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Abstract: We consider infrastructures consisting of a network of systems, each composed of discrete
components. The network provides the vital connectivity between the systems and hence plays a
critical, asymmetric role in the infrastructure operations. The individual components of the systems
can be attacked by cyber and physical means and can be appropriately reinforced to withstand
these attacks. We formulate the problem of ensuring the infrastructure performance as a game
between an attacker and a provider, who choose the numbers of the components of the systems and
network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are
characterized using the sum-form, product-form and composite utility functions, each composed
of a survival probability term and a component cost term. We present a two-level characterization
of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies
the infrastructure failure probability given the failure of an individual system or network, and (ii)
the survival probabilities of the systems and network satisfy first-order differential conditions that
capture the component-level correlations using multiplier functions. We derive Nash equilibrium
conditions that provide expressions for individual system survival probabilities and also the expected
infrastructure capacity specified by the total number of operational components. We apply these
results to derive and analyze defense strategies for distributed cloud computing infrastructures using
cyber-physical models.

Keywords: networked systems; cyber-physical infrastructures; aggregated correlation functions;
sum-form, product-form and composite utility functions

1. Introduction

Infrastructures for cloud computing, science experiments and computations and smart energy
grid consist of complex, geographically-dispersed systems that are connected over long-haul networks.
In these infrastructures, the communications network plays a critical, asymmetric role of providing the
vital connectivity between the systems such as cloud computing sites, or supercomputers, or energy
distribution centers. Network failures render the individual systems unreachable and in extreme cases
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can render the entire infrastructure unavailable. Such an infrastructure is represented by its constituent
systems, Si, i = 1, 2, . . . , N, and the network connecting them is represented as a separate system SN+1.
The individual systems themselves are complex, consisting of several discrete cyber and physical
components, which must be operational and connected to the network. The individual components of
Si may be disabled or disconnected, and Si as a system may be disconnected, by cyber and physical
attacks on the components. We formulate the problem of ensuring the infrastructure performance as a
game between an attacker that launches cyber or physical attacks on the components and a provider
that reinforces them to withstand the attacks. Since both attacks and reinforcements incur costs, the two
players both weight the costs with expected benefits by minimizing utility functions. We derive Nash
Equilibrium (NE) conditions that provide expressions for individual system survival probabilities
and also the expected capacity specified by the total number of operational components. This paper
extends and presents a unified view of the partial results presented in earlier conference papers on
sum- and product-form utilities [1], composite utilities [2,3] and multi-site cloud infrastructures [4].

The components can be reinforced to survive direct attacks, but they can still be unavailable due
to attacks on other components. For example, a super computer at a site may be hardened against
cyber attacks, but can still be made unavailable by cutting fiber connections to the site. On the other
hand, we consider that non-reinforced cyber and physical components will be disabled by direct
cyber and physical attacks, respectively. Furthermore, in addition to within system Si, the effects of
attacks on its components may propagate to components of other systems Sj, j 6= i. Thus, both the
correlations between components within individual systems and those between systems represent
the propagation of disruptions across the infrastructure. The infrastructure provider is tasked with
developing strategies to choose a number of components of each system to reinforce against the attacks
by taking into account both types of correlations.

Let ni denote the number of components of Si, i = 1, 2, . . . , N + 1, of which yi and xi denote the
number of components attacked and reinforced, respectively. Let Pi be the survival probability of Si and
PI be the survival probability of the entire infrastructure. Furthermore, let S−i denote the infrastructure
without Si and P−i be its survival probability. The relative importance of Si is captured by the aggregate
failure correlation function Ci given by the failure probability of S−i given the failure of Si. Under the
asymmetric network conditions, the specific role of the network is specified by two conditions:
(a) CN+1 = 1 indicates that network failure will disrupt the entire infrastructure; and (b) Ci = 0,
for i = 1, 2, . . . , N, indicates that disruptions of individual systems are uncorrelated. The correlations
between components of individual systems are captured by simple first-order differential conditions
on Pi using the system multiplier functions that capture correlations within systems and also abstract
the effects of system-level parameters [5]. This two-level characterization helps to conceptualize the
basic correlations in infrastructures, such as cloud computing and smart grid infrastructures and
provides insights into the needed defense strategies by naturally “separating” the system-level and
component-level aspects.

A game between an attacker and a provider involves balancing the costs of attacks and
reinforcements of systems, given by LA(y1, . . . , yN+1) and LD(x1, . . . , xN+1), respectively, with the
survival probability of the infrastructure. We consider that the provider minimizes the composite
utility function given by:

UD (x1, . . . , xN+1, y1, . . . , yN+1) = FD,G(x1, . . . , xN+1, y1, . . . , yN+1)GD(x1, . . . , xN+1, y1, . . . , yN+1)

+ FD,L(x1, . . . , xN+1, y1, . . . , yN+1)LD(x1, . . . , xN+1)

where the first product term corresponds to the reward and the second product term corresponds to
the cost. Within the product terms, FD,G and FD,L are the reward and cost multipliers, respectively,
of the provider, and GD and LD represent the reward and cost terms, respectively, of keeping the
infrastructure operational. Similarly, we consider that the attacker minimizes:
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UA (x1, . . . , xN+1, y1, . . . , yN+1) = FA,G(x1, . . . , xN+1, y1, . . . , yN+1)GA(x1, . . . , xN+1, y1, . . . , yN+1)

+ FA,L(x1, . . . , xN+1, y1, . . . , yN+1)LA(y1, . . . , yN+1)

where FA,G and FA,L are the reward and cost multipliers, respectively, of the attacker, and GA and
LA represent the reward and cost terms of disrupting the infrastructure operation, respectively.
The expected capacity of the infrastructure is the expected number of available components, given by:

NI =
N

∑
i=1

niPi

which reflects the part of the infrastructure that survives the attacks. In the example of the cloud
infrastructure, it represents the number of operational servers that are available to users on average.

The composite utility function can be specialized to obtain sum-form and product-form utilities
by using appropriate terms, as summarized in Table 1, and their choice represents different values in
keeping the infrastructure operational:

(a) The sum-form utility function is given by:

UD+ = − [PI(x1, . . . , xN+1, y1, . . . , yN+1)] gD + LD(x1, . . . , xN+1)

which will be minimized by the provider. The scalar gD ≥ 0 represents the benefit of keeping the
infrastructure operational such as income from an operational cloud computing infrastructure.
Thus, the sum-form represents a weak coupling between gain and cost terms, since the effect of
their minimization on the utility function is independent. For a provider, this form is used when
explicit “gain” in keeping the infrastructure up can be identified and balanced against the cost.

