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Abstract: Textile based image retrieval for indoor environments can be used to retrieve images that
contain the same textile, which may indicate that scenes are related. This makes up a useful approach
for law enforcement agencies who want to find evidence based on matching between textiles. In this
paper, we propose a novel pipeline that allows searching and retrieving textiles that appear in pictures
of real scenes. Our approach is based on first obtaining regions containing textiles by using MSER on
high pass filtered images of the RGB, HSV and Hue channels of the original photo. To describe the
textile regions, we demonstrated that the combination of HOG and HCLOSIB is the best option for
our proposal when using the correlation distance to match the query textile patch with the candidate
regions. Furthermore, we introduce a new dataset, TextilTube, which comprises a total of 1913 textile
regions labelled within 67 classes. We yielded 84.94% of success in the 40 nearest coincidences and
37.44% of precision taking into account just the first coincidence, which outperforms the current deep
learning methods evaluated. Experimental results show that this pipeline can be used to set up an
effective textile based image retrieval system in indoor environments.

Keywords: content-based image retrieval; textile retrieval; textile localization; texture retrieval;
texture description; visual sensors

1. Introduction

The process of automatically finding objects, textiles, faces, or other patterns in images and videos
is one of the most studied topics in computer vision. Nowadays, with the huge amount of digital
images and videos, it becomes even more critical. Visual sensors are able to acquire a large quantity of
visual information from the surroundings around them. Content Based Image Retrieval (CBIR) consists
of retrieving images using their content properties from a collection that match a user’s query [1]
based on a similarity measure [2]. Many research fields, e.g., medical image [3–5], human retrieval [6],
biological analysis [7,8], agricultural retrieval [9] and biometric security [10], achieved interesting
results using CBIR techniques.

Most works related to CBIR aim at finding objects in datasets of images. Research groups face
this problem using different approaches such as invariant local features (SIFT [11,12], SURF [13]),
color description [14,15], template matching [16,17] or, more recently, deep learning techniques [18–20].
Nonetheless, these techniques may fail when the object does not present a rigid shape or it has a plain
shape, as it is the case of textiles. The same textile can appear in images with very skewed shapes.
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Moreover, textile retrieval shares the difficulties of object retrieval such as the variety in illumination
conditions, occlusions, lack of texture information, etc.

The need of retrieving textiles from image collections captured under a variety of visual sensors
can be motivated by many applications [21]—for example, for marketing studies in textile stores that
suggest the products that fit a decorated room to users. The recently published book “Applications
of computer vision in fashion and textiles” [22] deals with three aspects related to computer vision
techniques applied to textile industry: (i) textile defect detection and quality control, (ii) fashion
recognition and 3D modeling, and (iii) 2D and 3D human body modeling for improving clothing fit.
One of its chapters [23] reviews the computer vision state-of-the-art techniques for fashion textile
modeling, recognition, and retrieval. A completely different approach in which textiles are needed to
be retrieved is to connect evidence of different crime scenes.

In our case, this work is framed in the Advisory System Against Sexual Exploitation of Children
(ASASEC) project, a European project that fights child pornography using forensic analysis, data
mining and computer vision techniques. It was demonstrated that perverts usually use the same
bedrooms to take their pictures or videos [24]. A way to link two images, and consequently provide
relationships among the many cases of child pornography, is finding the exact same textiles such as
carpets, blankets or any other repeated texture. In our specific case, we aim at evaluating textiles in
order to retrieve images in huge datasets (thousands of images) of past proven cases of child abuse
connected with a query textile of interest.

The rest of the paper is organized as follows. The related work is presented in Section 2. Section 3
describes the pipeline of our proposed method for textile based image retrieval. Section 4 introduces
the TextilTube dataset, the evaluation metrics, the evaluation set-up and the decision evaluation of a
distance measure. We show the results of all the experiments carried out in Section 5. Finally, Section 6
draws the conclusions of the paper.

