Flexible Sensors Based on Octahedral Indium Oxide Nanopowder for Gas Sensing Applications

Miriam Alvarado¹, Èric Navarrete¹, Alfonso Romero¹ José Luis Ramírez¹ and Eduard Llobet^{1,*}

- ¹ MINOS-EMas, Universitat Rovira i Virgili, Tarragona, Spain
- * Correspondence: eduard.llobet@urv.cat

The following figures S1 and S2 correspond to the EDX obtained for the samples grown at 400 °C and 500 °C. The as mentioned Cl remnant from the precursor has been found at 400 °C by means of EDX. At 500 °C the temperature is high enough to promote its elimination, or at least, resulting its concentration below the limit of detection for such technique.

(keV)

Figure S1. EDX from an In₂O₃ sample synthesized at 400 °C. The presence of Cl contamination is revealed. The silver (Ag) signal is due to the printed electrodes. Silicon (Si) is present due to the holder.

Figure S2. EDX from an In₂O₃ sample synthesized at 500 °C sample. Silicon (Si) signal is given due to the holder.

Figure S3 summarizes the responses towards nitrogen dioxide of a flexible sensor employing indium oxide synthesized at 400 °C. These results were reported in [15]. The responses summarized in Figure S3 are about 5 times lower than those we report now for NO_2 (in this work). The reasons for such an increase in response may be due to:

- The elimination of contamination from the gas sensitive film (Cl is present in samples synthesized at 400 °C and this is no longer the case for samples synthesized at 500 °C, as shown by EDX analysis).
 - Better octahedral morphology and ameliorated homogeneity of the coating.

Figure S3. Nitrogen dioxide calibration curves for a sensor consisting of indium oxide synthesized at 400 °C coated onto a polyimide flexible transducer. The different curves correspond to the different operating temperature tested. Adapted from [15].

Sensing material	Synthesis strategy	Processing temperature/ Reaction time	Annealing temperature (Time)	Sensor fabrication	Working temperature	Response [*] for NO2	Substrate	Ref
In2O3 micro- cubes	Low-temperature wet chemical	90 ºC (3 h)	400 ºC (1 h)	Mixed with distilled water	60 ºC	2.9 (500 ppb)	Ceramic tube	[S1]
In ₂ O ₃ nanowires	Wet-chemical	180 ºC (30 h)	400 ºC (5 min)	Mixed with ethanol	250 ºC	2.57 (1 ppm)	Alumina tube	[S2]
In2O3 microspheres	Template-free solvent-thermal method	200 ºC (4 h)	600 ºC (3 h)	Sintered at 500°C (2 h) Aged at 300°C (7 days)	250 ºC	1.5 (5 ppm)	Alumina tube	[S3]
In2O3 nanorod bundles	Microwave hydrothermal	140 ºC (0,5 h)	550 ºC (2 h)	Dispersed in water, dried at RT, aged at 400 ºC (2 h)	100 ºC	87 (1 ppm)	Ceramic tube	[S4]
In2O3 nanobricks	Bath heating	96 ºC (2 h)	400 ºC (2 h)	Mixed with ethanol, dried at RT. Aged at 130 ºC (24 h)	50 ºC	402 (500 ppb)	Ceramic	[S5]
In ₂ O ₃ nanospheres	Solvothermal method	100 ºC (24 h)	500 ºC (2 h)	Dispersed in deionized water	120 °C	371.9 (1 ppm)	Ceramic tube	[S6]
In2O3 nanorod clusters	Solvothermal method	160 ºC (12 h)	500 °C (2 h)	Mixed with deionized water, dried at RT, sintered at 500 °C (2 h)	150 ºC	41 (500 ppb)	Alumina tube	[S7]
In2O3 octahedra	Vapor phase transport	1000 ºC (2 h)		Mixed with 1,2- propanediol	130 °C	120 (1 ppm)	Alumina	[S8]
In2O3 octahedra	Oxidation	500 °C (2 h)		Mixed with 1,2- propanediol, dried at 150 °C	150 ºC	5.75 (5 ppm)	Polyimide	This work

Table S1. Comparison of gas-sensing performances of In₂O₃ gas sensors using different structures.

* Response calculated S=Rg/Ra

Supporting information references

- S1. Navale, S. T.; Liu, C.; Yang, Z.; Patil, V. B.; Cao, P.; Du, B.; Mane, R. S.; Stadler, F. J. Low-temperature wet chemical synthesis strategy of In2O3for selective detection of NO2down to ppb levels. *J. Alloys Compd.* 2018, 735, 2102–2110, doi:10.1016/j.jallcom.2017.11.337.
- S2. Xu, P.; Cheng, Z.; Pan, Q.; Xu, J.; Xiang, Q.; Yu, W.; Chu, Y. High aspect ratio In2O3 nanowires: Synthesis, mechanism and NO2 gas-sensing properties. *Sensors Actuators, B Chem.* 2008, 130, 802–808, doi:10.1016/j.snb.2007.10.044.
- S3. Cheng, Z.; Song, L.; Ren, X.; Zheng, Q.; Xu, J. Novel lotus root slice-like self-assembled In2O3microspheres: Synthesis and NO2-sensing properties. *Sensors Actuators, B Chem.* 2013, 176, 258–263, doi:10.1016/j.snb.2012.09.048.
- S4. Li, X.; Yao, S.; Liu, J.; Sun, P.; Sun, Y.; Gao, Y.; Lu, G. Vitamin C-assisted synthesis and gas sensing properties of coaxial In<inf>2</inf>O<inf>3</inf> nanorod bundles. *Sensors Actuators, B Chem.* 2015, 220, 68–74, doi:10.1016/j.snb.2015.038.
- S5. Han, D.; Zhai, L.; Gu, F.; Wang, Z. Highly sensitive NO2gas sensor of ppb-level detection based on In2O3nanobricks at low temperature. *Sensors Actuators, B Chem.* 2018, 262, 655–663, doi:10.1016/j.snb.2018.02.052.
- S6. Xiao, B.; Zhao, Q.; Wang, D.; Ma, G.; Zhang, M. Facile synthesis of nanoparticle packed In 2 O 3 nanospheres for highly sensitive NO 2 sensing. *New J. Chem.* 2017, 41, 8530–8535, doi:10.1039/C7NJ00647K.
- S7. Xu, X.; Zhang, H.; He, C.; Pu, C.; Leng, Y.; Li, G.; Hou, S.; Zhu, Y.; Fu, L.; Lu, G. Synthesis and NO² sensing properties of indium oxide nanorod clusters via a simple solvothermal route. *RSC Adv.* 2016, 6, 47083–47088, doi:10.1039/C6RA01958G.
- S8. Roso, S.; Bittencourt, C.; Umek, P.; González, O.; Güell, F.; Urakawa, A.; Llobet, E. Synthesis of single crystalline In 2 O 3 octahedra for the selective detection of NO 2 and H 2 at trace levels. *J. Mater. Chem. C* 2016, 4, 9418–9427, doi:10.1039/C6TC03218D.