(b) The product-form utility function is given by:

UD× = [1− PI(x1, . . . , xN+1, y1, . . . , yN+1)]× LD(x1, . . . , xN+1)

which will be minimized by the provider; it represents the “wasted” cost to the provider since
it is the expected cost under the condition that the infrastructure fails. Thus, the product-form
represents a strong coupling between probability and cost terms, since the effect of minimization
of one term gets multiplied by the other. This utility is used when the main goal of the provider is
to keep the infrastructure up with the cost incurred, since there is no explicit ”gain” term.

Table 1. Gain and cost terms and their multipliers for sum-form and product-form utilities of the provider.

FD,G GD FD,L LD

sum-form: UD+ [1− PI ] gD 1 LD
product-form: UD× 0 0 [1− PI ] LD

The Nash Equilibrium (NE) conditions based on the utility functions can used to estimate xi’s for
the provider using various methods [6,7]. Our objective in this paper is to show that critical insights
can be gained by deriving estimates of system survival probabilities and expected capacity explicitly in
terms of various correlations, without relying on explicit solutions for xi’s. The differences in the goals
of sum- and product-form utilities lead to qualitatively different defense strategies, which are derived
separately in earlier works, and the corresponding expressions for the survival probabilities that are
structurally different [5,8]. We show that under the asymmetric network conditions, NE conditions
of this game lead to expressions for Pi’s and NI with the same structure. In particular, the estimates
of Pi for sum-form and product-form utilities have the same expression in Theorem 3 except for one
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term, given by ξ+i = 1
gD

∂LD
∂xi

and ξ×i = (1− PI)
∂ ln LD

∂xi
= (1−PI)

LD

∂LD
∂xi

. To consider the case where the
sum-form and the product-form utilities are equivalent, we equate the two terms and obtain the
following “equivalent” gain term of the sum-form:

gD =
LD

(1− PI)
= LD

[
1 +

∞

∑
i=1

Pi
I

]

for 0 < PI < 1, which is an increasing function in both PI and LD; or, equivalently, we have,
PI = 1− LD/gD. This similarity is striking since the sum-form and product-form utilities represent
two quite different objectives.

The composite utility functions lead to simple expressions for Pi, i = 1, 2, . . . , N, and NI at NE,
which subsume the above cases. In general, the dependence of Pi on cost terms and aggregate
correlation functions, as well as their partial derivatives, is presented in a compact form by using the
composite gain-cost and composite multiplier terms (defined in Section 4). The expected capacity at
NE is expressed in terms of cost term LD and its derivative, the aggregate correlation functions Ci,
i = 1, 2 . . . , N + 1, and the system multiplier functions, Λi, i = 1, 2 . . . , N + 1 (defined in Section 3.2).
The expression provides critical information on the dependence of the expected capacity on system
parameters, in particular Ci and Λi, and utility functions. Furthermore, by decomposing the system
models into sub-models, such as cyber and physical sub-models, finer relationships can be inferred
between system parameters, such as refined versions of Ci and Λi, and the expected capacity. We apply
these results to a simplified model of cloud computing infrastructure with multiple server sites
connected over a communications network.

The organization of this paper is as follows. We describe related work in Section 2. In Section 3,
we describe the infrastructure model along with the aggregate correlation function and differential
conditions on system survival probabilities. We present our game-theoretic formulation using
sum-form, product-form and composite utility functions in Section 4 and derive NE conditions
and estimates for the system survival probabilities and expected capacity. We apply the analytical
results to a model of cloud computing infrastructure in Section 5. We present conclusions in Section 6.

2. Related Work

Critical infrastructures of power grids, cloud computing and transportation systems provide
vital public and private services [9,10]. They depend on complex communications networks that
connect the constituent systems, which by themselves consist of many disparate cyber and physical
components [10]. The communications network plays a very critical role in these infrastructures [11],
in some ways more so than the constituent systems, and its failure can significantly degrade the entire
infrastructure [12,13]. These infrastructures are under increasing cyber and physical attacks, which the
providers are required to counter by applying defense measures and strategies.

By capturing the interactions between providers and attackers of these infrastructures,
game-theoretic methods have been extensively applied to develop the needed defense
strategies [14–16], which attempt to ensure continued infrastructure operations in the presence of
evolving threats [17]. Partial differential equations and discrete component models have been used
in several of these infrastructures to model the physical and cyber systems [18] in formulating
the underlying games. The game-theoretic formulations and the solutions developed for such
infrastructures are quite varied and extensive. They include: multiple-period games that address
multiple time-scales of system dynamics [19]; incomplete information games that account for partial
knowledge about the system dynamics and attack models [20]; and multiple-target games that account
for possibly competing objectives [21].

A comprehensive review of the defense and attack models in various game-theoretic formulations
has been presented in [22]. Recent interest in cyber and cyber-physical systems led to the application
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of game theory to a variety of cyber security scenarios [16,23] and, in particular, for securing
cyber-physical networks [24] with applications to power grids [11,25–27].

The system availability, reliability and robustness aspects can be explicitly integrated into the
game formulations [14] for infrastructures such as power grids, cloud computing and transportation
systems. In particular, discrete models of cyber-physical infrastructures have been studied in various
forms under Stackelberg game formulations [28]. A subclass of these models using the number of
cyber and physical components that are attacked and reinforced as the main variables have been
studied in [29]. These models characterize infrastructures with a large number of components and
are coarser compared to the models that consider the attacks and reinforcements of individual cyber
and physical components. Various forms of correlation functions [5,8,29] are used in these works to
capture the dependencies between the survival probabilities of constituent systems, such as the cyber
and physical sub-infrastructures.

Complex interacting collections of systems have been studied using game-theoretic formulations
in [30], and their two-level correlations have been studied using the sum-form utility functions in [5]
and the product-form utility functions in [8]. The sum-form utility represents a gain-centric priority,
wherein an independent gain term weighted by PI represents the gain to be maximized by the provider.
The product-form utility, on the other hand, represents a cost-centric priority, wherein the expected
cost is to be minimized. The sum-form utility function [5] and the product-form utility function [8] are
considered separately for a generic version of this game, wherein all systems play a similar role, unlike
the asymmetric role of the network considered here. In terms of analysis, these two formulations have
a certain degree of commonality, but there are also differences; in particular, estimates of PI can be
obtained somewhat directly for the product-form as shown in [8]. These two utility functions also lead
to qualitatively different defense strategies, and in particular, PI appears explicitly in the sensitivity
estimates of system survival probabilities in product-form, but not in sum-form. These two utility
functions are unified in [2], and the sum-form utility function has been studied under the asymmetric
role of the communications network in [1].