2. Related Research

Material retrieval is related to textile retrieval in some aspects and it is more broadly studied in the
literature. Zhu and Brilakis [25] presented a system for detecting concrete based on the account of the
colour of the regions in the image. After that, they described the regions using color features and trained
a machine learning classifier to determine if the region contains concrete or not. This method cannot
deal with very heterogeneous regions due to the way of creating the image partitions. Son et al. [26]
proposed a method based on ensemble classifiers in order to distinguish between concrete, steel and
wood. One of the main disadvantages of this work is the necessity of uniform areas of the same
material for the segmentation step, which consists of dividing the original image into sub-regions of a
fixed size. If the material region is smaller than the grid division, a lot of information of the background
is processed as a material resulting in a non-accurate description. In [27,28], the authors proposed
two methods able to identify multiple materials in object surfaces without the need of segmentation.
They first recognized the object class and then used correlations of material labels for such object.
In this approach, the correct definition of detailed semantic cues of objects and materials is needed.
In 2017, Xue et al. [29] focused on material recognition of real-world outdoor surfaces for which they
presented a new very useful dataset for autonomous agents. They exploited the idea of extracting
characteristics of materials encoded in the angular and spatial gradients of their appearance from
images taken with small angular variations. We refer the reader to [30] for an overview of methods and
applications for the automatic characterization of the visual appearance of materials. Material retrieval
systems are effective when construction materials are involved, but they may fail with other kind of
textiles. The main three differences with general textiles are: the classes of construction materials are
well defined, the texture of the construction materials is more homogeneous and the image patches of
construction materials are usually big and present regular shapes.
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Besides material retrieval, there are also few textile retrieval works in the bulk of the literature.
Bashar et al. [31] proposed a system based on three wavelet-domain based features called symmetry,
regularity and directionality. In this paper, the authors demonstrated outperformance of the
combination of the three features versus just the isolated descriptors using two datasets formed
by 150 and 300 images of curtain patterns. Similarly, in 2009, Carbunaru et al. [32] proposed a method
that applies independent component analysis over wavelet-domain images. In that case, the researchers
chose a dataset composed of images of 30 different fabrics, obtaining an average recognition rate of
94.86%. Recently, in Chun et al. [33], a new method which uses composite feature vectors of color from
spatial domain and texture from wavelet-transformed domain is proposed. In contrast with the other
papers described before, Chun et al. carried out a retrieval system using a large dataset composed
of 1343 textile images. In 2014, Huang and Lin [34] proposed a system based on the combination of
color, texture and shape features in order to retrieve textiles over more than 4000 images downloaded
from Globle-Tex Co., (http://www.globle-tex.com/). The retrieval system was based on a signature
process extracted by different k-means clusters achieving an 83% of success rate. Nevertheless, in all
cases, the material or textile datasets are already segmented, usually as a plain piece of fabric, and the
system is only focused in the retrieval process. On the contrary, in our proposed work, the textiles are
located in real environments presenting diverse shapes, under a wide range of capturing conditions
and exposed to occlusions. Recently, a bunch of papers deal with query targets such as cloth worn
on human bodies [35–40]. It is quite challenging to extract robust features from different images
presenting different poses. Our paper encompasses a wider definition of the word textiles, and it
is used to retrieve not only cloth on human bodies but any other textile that may appear in indoor
environments.

The segmentation of regions of interest is thus critical for an efficient method. In 2016, Zheng and
Sarem proposed a method called NAMES, which stands for Non-symmetry and Anti-packing Model
and Extended Shading and is based on the idea of packing pixels with a very high performance in
terms of time [41]. In 2015, Yang et al. [42] presented a method based on color histogram segmentation
using HSV color space. In 2004, Matas et al. [43] proposed a method based on the extraction of
Maximally Stable Extremal Regions (MSER) taking into account a binary threshold that varies along
all the gray scale spectrum. In our work, we segmented our images using the latter method due to
its tolerance against regions with little changes of intensity and the possibility of adjusting it using
the binary threshold correctly. After the segmentation step, the description of the regions is another
key step of our CBIR system. The detected textile regions can be described using texture descriptors,
which are widely used for texture analysis. Texture analysis is a challenging and still open problem
in computer vision that consists of detecting and describing the gray level spatial variations of the
image pixels. Nowadays, there are multiple fields that profit from automatic texture retrieval, as it
makes processes faster with no need for many qualified staff. For this purpose, local descriptors are
yet extensively employed for texture description due to their high performance in terms of time and
accuracy. Histogram of Oriented Gradients (HOG) is a very popular texture descriptor since Dalal and
Triggs presented it in 2005 [44]. This method has demonstrated a great performance in multiple fields,
such as pedestrian detection [44] or face recognition [45]. Another very popular descriptor is Local
Binary Pattern (LBP) proposed by Ojala et al. [46] due to their simplicity and high capability to extract
the intrinsic features from the textures. Guo et al. developed several modifications to LBP such as
LBP variance (LBPV) [47], complete LBP (CLBP) [48] or adaptive LBP (ALBP) [49]. García-Olalla et al.
introduced algorithms to enhance LBP description [50–52], developing a new booster method that can
be fused with LBP in order to improve accuracy results [53]. We refer the reader to [54,55] for a general
framework and a taxonomy of local binary patterns variants. Recent approaches are focusing on
deep Convolutional Neural Networks (CNN) such as AlexNet [56], GoogleNet [57] or VGG-Net [58].
The activations generated at the fully connected layers are used as feature descriptors for image
understanding [59], scene recognition [60], semantic segmentation [61], among others.

