility and higher sensitivity. However, due to the increase of 
element numbers, a significant amount of data is acquired and needs to be processed. In this work, 
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Figure 25. (a) The original 50 MHz SR experimental image of No. 3 pit; (b) the reconstructed image
of (a) in time domain, CR = 60%, PSNR = 36.86 dB; (c) the recovery result in frequency domain,
SR = 20 MHz, CR = 50%, PSNR = 40.84 dB.

We show in Figure 26 the comparative PSNRs between time and frequency domain for all pit
defects. Besides the obvious superiority of frequency domain reconstructions, the results indicate
that the recovery performance is less likely to be affected by defects geometry, which validate the
practicability of our proposed scenario in real application.
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5. Conclusions

Ultrasonic phased array imaging has always been a promising method for NDE applications
because of its unique inspection flexibility and higher sensitivity. However, due to the increase of
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element numbers, a significant amount of data is acquired and needs to be processed. In this work, we
proposed a CS-based data reduction framework and applied it into phased array image compression
both in time field and frequency domain.

Based on CIVA platform, simulated images of different SRs were reconstructed and evaluated
using both PSNR and SSIM index. In time domain, for 40 MHz SR (70% CR) or 25 MHz (60%
CR), the recovery results are so gratifying that three defects are clearly preserved and can be easily
identified, which suggest a breakthrough of the Nyquist sampling limitation. In frequency domain,
the reconstruction performance is considerably better than that in time domain, with at least 49 dB
PSNR for 70% CR. We offer an explanation from a perspective of “Information Value” and attribute
the excellence to its higher sparsity of DCT coefficients. In addition, the results of different defects
interval distance show that the proposed OMP-based CS scheme guarantees the reconstruction quality
for close defects.

In experimental verification, images obtained from through-holes, EDM notches and flat-bottom
holes are reconstructed when CR ranges from 20% to 80%. It is found that, in time domain, the recovery
performances are relatively satisfactory when CR is 60% for 50 MHz SR, although not as good as that
with simulated images. What’s more, the results are more liable to be affected by the SR level and
we find it practically impossible to break Nyquist limitation. By contrast, both PSNRs and SSIMs in
frequency domain appreciably outperform the time domain results with a 28.9% gain in PSNR and
a 141% improvement in SSIM when SR is 20 MHz. For all three kinds of flaws, the coincident satisfactory
recoveries confirm the stabilization of the proposed DCT-based frequency domain reconstruction. It is
worth noting that, using the DCT coefficients to perform reconstruction, qualified recovery using the
equivalent of 10 MHz samples can be obtained, which is below the sampling limitation and means
a real breakthrough of the phased array data reduction. We also present that, in the real application of
engine cylinder cavity inspection, the reconstruction performance keeps consistent for all pit defects
with various diameters and taper angles, therefore verifies the enormous potential of our proposed
scheme in the near future.

Besides, both in simulation and experiment, we compare the PSNR of different SRs when
keeping the measurement points the same to find out whether SR truly influence the reconstruction
performance. We find that lower M/N indeed has an adverse impact on the accuracy, because it
leads to an ill-balanced sensing matrix. When the measurement points increase to some extent,
however, the recoveries are independent with SR. The results imply that, rather than signal bandwidth,
the success of CS relates the number of required measurements that carrying real information. That is
to say, the sampling does not depend on signal bandwidth but on signal sparsity, which is the
fundamental difference between CS and traditional sampling approach. Therefore, the conventional
concept of “sampling rate” is no longer applicable in CS. It is merely because of the limitation of
physical implementation, removing some parts of the original sample is used in this work.
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