The infrastructures for smart energy grids, cloud computing and intelligent transportation systems
are composed of complex constituent systems that rely on communications networks. For wide-area
operations, these networks play a critical asymmetric role of providing the vital connectivity needed
for continued infrastructure operations. The asymmetric network correlations have been incorporated
into multiple system infrastructures for sum-form and product-form utilities in [1], and these two
works are unified in [3] by using the composite utility functions. The multi-site cloud computing
infrastructure was discussed as an example for sum-form and product-form utility functions in [1] and
composite utility functions in [3], wherein the network plays a critical asymmetric role. This model is
further extended by including an HVAC system in [4], and also, additional details of NE conditions
and capacity estimates are provided. In this paper, we consolidate these results and present a unified
treatment of the sum-form, product-form and composite utilities under asymmetric network correlation
conditions. For multi-site cloud infrastructures, we explicitly relate these utility functions and interpret
the abstract definitions of correlation functions and system multiplier functions in terms of systems
and their components.

3. Discrete System Models

We consider infrastructures with constituent systems consisting of discrete components [5,8] and
connected over a communications network [1]. We first consider the correlations at the systems and
network levels and then consider the correlations between the components of individual systems.

3.1. System-Level Correlations

The correlations between systems, including the network, in these infrastructures are characterized
in terms of their survival probabilities as follows.
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Condition 1. Aggregate correlation function: Let Ci denote the failure probability of the rest of the infrastructure
S−i given the failure of Si, and let C−i denote the failure probability of Si given the failure of S−i such that:

Ci(1− Pi) = C−i(1− P−i)

for i = 1, . . . , N + 1. Then, the survival probability of the infrastructure is given by:

PI = Pi + P−i − 1 + Ci(1− Pi) = Pi + P−i − 1 + C−i(1− P−i)�

The aggregate failure correlation function captures the interdependence of the rest of the system
S−i on the failure of Si, which can be illustrated using the following special cases.

(a) Asymmetric network: In a cloud computing infrastructure, consider that the fiber connections to
N sites, each with l servers, constitute the network system SF = SN+1. Then, we have:

P−F = 1− l(1− PF)/K

where K is a normalization constant, since the fiber failure rate is amplified by l in rendering the
servers unavailable. Thus, we have:

PI = [1− (CF − l/K)] PF + CF − l/K

(b) Statistical independence: The system failures satisfy a statistical independent condition given by
Ci = 1− P−i, indicating that the failure probability of S−i is not dependent on Pi. This condition
in turn leads to PI = PiP−i, which indicates the statistical independence of the survival processes
of Si and S−i. More generally, if Ci > 1− P−i, the failures in S−i are positively correlated with
failures in Si, that is they occur with a higher probability following the latter. If we denote the
failure probability of Si by Pī, then we have P−i|ī > P−i, or equivalently, failure in Si leads to a
higher probability of failure in S−i. If Ci < 1− P−i, failures in S−i are negatively correlated with
the latter failures, that is P−i|ī < P−i.

(c) Definite failure: In another case, when the failure of Si leads to a definite failure of the rest of
the infrastructure, we have Ci (Pi) = 1 such that PI = P−i. This condition indicates that the
infrastructure survival probability solely depends on the marginal failure probability of S−i.

(d) ORsystems: The OR systems as modeled in [29] correspond to the special case N = 2 where the
infrastructure consists of uncorrelated cyber and physical systems (denoted by i = C and −i = P,
respectively) that can be independently analyzed. For OR systems, the failure probabilities of
Si and S−i are uncorrelated such that Ci = C−i = 0, and hence, we have Pī∪−i = Pī + P−i or
equivalently Pī∩−i = 0. Thus, we have PI = Pi + P−i − 1. We apply this condition next in
Condition 2 for N systems considered in this paper.

The important asymmetric role of the communications network is characterized using the
following condition.

Condition 2. Asymmetric network and uncorrelated systems conditions: The aggregated correlation functions
of Si, i = 1, 2, . . . , N + 1, satisfy the conditions: (i) for the network SN+1, we have CN+1 = 1, and (ii) for the
constituent systems, we have Ci = 0, i = 1, 2, . . . , N. �

Part (i) of Condition 2 leads to PI = P−(N+1), which indicates the role of the rest of infrastructure
S−(N+1) without the network; namely, its survival probability is the same as that for server sites
together. Part (ii) of Condition 2 leads to PI = Pi + P−i − 1, i = 1, 2, . . . , N, which linearly depends on
each of the failure probabilities of the constituent system Si and the rest of infrastructure S−i. It is
important to note that although there are direct correlations between the site failures zero (Part (ii)
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above), these site failures are still indirectly related through the network. In particular, the failures
of Si and Sj, which are parts of S−(N+1), are correlated with the network via CN+1; for example, they
both become simultaneously unavailable when the wide-area network fails.

The effects of reinforcements and attacks on host sites and wide-area networks can be separated
using the following two conditions:

(i) the first condition, ∂P−i
∂xi

= 0 for i = 1, 2, . . . , N, indicates that reinforcing the server site Si does
not directly impact the survival probability of other sites or networks; and

(ii) the second condition, ∂Pi
∂xj

= 0 for i = 1, 2, . . . , N + 1, j = 1, 2, . . . , N and j 6= i, indicates that
reinforcing server sites or network Sj does not directly impact the survival probability of server
sites or network Si.

While the reinforcements to individual server sites or networks are not directly reflected in other
systems, their failures may still be correlated due to the underlying system structures as reflected in
the aggregated correlation function of the network CN+1. These system-level considerations for the
provider are captured by the following condition, which is obtained by differentiating PI in Condition 1
with respect to xi and ignoring the terms corresponding to Parts (i) and (ii) above.

Condition 3. De-coupled reinforcement effects: For PI in Condition 1, we have for i = 1, 2, . . . , N + 1,

∂PI
∂xi

= (1− Ci)
∂Pi
∂xi

+ (1− Pi)
∂Ci
∂xi

for the provider. �

The condition captures the effect on the increment in PI as a result of the change in the number
of reinforced components xi of Si. It is the sum of (i) the increment in individual system survival
probability Pi weighted by “non-correlation” term (1− Ci) and (ii) the increment in correlation Ci
weighted by the failure probability 1− Pi of Si. For the sites Si, i = 1, 2, . . . , N, we have:

∂PI
∂xi

=
∂Pi
∂xi

+ (1− Pi)
∂Ci
∂xi

For the network SN+1, we have:

∂PI
∂xN+1

= (1− PN+1)
∂CN+1

∂xN+1

Under Condition 2, Ci is constant, but its partial derivatives with respect to xi could be non-zero,
as other parameters change to keep it constant.