http://www.globle-tex.com/
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In this work, we propose a new method for textile based image retrieval in indoor scenes under
diverse capturing conditions and subjected to different shapes and occlusions. In accordance with
that goal, we present in this paper a new labeled dataset that we created and made publicly available
(http://pitia.unileon.es/varp/node/483). It is composed of 684 images extracted from videos with
67 different classes of textiles and it is called TexilTube. We used videos recorded with different visual
sensors, such as compact digital cameras (CDC) and webcams. This dataset reproduces, at a small
scale, a typical scenario of image evidence related to child pornography. We used MSER on high
pass filetered images of the RGB, HSV and Hue channels of the original images to extract the regions
of textiles. To describe the textile regions, we used local texture features, i.e., LBP, ALBP, HOG and
Faster R-CNN (Region based Convolutional Neural Network) [62]. To enhance the description of the
texture descriptors, we used Complete Local Oriented Statistical Information Booster (CLOSIB) booster.
We evaluated several distance measures, i.e., Spearman rank, Cityblock, Euclidean and Correlations
distances and two evaluation metrics, i.e., precision at n and success at n. We consider the following
contributions of this work: (i) we propose a method for extracting the regions of interest based on
computing MSER on high pass filtered images of the RGB, HSV and Hue channels of the original
images; (ii) we evaluated the performance several descriptors; (iii) we assessed several distance
measures by means of a voting schema; and (iv) we present a new dataset for textile retrieval.

3. Method

3.1. Overview

In Figure 1, we illustrate the pipeline of our new method for textile based image retrieval.
We can divide the method in two main stages: feature extraction and matching. By means of the
experimentation carried out, we were able to determine that the regions in a scene containing textiles
have to be extracted from three different transformations of the picture: a high pass filtered image of
the RGB, HSV and Hue channels of the original image. We took this into consideration for building up
the pipeline of the method.

Figure 1. Scheme of the textile based image retrieval system.

The feature extraction is comprised of four steps. First, we convert the images to RGB and HSV
colour spaces and we also extract the Hue channel. Then, we sharpen the image representations to
increase the contrast along the edges where different colors meet. We adopt the unsharp masking
method in which an image is sharpened by subtracting a blurred (unsharp) version of the image from
itself. We use a Gaussian lowpass filter of standard deviation 1.5 for blurring the image. We use

http://pitia.unileon.es/varp/node/483
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these three image representations for the extraction and description of the regions of interest in the
images. The MSER [43] of the sharpened image representations define the regions of interest of the
images. Finally, we describe the regions of interest by computing texture descriptors on the gray scale
patch. We create a database in which we store for each detected region: the image coordinates of the
bounding box of the region of interest in the image of reference, the images of reference themselves
and the descriptors.

The matching stage allows for retrieving a given number of images that present the most similar
regions to a query region (textile) of interest. It is made up of three steps. First, we describe the
gray scale query region by means of the same texture descriptors. Second, we compute some
distance measures among the descriptors of the query region and the descriptors of the database.
Finally, the hit list is ranked by sorting the regions of the database in ascending order in relation with
the distance measure.

Below, we briefly describe the methods used to build the novel pipeline.

3.2. Region Extraction: MSER

We use the MSER method [43] to automatically extract the regions (textiles) of interest due to
the good results achieved in preliminary tests. Other methods apart from MSER could be evaluated
for finding distinguished regions that possess some distinguishing or singular properties and allow
for repeatedly detecting them over a range of image conditions, such as “sieve” [63]. However,
an intensive evaluation of such methods is out of the scope of this paper.

MSER is a method for blob detection that extracts from an image a number of co-variant regions
called MSERs. These high contrast regions are connected areas characterized by almost uniform
intensity, surrounded by a contrasting background. MSERs are constructed by binarizing the image
at multiple threshold levels and selecting the connected components that maintain their sizes over a
large set of thresholds.

Experimentally, we chose to extract a great diversity of sizes for the areas of the regions of interest,
specifically, comprehended between 3000 and 540,000 pixels, step size between intensity threshold
levels equal to 3, and a maximum area variation between extremal regions of 0.7.

3.3. Region Description

We use the following methods to describe the textiles: LBP [64], ALBP [49] and HOG [44], and
early fusion concatenations of the previous descriptors with CLOSIB and Half Complete Local Oriented
Statistical Information Booster (HCLOSIB) enhancers [65].

3.3.1. Local Binary Pattern (LBP)

LBP describes the texture of gray scale images by means of the local spatial structure on the image.
For every pixel, a pattern code is computed by comparing its gray level value with the value of its neighbors.

In this work, we used uniform rotational invariant LBP [64] with 16 neighbors and a radius of
two pixels, LBPriu2

16,2 . The dimension of the descriptor is P + 2, in this case, 16 + 2 = 18 elements.
However, for simplicity, we call it LBP henceforth.

3.3.2. Adaptive Local Binary Pattern (ALBP)

Guo et al. [49] presented a variation of LBP that considers the mean and the standard deviation
along given orientation of the pixels in the image. This information is used in the matching step and
makes it more robust against changes in the local spatial structure of the images.

We consider also the uniform rotation invariant version, ALBPriu2
16,2, and we call it ALBP for simplicity.



Sensors 2018, 18, 1329 6 of 20

3.3.3. Histogram of Oriented Gradients (HOG)

Histograms of Oriented Gradients [44] evaluates local histograms of image gradient orientations
over a grid. HOG characterizes the local appearance of objects taking into account the local edge
direction distributions. The method is implemented by dividing the image into small uniform regions
called cells, often overlapped. Then, for each cell, a histogram of the gradient orientations over the
pixels is extracted. The final descriptor is yielded by concatenation of the gradients along all the cells.
In this work, we use overlapped cells of size 64× 64 pixels on images resized to 256× 256 pixels.