3.2. Component-Level Correlations

The system survival probabilities satisfy the following differential condition that specifies the
correlations at the component level [5,31].

Condition 4. System multiplier functions: The survival probabilities Pi and P−i of system Si and S−i,
respectively, satisfy the following conditions: there exist system multiplier functions Λi and Λ−i such that:

∂Pi
∂xi

= Λi(x1, . . . , xN+1, y1, . . . , yN+1)Pi and
∂P−i
∂xi

= Λ−i(x1, . . . , xN+1, y1, . . . , yN+1)P−i

for i = 1, 2, . . . , N + 1. �

The derivative in the above condition is linear in Pi for Λi = 1 and is faster than linear if Λi > 1
and slower than linear if Λi < 1. These system multiplier functions capture the underlying system
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structure including its parameters, in addition to the game variables xi’s and yi’s. For example, in the
case of multi-site server infrastructure, Λi in Section 5.2 depends on the number of severs li at site
i. This somewhat abstract condition enables us to capture such a structure in a generic manner and
indeed is satisfied in two special cases studied extensively in the literature.

(a) Statistically independent components: The special case when component survival probabilities
are statistically independent with and without reinforcements has been studied in [31]. Let pi|R
and pi|W denote the conditional survival probability of a component of Si with and without
reinforcement, respectively. Under the statistical independence condition of component failures,
the probability that Si with ni components survives the attacks is:

Pi = pxi
i|R pni−xi

i|W

as in [31], or equivalently:

ln Pi = ni ln pi|W + xi ln

(
pi|R
pi|W

)
By differentiating the equation with respect to xi, we obtain:

∂Pi
∂xi

= ln

(
pi|R
pi|W

)
Pi

The condition for the faster than linear derivative is ln
( pi|R

pi|W

)
> 1 or equivalently pi|R > epi|W ,

where e is the base of the natural logarithm. The condition that the survival probability of a
reinforced component is higher than that of a non-reinforced component, but less than epi|W ,
namely, epi|W > pi|R > pi|W , corresponds to only the slower than linear derivative.

(b) Contest survival functions: The contest survival functions are to express Pi in [30] such that
Pi =

ξ+xi
ξ+xi+yi

for a suitably-selected slack variable ξ, which in turn leads to:

∂Pi
∂xi

=

[
yi

(ξ + xi + yi)(ξ + xi)

]
Pi

The condition for the slower than linear derivative is:

yi[1− (xi + ξ)] < (ξ + xi)
2

which is satisfied for larger values of xi sufficient to make the left-hand side negative.

4. Game Theoretic Formulation

The provider’s objective is to make the infrastructure resilient by reinforcing xi components of
Si to optimize the utility function. Similarly, the attacker’s objective is to disrupt the infrastructure
by attacking yi components of Si to optimize the corresponding utility function. NE conditions are
derived by equating the corresponding derivatives of the utility functions to zero, which yields:

∂UD
∂xi

=

(
GD

∂FD,G

∂PI
+ LD

∂FD,L

∂PI

)
∂PI
∂xi

+ FD,G
∂GD
∂xi

+ FD,L
∂LD
∂xi

= 0

for i = 1, 2, . . . , N + 1 for the provider. We define:

LD
G,L = GD

∂FD,G

∂PI
+ LD

∂FD,L

∂PI
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as the composite gain-cost term, wherein the gain GD and cost LD are “amplified” by the derivatives
of their corresponding multiplier functions with respect to PI . We then define:

FD,i
G,L = FD,G

∂GD
∂xi

+ FD,L
∂LD
∂xi

as the composite multiplier term, wherein the gain multiplier FD,G and cost multiplier FD,L are
“amplified” by the derivatives of their corresponding gain and cost terms with respect to xi,

i = 1, 2, . . . , N + 1, respectively. These two terms lead to the compact NE condition ∂PI
∂xi

= − FD,i
G,L

LD
G,L

.

These NE conditions can be used to solve for xi’s using available methods whose complexity depends
on the details of gain and cost terms [14–16]. Indeed, different methods and trade-offs may be
required to derive such solutions by exploiting the details of infrastructure [7]. We show in the next
section that estimates for system survival probabilities and expected capacity can be obtained without
explicitly solving for xi’s, and yet, they provide valuable qualitative insights about the infrastructure.
Various terms of the composite utility function specialized to sum-form and product-form utilities are
shown in Table 2, which are considered separately in Section 4.3.

Table 2. Gain and cost terms, their multipliers and other terms for sum-form and product-form utilities
of the provider.

FD,G GD FD,L LD
∂FD,G
∂PI

∂GD
∂xi

∂FD,L
∂PI

LD
G,L FD,i

G,L

sum-form: UD+ [1− PI ] gD 1 LD −1 0 0 −gD
∂LD
∂xi

product-form: UD× 0 0 [1− PI ] LD 0 0 −1 −LD [1− PI ]
∂LD
∂xi

4.1. OR Systems

The OR systems [31] constitute a sub-class of abstract infrastructures where simultaneous failures
of two or more systems are extremely unlikely, namely their probability is zero. These abstract
models are used to illustrate the simplifications that result from ignoring the correlations and are
generally used for analysis purposes. Here, OR systems ignore the asymmetric role played by the
communications network. These systems are simpler to analyze due to the absence of system-level
correlation terms, and they serve as base study cases when the correlations can be ignored. Indeed,
an estimate of Pi can be derived as a simple ratio of the gain-cost gradient and system multiplier
function Λi. Using PS = Pi + P−i − 1, we obtain:

∂Pi
∂xi

= −
FD,i

G,L

LD
G,L

= −Θi (x1, . . . , xN , y1, . . . , yN)

where Θi (·) is called the scaled gain-cost gradients of system Si. Then, Condition 4 provides us an
estimate for the survival probability of Si as the ratio of the scaled gain-cost gradient and the system
multiplier function given by:

P̃i;D (x1, . . . , xN , y1, . . . , yN) = −
Θi (x1, . . . , xN , y1, . . . , yN)

Λi(x1, . . . , xN , y1, . . . , yN)

for i = 1, 2, . . . , N. These estimates for individual systems depend mainly on the corresponding
scaled gain-cost gradients and thus represent a “separation” of the individual systems at this level.
In this sense, OR systems constitute an important analytical case wherein the correlations between the
individual systems may be ignored. In addition, these estimates provide the sensitivity information of
the survival probabilities of the individual systems with respect to various quantities of Si. In particular,
the survival probability estimate P̃i;D is proportional to the corresponding weighted cost and reward
functions and inversely proportional to their weighted derivatives. This seemingly counter-intuitive
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trend applies only to the set of Nash equilibria and not to the overall system behavior. In the rest of the
paper, we denote Λi (x1, . . . , xN , yi, . . . , yN) and Θi (x1, . . . , xN , yi, . . . , yN), by Λi and Θi, respectively,
to simplify the notation.

4.2. System Survival Probabilities and Expected Capacity

We now derive estimates for Pi at NE using aggregated correlation functions and their partial
derivatives to infer qualitative information about their sensitivities to different parameters.

Theorem 1. Survival probability estimates: Under Conditions 1, 3 and 4, estimates of the survival probability
of system Si, for i = 1, 2, . . . , N + 1, are given by:

P̂i;D =

∂Ci
∂xi

+
FD,i

G,L
LD

G,L
∂Ci
∂xi
− (1− Ci)Λi

for i = 1, 2, . . . , N + 1 under the condition: Ci < 1 or ∂Ci
∂xi
6= 0. Under the asymmetric network correlation

coefficient CN+1 = 1, the survival probability of the network is given by:

P−(N+1);D = − 1
Λ−(N+1)

FD,N+1
G,L

LD
G,L

Proof. Our proof is based on deriving NE conditions for the utility function. At NE, we have:

∂PI
∂xi

= −
FD,i

G,L

LD
G,L

Then, using the equation in Condition 3 and ∂Pi
∂xi

= ΛiPi from Condition 4, we have:

(1− Ci)ΛiPi;D + (1− Pi;D)
∂Ci
∂xi

= −
FD,i

G,L

LD
G,L

(1)

Under the condition Ci < 1 or ∂Ci
∂xi
6= 0, we have ∂Ci

∂xi
− (1− Ci)Λi 6= 0, and hence, we obtain:

Pi;D =

∂Ci
∂xi

+
FD,i

G,L
LD

G,L
∂Ci
∂xi
− (1− Ci)Λi

for i = 1, 2, . . . , N + 1.
Consider the survival probability of the infrastructure; under the asymmetric network condition,

we have CN+1 = 1 and ∂CN+1
∂xN+1

= 0, which imply that the condition Ci < 1 or ∂Ci
∂xi
6= 0 is not satisfied;

hence, the above formula cannot be used directly since the denominator ∂Ci
∂xi
− (1− Ci)Λi = 0. Instead,

using CN+1 = 1 in Condition 1, we obtain PI = P−(N+1), which implies:

∂PI
∂xN+1

=
∂P−(N+1)

∂xN+1

Then, the NE condition is given by:

∂PI
∂xN+1

=
∂P−(N+1);D

∂xN+1
= Λ−(N+1)P−(N+1);D = −

FD,N+1
G,L

LD
G,L
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which completes the proof.

The system survival probability estimates P̂i;D provide qualitative information about the effects
of various parameters including aggregated correlation coefficient Ci, system multiplier functions Λi,
composite gain-cost LD

G,L and composite multiplier FD,i
G,L; note that the estimates may not necessarily lie

within the range [0,1]. In particular, P̂i;D (i) increases and decreases with FD,i
G,L and LD

G,L, respectively,
(ii) increases with Λi and (iii) depends both on Ci and its derivative for i = 1, 2, . . . , N. For the network,
P−(N+1);D is in a simpler form since CN+1 = 1.

We now consider that the asymmetric role played by the network described in Condition 2,
namely its failure, renders entire infrastructure unavailable; also, failures of individual systems are
uncorrelated with others. The following theorem provides a single, simplified expression for the
expected capacity under these conditions.

Theorem 2. Expected capacity under asymmetric network correlations: Under Conditions 1–4, the expected
capacity is given by:

NI =
N

∑
i=1

(
− ni

Λi

FD,i
G,L

LD
G,L

)

Proof. Under Part (ii) of Condition 2, Equation (1) in the proof of Theorem 1 simplifies to the equation:

ΛiPi;D = −
FD,i

G,L

LD
G,L

for i = 1, 2, . . . , N. Thus, we have Pi = − 1
Λi

FD,i
G,L

LD
G,L

, which provides the expression for NI .

This condition indicates that lower LD
G,L and higher composite multiplier FD,i

G,L lead to lower
expected capacity. Typically, the composite gain-cost LD

G,L is negative (e.g., −gD for sum-form) since
it is minimized by the provider; thus, its lower value is more negative and has a higher magnitude.
Furthermore, larger values of Λi also lead to lower expected capacity. In particular, the condition
Λi > 1, called the faster than linear growth of ∂Pi

∂xi
, leads to lower expected capacity. This seems

counter-intuitive since faster improvement in Pi due to the increase in xi leads to lower expected
capacity, but note that it only characterizes the states that satisfy NE conditions.

4.3. Sum-Form and Product-Form Utility Functions

The NE conditions for sum-form and product-form utilities are derived by equating the
corresponding derivatives to zero, which yields the following conditions, respectively:

∂UD+

∂xi
=

∂PI
∂xi

gD −
∂LD
∂xi

= 0 and
∂UD×

∂xi
= −∂PI

∂xi
LD + (1− PI)

∂LD
∂xi

= 0

for i = 1, 2, . . . , N + 1 for the provider.
We now derive estimates for Pi at NE using partial derivatives of the cost and failure correlation

functions to infer qualitative information about their sensitivities to different parameters.

Theorem 3. Under Conditions 1, 3 and 4, estimates of the survival probability of system Si, for i = 1, 2, . . . , N + 1,
are given by:

P̂A
i;D =

∂Ci
∂xi
− ξA

i
∂Ci
∂xi
− (1− Ci)Λi
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where A = + and A = × correspond to sum-form and product-form, respectively, such that:

ξA
i =

 1
gD

∂LD
∂xi

if A = +

(1− PI)
∂ ln LD

∂xi
, if A = ×

for i = 1, 2, . . . , N + 1 under the condition: Ci < 1 or ∂Ci
∂xi
6= 0. Under the asymmetric network correlation

coefficient CN+1 = 1, the survival probability of the network is given by:

PA
−(N+1);D =

ξ A
N+1

Λ−(N+1)

for A = +,×.