3.3.4. Complete Local Oriented Statistical Information Booster (CLOSIB) Variants

CLOSIB [65] is obtained from the statistical information of the gray scale gradient magnitude of
each pixel of the image. The statistical information of the gradient magnitudes is rarely taken into
account to describe the image and provides useful information for texture classification. Equation (1)
shows how to compute the CLOSIB enhancer of an image:

CLOSIBP,R,θ =

P/ηn

p=1

(
(θ − 1)µp

2 − (−1)θ(µ
p
1 )

θ
)1/θ

, (1)

where
f

symbolizes the concatenation function, θ ∈ {1, 2} is the order of the statistical moment
considered, µ

p
1 and µ

p
2 are the first and second statistical raw moments, respectively, defined in

Equation (2) and η is a factor that controls the portion of the considered orientations in the quantized
angular space. We set η = 1 for CLOSIB and η = 2 for Half CLOSIB (HCLOSIB):

µ
p
i =

1
N

N

∑
c=1

(
|gc − gp|

)i , (2)

where N is the number of pixels in the image, gc the gray value of the center pixel and gp the gray
value of the neighbor, located at a distance R with orientation 2πp/P from the center pixel. In this
work, we use the boosters CLOSIB16,2,1||CLOSIB16,2,2 and HCLOSIB16,2,1||HCLOSIB16,2,2, which we
name CLOSIB and HCLOSIB, respectively, henceforth. Furthermore, we also use the early fusion
(concatenation) of LBP, ALBP and HOG descriptors with CLOSIB and HCLOSIB enhancers to describe
the texture of the textile regions. We denote the concatenation with the symbol +. For instance,
LBP + CLOSIB stands for the early fusion of LBP and CLOSIB.

3.3.5. Faster R-CNN

Faster R-CNN [62] is a Region based Convolutional Neural Network (R-CNN) that generates
region of interest proposals by a Region Proposal Network (RPN). Faster R-CNN is basically composed
of two parts: a RPN for creating a list of region proposals and a Fast R-CNN network [66] for classifying
the regions into objects.

For the RPN, we applied a sliding window of size 3 × 3 on the features obtained at the last
convolution layer, which yields an intermediate layer of dimension 512. We fed the intermediate layer
into a box classification layer and a box regression layer. We fed the region proposals into a Fully
Connected (FC) layer and we extracted the neural codes. Similarly to the MSER approach, we saved
a database with the coordinates of the region proposals, the image reference and the neural codes.
The matching step remains the same as for MSER approach. We used Faster R-CNN algorithm with
VGG-16 [58] architecture pre-trained with an MS-COCO [67] dataset.
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3.4. Distance Measures

We use five distance measures to compute the distances among the descriptors of the query region
and the descriptors of the automatically detected regions of interest of the database. These are: Spearman,
Cosine, Cityblock, Euclidean and Correlation distances. Spearman rank correlation coefficient is a
nonparametric measure of rank correlation and it measures the strength and direction of association
between two ranked variables. This measure uses a variable’s rank which is the average of their
positions in the ascending order of the values. Spearman rank correlation coefficient of two vectors A
and B is mathematically defined in Equation (3):

dspe(A, B) = 1− ((r(A)− r(A))(r(B)− r(B))T√
((r(A)− r(A))(r(A)− r(A))T

√
((r(B)− r(B))(r(B)− r(B))T

, (3)

where r(A) and r(B) are the mean value of the ranked vector A, r(A), and ranked vector B, r(B),
respectively. The superscript T indicates the transpose of the matrix. Hereafter, we keep the same
notation. Cosine distance calculates the angular cosine between two vectors following Equation (4):

dcos(A, B) = 1− ABT√
(AAT)(BBT)

. (4)

Cityblock distance is calculated using Equation (5) and is defined by the sum of the absolute
distances of every coordinate between two vectors. n is the dimension of the vectors. This measure
distance depends on the rotation of the coordinate system but is invariant to reflection and translation:

dcit(A, B) =
n

∑
j=1
|Aj − Bj|. (5)

Euclidean distance (see Equation (6)) is the most commonly used distance measure and calculates
the length of the straight segment that connects two vectors:

deuc(A, B) =
√
((A− B)(A− B)T . (6)

The Correlation distance is obtaining by dividing the distance covariance of two vectors by the
product of their distance standard deviations. See Equation (7):

dcor(A, B) = 1− (A− A)(B− B)T√
(A− A)(A− A)T

√
(B− B)(B− B)T

. (7)

4. Experiments

4.1. TextilTube Dataset

Textile retrieval in real environments is a poorly investigated research field besides fashion cloth
retrieval. Up to our knowledge, there is no publicly available dataset that focuses on the recognition
of rigid and non-rigid textiles presented in different sizes, shapes and capturing conditions. For this
reason, we created a new dataset for the retrieval of textiles in bedrooms (http://pitia.unileon.es/
varp/node/483).