Proof. Our proof is based on deriving NE conditions separately for sum-form and product-form
utility functions and then comparing them to identify their common structure and the difference terms.
At NE, for the sum-form, we have:

∂PI
∂xi

=
1

gD

∂LD
∂xi

= ξ+i

Then, using the equation in Condition 3 and ∂Pi
∂xi

= ΛiPi from Condition 4, we have:

(1− Ci)ΛiP+
i;D + (1− P+

i;D)
∂Ci
∂xi

=
1

gD

∂LD
∂xi

(2)

Under the condition Ci < 1 or ∂Ci
∂xi
6= 0, we have ∂Ci

∂xi
− (1− Ci)Λi 6= 0, and hence, we obtain:

P+
i;D =

∂Ci
∂xi
− 1

gD

∂LD
∂xi

∂Ci
∂xi
− (1− Ci)Λi

=

∂Ci
∂xi
− ξ+i

∂Ci
∂xi
− (1− Ci)Λi

for i = 1, 2, . . . , N + 1. Similarly, for the product-form, we have:

∂PI
∂xi

= (1− PI)
1

LD

∂LD
∂xi

= (1− PI)
∂ ln LD

∂xi
= ξ×i (3)

Then, using the equation in Condition 3 and ∂Pi
∂xi

= ΛiPi from Condition 4, we have:

(1− Ci)ΛiP×i;D + (1− P×i;D)
∂Ci
∂xi

= (1− PI)
∂ ln LD

∂xi

Then, we have:

P×i;D =

∂Ci
∂xi
− (1− PI)

∂ ln LD
∂xi

∂Ci
∂xi
− (1− Ci)Λi

for i = 1, 2, . . . , N + 1.
Consider the survival probability of the infrastructure; under the asymmetric network condition,

we have CN+1 = 1 and ∂CN+1
∂xN+1

= 0, which imply that the condition Ci < 1 or ∂Ci
∂xi
6= 0 is not satisfied;

hence, the above formula cannot be used directly since the denominator ∂Ci
∂xi
− (1− Ci)Λi = 0. Instead,

using CN+1 = 1 in Condition 1, we obtain PI = P−(N+1), which implies:

∂PI
∂xN+1

=
∂P−(N+1)

∂xN+1
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Then, the NE condition for the sum-form is given by:

∂PI
∂xN+1

=
∂P+
−(N+1);D

∂xN+1
= Λ−(N+1)P

+
−(N+1);D =

1
gD

∂LD
∂xN+1

Similarly, for the product-form, we obtain,

∂PI
∂xN+1

= Λ−(N+1)P
×
−(N+1);D = (1− PI)

∂ ln LD
∂xN+1

which completes the proof.

The estimates P̂i;D above provide sensitivity information about the corresponding survival
probabilities with respect to various parameters; note that the estimates may not necessarily lie
within [0,1]. In particular, they qualitatively relate Pi to the corresponding aggregate correlation
function Ci and its derivative, and also to Λi. These dependencies are identical for both sum-form
and product-form utility functions. Indeed, the difference between the two formulae is captured
by the single term ξA

i , which is proportional to the derivative term ∂LD
∂xi

in both cases. The main
difference is that ξ×i is an increasing function of PI , whereas ξ+i does not depend on PI . Furthermore,
the dependence on LD is different for these two terms. Since ξ+i = 1

gD

∂LD
∂xi

and ξ×i = (1− PI)
1

LD

∂LD
∂xi

,
the role of gD in the former is played by LD/(1− PI) in the latter. Typically, gD is chosen as a constant
in the sum-form, and PI is a function of xi and yi.

We now consider that network failure renders the entire infrastructure unavailable, and the
failure of individual systems is uncorrelated with others given by Condition 2. The following theorem
provides a single, simplified expression for the expected capacity under these conditions.

Theorem 4. Asymmetric network correlations: Under Conditions 1–4, the expected capacity is given by:

NA
I =

N

∑
i=1

(
ni

ξA
i

Λi

)

where A = + and A = × correspond to sum-form and product-form, respectively, such that:

ξA
i =

 1
gD

∂LD
∂xi

if A = +

(1− PI)
∂ ln LD

∂xi
, if A = ×

for i = 1, 2, . . . , N.

Proof. Under Part (ii) of Condition 2, Equations (2) and (3) in Theorem 3 simplify to the same equation

ΛiPA
i;D = ξA

i for A = +,× and i = 1, 2, . . . , N. Thus, we have PA
i =

ξ A
i

Λi
, which provides the expression

for NA
I .

For the sum-form,

N+
I =

N

∑
i=1

ni
∂LD
∂xi

gDΛi


indicates that higher gain gD leads to a lower number of operational components. For the product form,

N×I = (1− PI)
N

∑
i=1

ni
∂LD
∂xi

LDΛi


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indicates that higher survival probability of the network leads to a lower number of operational
components. The dependence on Λi is similar in both cases, namely faster than linear leads to a lower
number of available component, and vice versa. The dependence on LD is somewhat different due to
its presence in the denominator for the product-form, even though ∂LD

∂xi
appears in the numerator in

both forms.
The expressions of NI for the composite utility are simpler due to the generality of the composite

gain-cost and composite multiplier, which are complex by themselves in that the sum-form and
product-form are subsumed by them as indicated in Table 1. Typically, the composite gain-cost LD

G,L
is negative (e.g., −gD for the sum-form) since it is minimized by the provider; thus, its lower value
is more negative and has a higher magnitude. Furthermore, larger values of Λi also lead to lower
expected capacity. In particular, the condition Λi > 1, called the faster than linear growth of ∂Pi

∂xi
, leads

to lower expected capacity. This seems counter-intuitive since faster improvement in Pi due to the
increase in xi leads to lower expected capacity, but note that it only characterizes the states that satisfy
NE conditions.

5. Multi-Site Server Infrastructure

A distributed cloud computing infrastructure consisting of N sites, each with li servers at site i,
i = 1, 2, . . . , N, has been studied by using separate cyber and physical models for each site in [2]. Here,
we expand this model to incorporate both cyber and physical aspects of the HVAC of a site, namely
its mobile phone app and cooling tower located outside the facility. The sites are connected over a
wide-area network SN+1, as shown in Figure 1. The components of the network include routers, each
of which manages lN+1 connections as shown in Figure 2.

Figure 1. Cloud computing infrastructure with N server sites.

This infrastructure is subject to a variety of cyber and physical attacks on its components.
Cyber attacks on the servers may be launched remotely over the network since the servers are
accessible to users. Meanwhile, routers are located at geographically-separated sites, and access to
them is limited (to network administrators), so they are not as easily accessible over the network.
Cyber attacks on routers require different techniques and represent different costs to the attacker
compared to server attacks. Furthermore, this infrastructure is subject to physical attacks in the form
of fiber cuts, which require a proximity access by the attacker. Cutting the network fibers that connect
server sites to routers will disconnect the entire site, making it inaccessible to the users. Such attacks
may also be launched on the network fibers between routers at different locations on the network.
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The infrastructure provider may employ a number of reinforcements to protect against
attacks, including replicating the servers and routers to support fail-over operations and installing
physically-separated redundant fiber lines to the sites and between router locations. These measures
could require significant costs and hence must be strategically chosen.

Figure 2. Network of a multi-site cloud server infrastructure.

5.1. System-Level Correlations

The cyber and physical aspects of a site Si can be represented by using two finer sub-models S(i,c)
and S(i,p) that correspond to the cyber and physical model, respectively. Similarly, those of the network
SN+1 are represented by S(N+1,c) and S(N+1,p), which are the cyber and physical models, respectively,
as illustrated in Figure 3. Let n(i,c) and n(i,p) represent the cyber and physical components of Si, which
correspond to the number of components of S(i,c) and S(i,p), respectively, such that ni = n(i,c)+ n(i,p). Let
x(i,c) and x(i,p) denote the number of cyber and physical components that are reinforced, respectively,
such that xi = x(i,c) + x(i,p). Similarly, y(i,c) and y(i,p) denote the number of cyber and physical
components that are attacked, respectively, such that yi = y(i,c) + y(i,p). The relationships between
these system-level models can be captured using refined versions of the aggregate correlation function
as follows. For the wide-area network, we have:

C(N+1,c) = lN+1C(N+1,p)

which reflects that a cyber attack on a router will disrupt all of its lN+1 connections, thereby illustrating
the amplification effect of these cyber attacks. For the server sites, we have a similar effect due to
physical fiber attacks denoted by label p f reflected by:

C(i,p f )
= liC(i,c)

which indicates that at site Si, the fiber disruption will disconnect all of its li servers. Similarly, the
cyber attack on the site’s HVAC app denoted by label ch leads to:

C(i,ch)
= liC(i,c)

which indicates that at site Si, the HVAC disruption will affect all of its li servers. In the limiting

case, each component can be represented as a singleton sub-model Si,j such that xi =
ni
∑

j=1
x(i,j) and
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yi =
ni
∑

j=1
y(i,j). Here, x(i,j) ∈ {0, 1} and y(i,j) ∈ {0, 1} indicate if the component represented by Si,j is

reinforced and attacked, respectively.

Figure 3. Representation of the cloud computing infrastructure.

5.2. Component-Level Correlations

We now consider a special case where the attacker and provider choose the components of
a constituent system to attack and reinforce, respectively, according to a uniform distribution.
Corresponding to the site physical model S(i,p), i = 1, 2, . . . , N, there are [n(i,p)− x(i,p)]+ non-reinforced
fiber connections, where [x]+ = x for x > 0, and [x]+ = 0 otherwise. Similarly, there are [n(i,c)− x(i,c)]+
non-reinforced servers. If a cyber component (i.e., a server) is reinforced, it will survive a cyber attack,
but can be brought down indirectly by a fiber attack. Then, the probability that a cyber-reinforced
component survives y(i,p) fiber attacks is approximated by:

p(i,c)|R =
f(i,c)

1 + li
[
y(i,p) − x(i,p)

]
+

where the normalization constant f(i,c) is appropriately chosen.
On the other hand, if a cyber component is not reinforced, it can be brought down by either a

direct cyber attack or indirectly through a fiber attack. Thus, we approximate the survival probability
of a cyber component at site i as:

p(i,c)|W =
f(i,c)

1 + y(i,c) + li
[
y(i,p) − x(i,p)

]
+

which reflects the additional lowering of the survival probability in inverse proportion to the level of
cyber attack y(i,c). Under the independence of component attacks and reinforcements, the survival
probability of the cyber sub-model S(i,c) is given by:

P(i,c) = p
x(i,c)
(i,c)|R p

n(i,c)−x(i,c)
(i,c)|W (4)

which in turn provides:
∂P(i,c)
∂x(i,c)

= P(i,c) ln

(
p(i,c)|R
p(i,c)|W

)
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Using the above formulae, for cyber model S(i,c) of site Si, we have:

Λ(i,c)

(
x(i,p), y(i,c), y(i,p)

)
= ln

1 +
y(i,c)

1 + li
[
y(i,p) − x(i,p)

]
+


It is interesting to note that the system multiplier function Λ(i,c) does not depend on the cyber

reinforcement term x(i,c) even though it corresponds to
∂P(i,c)
∂x(i,c)

. The function, however, depends on the

physical reinforcement term x(i,p).
Under the statistical independence of cyber and physical attacks, for the cyber and physical

sub-models, namely, S(i,c) and S(i,p), respectively, we have the following generalization of Equation (4):

Pi = p
x(i,c)
(i,c)|R p

n(i,c)−x(i,c)
(i,c)|W p

x(i,p)
(i,p)|R p

n(i,p)−x(i,p)
(i,p)|W

or equivalently:

ln Pi = n(i,c) ln p(i,c)|W + x(i,c) ln

(
p(i,c)|R
p(i,c)|W

)
+ n(i,p) ln p(i,p)|W + x(i,p) ln

(
p(i,p)|R
p(i,p)|W

)

By differentiating the equation with x(i,c), we obtain:

∂Pi
∂x(i,c)

= ln

(
p(i,c)|R
p(i,c)|W

)
Pi = Λ(i,c)Pi

Then, by noting that ∂xi
∂x(i,c)

= 1, we obtain:

∂Pi
∂xi

= Λ(i,c)Pi

which enables us to approximate Λi by Λ(i,c).
Consider that the HVAC sub-model S(i,h) of site i is further decomposed into cyber and physical

singleton sub-models represented by S(i,ch)
and S(i,ph)

, respectively. Then, we have:

Λ(i,ch)
= ln

(
1 +

y(i,ch)

1 + li[y(i,ch)
− x(i,ch)

]+

)
(5)

which corresponds to a cyber attack on and defense of the HVAC app. Similarly, we have:

Λ(i,ph)
= ln

(
1 +

y(i,ph)

1 + li[y(i,ph)
− x(i,ph)

]+

)

which corresponds to a physical attack on and defense of the HVAC cooling tower.