http://pitia.unileon.es/varp/node/483
http://pitia.unileon.es/varp/node/483
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The dataset is composed of 684 images of sizes that range between 480× 360 and 1280× 720 pixels
obtained from 15 videos of YouTube. The videos were recorded in bedrooms with different visual
sensors, such as CDCs and webcams. The videos contain plenty of textiles, different camera poses,
illumination conditions, occlusions, etc., which makes the textile retrieval task very challenging.
The dataset contains 67 classes of textiles such as curtains, carpets, sofas, shirts or dresses, among
others. In one image, several classes of textiles may appear. Figure 2 shows a mosaic encompassing
one region sample of each class and indicates the number of regions in each class. The number of
elements of each class varies from 4 to 116. There is a total of 1913 regions. Therefore, the dataset is
highly skewed, simulating a real scenario.

We labelled the dataset in order to provide a ground truth that allows the user to automatically
evaluate the performance of a method on the dataset. The ground truth includes the bounding box
coordinates and the class labels of each textile region in the images of the dataset. We provide the
ground truth in the form of an XML file. We show the diversity in terms of type, size, pose, etc. of
some textile classes of the dataset in Figure 3.

TextilTube dataset can be very interesting in fields like child sexual abuse or robbery to connect
evidence of different investigations and also for marketing studies in textile stores to suggest the
products that best fit the decoration of users’ rooms.

21 38 27 19 44 15 12 8 44 28 35

18 7 35 14 32 28 18 37 18 35 4 7 10

18 16 62 9 33 25 17 48 41 33 40 12 39

108 11 7 26 29 69 29 116 15 15 25

40 48 15 41 27 35 14 17 15 33 23

7 34 12 9 32 18 20 16

Figure 2. A region sample of each of the 67 classes in TexilTube dataset. The number
underneath indicates the amount of regions that belong to that class.
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Figure 3. In rows, images that contain the same textile class in TextilTube dataset. The yellow rectangles
overlaid in the images indicate the bounding boxes of the textile regions of the ground truth.

4.2. Performance Evaluation Metrics

In retrieval systems, it is important that the retrieved images are ranked according to their
relevance to the query region forming a hit list, rather than being returned as a set. The most relevant
hits must be within the top images of the hit list returned for a query region. To account for the quality
of ranking the hits in the hit list, we used relevance ranking measures, i.e., precision at n and success
at n.

4.2.1. Precision at n

Precision at n, p@n, is the rate of the top-n images of the hit list correctly classified in relation to
the class of the query region. Likewise, the precision at a cut-off of n elements of the hit list. We define
HitListn as the set that contains the n images with smallest distance to the query region, q. Equation (8)
presents the mathematical definition of precision at n:

p@n =
#H(q)

n
, (8)

where #H(q) is the cardinal of HitListn in which the query class is actually present in the image and the
detected region overlaps the bounding box of the ground truth. It is formally defined in Equation (9):

H(q) = {hi/(hi ∈ HitListn) ∧ (class(hi) = class(q)) | i = 1...n} , (9)

where hi is i-th retrieved image in the hit list.

4.2.2. Success at n

There are occasions in which the user does not need to see many relevant images but is
disappointed by a completely irrelevant top-n [68]. This is the case of the ASASEC project, in which
finding at least one hit in all the hit list would be a satisfactory result. Success at n, s@n, measures if a
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relevant image was retrieved within the top-n hits of the hit list. Success at n is equal to 1 if the top-n
images contain a relevant document and 0 otherwise (see Equation (10)):

s@n =

{
1, if H(q) 6= ∅,

0, otherwise,
(10)

where H(q) is the set of images defined in Equation (9).

4.3. Experimental Setup

We applied the method described in Section 3 to the 684 images of TextilTube dataset, extracting
a total of 58,031 regions. In order to evaluate the performance of our method, we used the ground
truth textile regions as query regions of interest. For each query region, we calculated p@n and
s@n metrics for the retrieved hit list when computing a given distance measure among the texture
descriptors of the query region and the analogous texture descriptors of the database. Experiments
using Faster R-CNN were developed using the Caffe [69] deep learning framework in Nvidia Titan X
GPU https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/.

4.4. Distance Measure Evaluation

In order to determine the best distance measure and present uniform results, we carried out
the following voting system. For each texture descriptor in Section 3.2, we computed s@n for
n ∈ N | n = {1, 2, . . . , 40} with all distance measures described in Section 3.4. We assigned three, two
and one points to the distance measures that achieved the highest, second highest and third highest
s@n, respectively, for each experiment. Finally, we summed up the points along all combinations.
Figure 4 shows a scheme of the procedure. We disregarded a voting system that only relies on the best
distance measure of each experiment because the results for the different distance measures were not
enough distinctive.

Figure 4. Scheme of the voting procedure to determine the best distance measure.