5.3. Expected Capacity Estimates

We now consider the capacity of the infrastructure under xi reinforcements and yi attacks on
components of Si, which can be further partitioned into the corresponding values of sub-systems of Si.

5.3.1. Sum-Form and Product-Form

Based on the estimates from Section 4.3, for the expected capacity NA
I of the sub-models of Si,

the dependence on y(i,c) and
[
y(i,p) − x(i,p)

]
+

is more direct, and it is qualitatively similar for both
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sum-form and product-form, since the term Λi appears in the denominator. Then, we obtain the
following expected capacity estimates: for the sum-form,

N+
I =

N

∑
i=1

 ni
∂LD
∂xi

gD ln
(

1 +
y(i,c)

1+li[y(i,p)−x(i,p)]+

)


and for the product form,

N×I = (1− PI)
N

∑
i=1

 ni
∂LD
∂xi

LD ln
(

1 +
y(i,c)

1+li[y(i,p)−x(i,p)]+

)


In both cases, the multipliers ni, gD and LD are positive, and it is reasonable to assume the
condition ∂LD

∂xi
≥ 0, as described above. Thus, the expected capacity decreases with the number of

cyber attacks y(i,c). The opposite trend is true with respect to
[
y(i,p) − x(i,p)

]
+

, which implies no effect

if the number of reinforced components is at least as large as the number of component attacks, and
otherwise, the expected capacity increases with the difference. In both cases, the dependence on the
number of servers li at site i is qualitatively similar in that the expected capacity increases proportional
to its logarithm.

The term
(

ni
ξ A

i
Λi

)
that corresponds to site Si can be further refined by decomposing into its

sub-models, which provides insight into their individual effects. The impact of the HVAC control app
at site i is reflected in its corresponding term:

ξA
i

ln
(

1 +
y(i,ch)

1+li [y(i,ch)
−x(i,ch)

]+

)
obtained from Equation (5), which shows that reinforcing the app, that is x(i,ch)

= 1, nullifies the
amplification effect of li since [y(i,ch)

− x(i,ch)
]+ = 0 for both sum-form and product-form utility

functions. Such an analysis can be carried out for other critical components of the sites to gain
information on which components to reinforce for higher utility. In particular, reinforcing the site
fiber routes will have a similar effect on nullification, but server reinforcements will have somewhat
lesser impact.

5.3.2. Composite Utility Functions

We now obtain the following expected number of servers for the composite utility functions,

NI =
N

∑
i=1

− niF
D,i
G,L

LD
G,L ln

(
1 +

y(i,c)
1+li[y(i,p)−x(i,p)]+

)


In the equation, ni is positive, and it is reasonable to assume that − FD,i
G,L

LD
G,L
≥ 0, since ∂PI

∂xi
= − FD,i

G,L
LD

G,L
at

NE, and the survival probability of entire infrastructure PI does not decrease with xi. Thus, the expected
capacity decreases with y(i,c), and the opposite is true with respect to

[
y(i,p) − x(i,p)

]
+

, as discussed in

the previous section. In both cases, the dependence on the number of servers li at site i is qualitatively
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similar in that the expected capacity increases proportional to its logarithm, also as in the previous
section. As in sum-form and product-form utility functions, the term:(

− ni
Λi

FD,i
G,L

LD
G,L

)

can be decomposed using sub-models of site i to assess the impacts of its parts, in particular its
components. For the HVAC app at site i, we have the corresponding term:− FD,(i,ch)

G,L

LD
G,L ln

(
1 +

y(i,ch)

1+li
[
y(i,ph)

−x(i,ph)

]
+

)


which shows that reinforcing the HVAC app nullifies the amplification by factor li, even under the
more general utility function since li does not appear in the dependent term FD,(i,ch)

G,L . Furthermore,
such an analysis can be carried out for other components, and in a limiting case, each component
can be modeled as a singleton sub-model, in which case their attack and reinforcement variables
are Boolean.

The dependencies considered here for the sub-models are quite simple as a result of the statistical
independence and uniform distributions of reinforcements and attacks. Even under such simple
conditions, the detailed NE conditions are quite complex to characterize, but they do provide
qualitative insights into the effects of underlying parameters.

6. Conclusions

We consider a class of infrastructures with multiple systems, wherein the communications network
plays an asymmetric role by providing the critical connectivity between them. By utilizing correlations
at the system- and component-level, we formulated the problem of ensuring the infrastructure
survival as a game between an attacker and a provider, by using composite utility functions that
generalize the sum-form and product-form utility functions. We derived Nash equilibrium conditions
in terms of composite gain-cost and composite multiplier, which provide compact expressions for
individual system survival probabilities and also the expected number of operational components.
This paper presented a unified account of partial results that were separately developed for: sum-form
utility functions [5] and under asymmetric network conditions [1]; product-form utility functions [8];
composite utility functions [2]; composite utility functions under asymmetric network conditions [3];
and detailed derivations for multi-site cloud server infrastructure [4]. These results extend previous
results on interconnected systems [30,32] and cyber-physical infrastructures [31] by using the composite
utility functions. We presented a comprehensive treatment of the three utility functions, including
more illustrative details of the sum-form and product-form utility functions. For multi-site cloud
infrastructures, we explicitly related the correlation functions and system multiplier functions to the
infrastructure parameters, which in turn provided us insights into the estimates for system survival
probabilities and the expected capacity. In particular, by employing sub-models of the sites, the
effect of parts of the system on the expected capacity could be inferred by using the corresponding
multiplier functions.

The formulation studied in this paper can be extended to include cases where targeted attacks and
reinforcements of specific individual components are explicitly represented. The system models here
incorporate the same level of detail in that they all consist of components, and it would be of future
interest to incorporate varying levels of detail in them, for example by replacing components with the
recursively-defined systems. The utility functions considered in this paper do not explicitly use the
capacity term. Instead, they are driven by the infrastructure level considerations by using PI , which in
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turn leads to expressions for the capacity that involve other terms that contribute to PI . It is of future
interest to compare this formulation to ones whose utility functions contain the expected capacity
term in place of infrastructure survival probability terms. Another future direction is to consider the
simultaneous cyber and physical attacks on multiple systems and components and sequential game
formulations of this problem. Performance studies of our approach using more detailed models of
cloud computing infrastructure, smart energy grid infrastructures and high-performance computing
complexes would be of future interest.
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