Figure 5 presents the results in parts per unity achieved with each distance measure.
Correlation distance achieved the best results with a 32% of votes, followed by Cosine distance
(27%) and Spearman rank correlation coefficient (20%). The commonly used Euclidean distance only
yielded a 7% of the votes. Therefore, we carried out our experiments using the Correlation distance.

https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
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Figure 5. Results of the voting process in parts per unity for the different distance measures.

5. Results

In this section, we present the results obtained following the proposed method and
experimentation for each evaluated texture descriptor and the neural codes extracted by Faster R-CNN.

Figure 6 shows the precision at n (p@n) achieved for all texture descriptors. We used values of
n ∈ N | n = {1, 2, . . . , 40}. For n ≤ 11, HOG + HCLOSIB descriptor outperformed the rest with a
precision of 37.17% for n = 1. The early fusion of CLOSIB and HCLOSIB with HOG outperforms
HOG alone. However, the early fusion of CLOSIB and HCLOSIB with LBP obtained the worst results.
In the case of ALBP, the descriptor alone outperforms the early fusion for small values of n, whereas
the opposite is true for high values of n. It is worth noting the better performance of ALBP (28.83%
for n = 1) versus LBP (16.60% for n = 1). At a cut of 20, the precision at n values starts to stabilize.
We present the numerical results for precision at cuts {1, 2, . . . , 20} in Table 1. For high cuts of the
hit list, Faster-RCNN slightly outperformed the rest. The best performance was not achieved by
some LBP variant as we expected, but by HOG combined with HCLOSIB. HOG is oriented to gather
the external and internal shape and HCLOSIB represents the statistical distributions of the texture.
The combination of both represents both the shape of the textile’s texture (HOG) and how this texture
is organized along the evaluated patch.

Figure 6. Precision at n (p@n) for all texture descriptors using Correlation distance and n ∈ N | n = {1, 2, . . . , 40}.
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Table 1. Precision at n (p@n) for all texture descriptors using Correlation distance and
n ∈ N | n = {1, 2, . . . , 20}. Results highlighted in bold mark the best results per cut of the hit list.

Descriptor
n

1 2 3 4 5 6 7 8 9 10

HOG + HCLOSIB 37.2 32.8 29.3 26.8 24.7 23.2 21.7 20.5 19.4 18.6
HOG + CLOSIB 35.9 30.8 27.9 25.4 23.8 22.5 20.8 19.5 18.5 17.7
HOG 35.2 30.0 26.7 24.4 22.8 21.5 20.2 19.4 18.7 17.8
Faster R-CNN 30.1 27.4 25.2 23.8 22.5 21.6 20.6 19.7 19.0 18.2
ALBP 28.9 25.2 23.0 21.4 20.1 19.0 18.1 17.5 16.9 16.3
ALBP + HCLOSIB 25.5 21.7 19.6 18.7 17.9 17.0 16.2 15.8 15.4 15.0
ALBP + CLOSIB 24.8 23.1 21.8 20.4 19.5 18.8 18.1 17.5 17.1 16.6
LBP 16.6 14.8 14.2 13.7 13.3 13.3 13.0 12.6 12.3 12.0
LBP + CLOSIB 12.2 10.8 10.4 9.6 9.2 8.9 8.5 8.3 8.1 7.9
LBP + HCLOSIB 11.1 10.1 9.3 8.7 8.6 8.5 8.4 8.1 8.0 7.7

Descriptor
n

11 12 13 14 15 16 17 18 19 20

HOG + HCLOSIB 17.7 17.0 16.4 15.8 15.3 15.0 14.6 14.4 14.0 13.7
HOG + CLOSIB 17.1 16.4 15.8 15.4 14.9 14.6 14.2 13.9 13.6 13.3
HOG 17.0 16.4 15.9 15.5 14.9 14.5 14.1 13.7 13.4 13.0
Faster R-CNN 17.6 17.1 16.8 16.3 15.9 15.5 15.1 14.8 14.6 14.3
ALBP 15.9 15.6 15.2 15.0 14.7 14.4 14.2 14.0 13.8 13.5
ALBP + HCLOSIB 14.7 14.4 14.1 14.0 13.7 13.5 13.3 13.1 13.0 12.8
ALBP + CLOSIB 16.2 15.7 15.4 15.1 14.8 14.6 14.4 14.2 14.0 13.9
LBP 11.7 11.4 11.3 11.1 11.0 10.8 10.7 10.5 10.5 10.4
LBP + CLOSIB 7.9 7.8 7.7 7.6 7.6 7.5 7.4 7.4 7.3 7.2
LBP + HCLOSIB 7.7 7.7 7.6 7.5 7.5 7.3 7.3 7.2 7.2 7.2

Figure 7 illustrates the success at n (s@n). As expected, s@1 is the same as p@1 and for higher cuts
of the hit list the success metric increases. In Table 2, we show the numerical results for success at cuts
{1, 2, . . . , 20}. For values of n ≤ 5, HOG + HCLOSIB yielded the best results, whereas for higher values
of n, Faster R-CNN outperformed the others with a 84.94% of s@40 (74.86% with HOG + HCLOSIB).
ALBP is the second best descriptor for n = 40 reaching 82.00% of success. CLOSIB enhancer improves
the performance of HOG and decreases the performance of LBP and ALBP.

Figure 7. Success at n (s@n) for all texture descriptors using Correlation distance and n ∈ N | n = {1, 2, . . . , 40}.
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Table 2. Success at n (p@n) for all texture descriptors using Correlation distance and n ∈ N | n =

{1, 2, . . . , 20}. Results highlighted in bold mark the best results per cut of the hit list.

Descriptor
n

1 2 3 4 5 6 7 8 9 10

Faster R-CNN 30.1 38.7 44.3 48.4 52.2 55.7 58.6 60.9 62.8 64.3
ALBP 28.9 37.0 42.3 46.7 49.5 51.9 54.4 56.8 58.2 60.0
LBP 16.6 22.6 27.6 31.7 35.5 40.5 42.8 45.2 47.5 49.2
ALBP + HCLOSIB 25.5 31.4 36.5 40.6 44.0 47.1 48.8 51.0 53.0 54.7
HOG + HCLOSIB 37.2 42.8 47.5 50.0 52.2 54.6 56.1 57.1 58.4 60.1
HOG + CLOSIB 35.9 40.6 44.0 46.6 49.8 52.5 53.2 54.8 56.4 57.9
HOG 35.2 39.5 42.4 44.1 46.1 48.9 50.9 52.9 54.9 56.1
ALBP + CLOSIB 24.8 31.7 36.7 39.8 42.7 49.0 46.6 48.3 49.8 50.5
LBP + HCLOSIB 10.4 14.7 17.4 21.1 24.4 27.1 29.0 31.1 33.4 34.9
LBP + CLOSIB 12.2 16.5 20.0 22.0 24.1 26.9 28.7 29.9 31.3 32.6

Descriptor
n

11 12 13 14 15 16 17 18 19 20

Faster R-CNN 65.9 67.2 68.7 69.9 71.1 71.9 73.1 74.3 75.0 75.9
ALBP 61.5 63.0 64.3 65.8 66.5 67.8 68.7 69.6 70.2 71.5
LBP 50.9 53.0 54.5 55.8 57.6 59.4 60.2 61.0 62.4 63.5
ALBP + HCLOSIB 56.6 57.9 59.2 60.8 61.9 62.6 63.1 64.2 64.5 64.9
HOG + HCLOSIB 60.8 61.7 62.3 63.3 64.5 65.0 65.6 66.5 66.8 67.3
HOG + CLOSIB 59.5 60.2 60.4 61.2 62.0 62.6 62.9 63.2 63.7 64.3
HOG 56.8 57.5 57.7 58.6 59.1 59.9 60.3 61.0 61.4 61.6
ALBP + CLOSIB 51.2 52.5 53.3 53.7 54.2 55.6 56.6 57.4 58.1 58.8
LBP + HCLOSIB 36.5 38.5 39.7 41.7 42.9 43.9 45.1 46.6 48.1 48.7
LBP + CLOSIB 34.2 36.1 37.2 38.9 40.4 41.8 42.1 42.7 43.2 43.7

In order to get a unique value to evaluate the performance of each descriptor, we computed the
arithmetic mean of the success and precision for three intervals of n ∈ N | n = {1, 2, . . . , j}, where
j = {10, 20, 40}. Figure 8 and Table 3 show the arithmetic mean of the success and the precision in
these intervals of values of n. Regarding p@n, HOG + HCLOSIB outperformed the rest of descriptors
for the intervals with j = 10 and j = 20, whereas Faster-RCNN obtained the best results for j = 40.
With respect to s@n, HOG + HCLOSIB yielded the best results for the intervals with j = 10, whereas
Faster R-CNN did for j = 20 and j = 40. In such a difficult dataset, the outlined method using
HOG + HCLOSIB descriptor and Correlation distance measure yielded an arithmetic mean of the
precision at 10 of 24.80% and an arithmetic mean of the success at 10 of 51.08%.

Table 3. Arithmetic mean of precision and success at n for intervals of n from 1 to 10, from 1 to 20 and
from 1 to 40. Results highlighted in bold mark the best results per performance metric.

Descriptor
Precision Success

Mean (1–10) Mean (1–20) Mean (1–40) Mean (1–10) Mean (1–20) Mean (1–40)

HOG + HCLOSIB 24.8 19.5 15.1 51.1 57.3 63.9
HOG + CLOSIB 23.7 18.8 14.7 48.7 54.9 61.4
HOG 23.1 18.5 14.3 46.6 52.6 59.4
Faster R-CNN 22.5 18.8 15.3 50.3 59.9 69.8
ALBP 20.3 17.2 14.5 47.5 56.4 66.1
ALBP + HCLOSIB 18.1 15.7 13.5 42.2 50.9 60.1
ALBP + CLOSIB 19.6 17.0 14.6 40.7 47.3 55.1
LBP 13.5 12.2 10.8 34.1 44.4 56.1
LBP + CLOSIB 9.3 8.4 7.5 23.4 30.6 39.0
LBP + HCLOSIB 8.8 8.1 7.4 22.8 31.3 42.0
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Figure 8. Arithmetic mean of precision and success at n for intervals of n from 1 to 10, from 1 to 20 and
from 1 to 40.

Figures 9 and 10 show the visual results for the first five retrieved images in the hit list using
HOG + HCLOSIB and Faster R-CNN, respectively. The third textile, artificial flower textile, is a difficult
case. HOG + HCLOSIB manages to get one correctly retrieved images for n = 5. The first two retrieved
images are similar textiles of a rug. For the same query image, Faster R-CNN does not retrieve any
correct images at a cut of hit list of n = 5. Pre-trained deep neural networks are trained to classify
objects instead of textiles. When a textile does not present a patterned texture, a pre-trained Faster
R-CNN is not appropriate to retrieve such queries. However, Faster R-CNN manages to retrieve
textiles correctly that present distinctive patterns.

Figure 9. First five retrieved images in the hit list for three query samples using HOG + HCLOSIB.
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Figure 10. First five retrieved images in the hit list for three query samples using Faster R-CNN.

6. Conclusions

In this paper, we presented a new application for textile based image retrieval in indoor
environments. Textile based image retrieval is barely studied and when doing so, it is usually applied
to fashion cloth retrieval. We introduced a new framework of study, the fight of child sexual abuse.
Law enforcement agencies are interested in relating evidence by using textile queries in order to
retrieve images or videos that contain the same textile in proven cases of child pornography, usually
taken from rooms of houses. We proposed a new effective method for textile based image retrieval in
rooms based on texture description of the MSER regions of the images. We assessed LBP, ALBP, HOG
and their combination with CLOSIB for describing the image patches and several distance metrics
for sorting the hit list. We also evaluated the Faster R-CNN algorithm with VGG-16 architecture
pre-trained with MS-COCO dataset. Furthermore, we created and introduced a new public dataset,
TextilTube, which consists of 684 frames from 15 Youtube videos of rooms recorded with different
visual sensors. The dataset contains 1913 regions of interest that highly vary in terms of capturing
conditions, occlusions, illuminations, etc. Moreover, textiles appearing in the images are not rigid and
present different shapes. Correlation distance proved to be the most discriminant distance measure
based on a voting system analysis. Correlation distance achieved 32% of the votes followed by cosine
distance with 27%. HOG + HCLOSIB yielded the best results for low cuts of the hit list, whereas Faster
R-CNN performed better for high cuts, closely followed by ALBPS. Taking into account just the most
similar image retrieved, HOG + HCLOSIB achieved a precision of 37.17%, which is remarkable due
to the number of classes in the dataset (67 classes) and their high intra-class variability. Taking into
account the success at n metric, Faster R-CNN achieved a 84.94% retrieving 40 images (ALBP obtained
a 82%), which means that about 85 out of 100 images have at least one correspondence in the top
40 retrieved images. This is a very interesting result that can be presented as an application for the
criminal police in order to let them evaluate a grid of 40 images at a glance to check if there is a real
match to the query image within the hit list. For the application at hand, it is interesting to achieve a
high precision at low cuts of the hit list in order to reduce the number of images to visually inspect.
To measure this fact, we computed the arithmetic mean of precision at n from 1 to 10. HOG + HCLOSIB
outperformed the rest yielding a 24.8% hit rate. The main problem in this application is to find regions
containing textiles, rather than objects. To the best of our knowledge, all the deep learning region
proposal models are oriented and trained to detect objects. Objects are usually non-homogeneous
regions as opposed to textiles. The reason is that CBIR systems are oriented to retrieve objects but
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not textiles or similar surfaces. Similarly, the deep learning models, are trained with datasets such as
MS-COCO or ImageNet, among others, that contain objects and different classes of objects and they
are oriented for instance retrieval. In future works, we will train a model for proposing regions with
a textile dataset to strengthen the use of deep learning for textile retrieval. Besides evaluating other
Region Proposal Networks in future works, different alternatives to MSER for finding distinguished
regions, such as Sieve, will be also tested.
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Abbreviations

The following abbreviations are used in this manuscript:

LBP Local Binary Pattern
ALBP Adaptive Local Binary Pattern
HOG Histogram of Oriented Gradients
CLOSIB Complete Local Oriented Statistical Information Booster
HCLOSIB Half Complete Local Oriented Statistical Information Booster
MSER Maximally Stable Extremal Regions
CBIR Content Based Image Retrieval
ASASEC Advisory System Against Sexual Exploitation of Children
HSV Hue, Saturation, Value
CDC Compact Digital Cameras
p@n precision at n
s@n success at n
CNN Convolutional Neural Networks
R-CNN Region based Convolutional Neural Network
RPN Region Proposal Network
FC Fully Connected
RGB Red, Green, Blue
SIFT Scale-Invariant Feature Transform
SURF Speeded Up Robust Features
VGG Visual Geometry Group
MS-COCO MicroSoft Common Objects in COntext
XML eXtensible Markup Language
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