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Abstract: This paper presents an approach to seeker-azimuth determination using the gyro rotor
and optoelectronic sensors. In the proposed method, the gyro rotor is designed with a set of black
and white right spherical triangle patterns on its surface. Two pairs of optoelectronic sensors are
located symmetrically around the gyro rotor. When there is an azimuth, the stripe width covering
the black and white patterns changes. The optoelectronic sensors then capture the reflected optical
signals from the different black and white pattern stripes on the gyro rotor and produce the duty ratio
signal. The functional relationship between the measured duty ratio and the azimuth information is
numerically derived, and, based on this relationship, the azimuth is determined from the measured
duty ratio. Experimental results show that the proposed approach produces a large azimuth range
and high measurement accuracy with the linearity error of less than 0.005.
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1. Introduction

One of the most common problems in navigation and positioning is the determination of the
azimuth [1]. Different methods [1–6] have been proposed in existing work to determine the azimuth.
However, these works have mainly been developed for the measurement of inertial azimuth, which is
the angle between the north direction and the projection of the initial plane onto the launch location.
This is required in the inertial navigation system and in the initial launch stage. The seeker is an
important part of the navigation system and has been used to accurately search and track a target by
determining the target position in the field of view [7]. In the seeker [8–12], the input of the system
is the space coordination, and its output is the target position, which is expressed by the deviation
signal or the correction signal. This system generally consists of an optical gyroscope part and an
electronic detector part, as shown in Figure 1. There is an azimuth Φ between the gyro optical axis and
the stator coil axis that represents the orientation of the target. Therefore, the azimuth provides the
significant signal source for the off-boresight launching and aiming of the follow-up target. As the
target is maneuvered or varied, the detector’s output signal changes with the amplitude proportional
to the azimuth accordingly. Then, the azimuth is input to the navigation system so that the target is
captured accurately. In this case, the azimuth determination and measurement accuracy plays a key
role in the navigation system and affects the accuracy of the guidance system.
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Figure 1. Diagram of the seeker azimuth.

Compared with the inertial azimuth determination, little work has been done in the determination
of the seeker azimuth. The traditional way to measure the seeker azimuth is based on the
electromagnetic technique [13]. The electromotive force around the electromagnetic coils is induced
when the rotor is rotating the stator and is further transformed into the voltage. The induced
voltage has a sinusoidal relation with the azimuth. Using the relationship, the azimuth is obtained.
However, the method only has a good performance in measuring the small azimuth angles. Moreover,
the electromagnetic environment easily produces magnetic interference. These further affect azimuth
measurement accuracy.

Optoelectronic sensors are electronic detectors that convert light, or a change in light,
into an electronic signal and they have been used in many applications including azimuth
determination [14–18]. A method of obtaining the precise position and azimuth of ground vehicles
rapidly based on vehicular bi-axis optical-electronic detector is given in [18]. The system calculates
the azimuth of targets relative to the vehicle using the position information provided by the vehicular
navigation system. In contrast to the electromagnetic technique, the optoelectronic sensors provide a
noncontact measurement method that is effective at avoiding the electromagnetic interference.

Considering this merit, a noncontact approach is proposed to measure the large azimuth angles
by detecting pattern information on the surface of gyro rotor based on the optoelectronic sensor. In the
proposed approach, the gyro rotor is designed with a set of black and white right spherical triangle
patterns on its surface. The optoelectronic sensors are applied to detect the pattern information on
the surface of the gyro rotor. In the case of an azimuth, the black and white patterns are changed
accordingly. The optoelectronic sensors then capture the reflected optical signals from the varied
black and white pattern on the gyro rotor and produce the duty ratio signal. Finally, according to the
functional relationship between the measured duty ratio and the azimuth information, the azimuth
is determined from the measured duty ratio. This method effectively avoids the electromagnetic
interference and achieves large azimuth measurement with high accuracy.

The rest of the paper is organized as follows. In the next section we describe the model of the
black and white right spherical triangle patterns on gyro rotor. In Section 3, the duty ratio and the
azimuth in the case of one-dimensional rotation is introduced. In Section 4, we describe the duty ratios
and the azimuth in the case of two-dimensional rotation. Section 5 gives the numerical solution of
the functional relationship between the azimuth and the duty ratios. In Section 6, we describe the
experimental results that are obtained when testing the concept. Finally, in Section 7, we present the
conclusion of this work.

2. Model of Black and White Right Spherical Triangle Graphics on the Gyro Rotor

The heart of the new proposed scheme for determining the seeker azimuth is composed
(see Figure 2a) of a gyro rotor with a set of black and white right spherical triangle patterns on
its surface. The scheme needs to satisfy the design goal as follows: the azimuth is in the range [0, 40],
and the linearity error is less than 0.005. The details of the proposed azimuth determination scheme
are described in the following.
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(a) (b)

Figure 2. (a) Gyro rotor graphics. (b) Spherical coordinate OXYZ.

To describe the mathematical model of the black and white spherical triangular patterns well,
a spherical coordinate OXYZ as shown in Figure 2 is constructed on the rotor frame. The fundamental
plane is the equinoctial circle OE. The origin O is the rotor’s center. The X-axis coincides with the
inertial axis of the gyro rotor and points upward. The Y-axis coincides with the line connecting
the spherical center O and the crossing point B between the right spherical triangle hypotenuse
(the arc DBI) and the circle OE. It is important to keep in mind that the OXYZ system is not fixed
and rotated with the rotor. Assuming that the numbers for the black and white triangular patterns
are both n, the angles α covering the black pattern and the white pattern on the circle OE are equal,
as 2π

2n = π
n . The white triangular pattern is marked in red color throughout the paper for clarity.

The spherical center angles corresponding to the lower surface and the upper surface of the rotor is
expressed as φm.

As shown in Figure 2b, the circle O2 across the arc DBI can be obtained by a β counter-clockwise
rotation of the longitudinal circle O1 across the arc ABC about OY and expressed as{

x2 + y2 + z2 = R2

xsinβ + zcosβ = 0
(1)

where (x, y, z) is the position vector in the OXYZ frame, and R is the radius of circle O1. Similarly, the
circle O3 across points D, E, and F can be obtained by an α counter-clockwise rotation of the longitudinal
circle O1 about OX and expressed as {

x2 + y2 + z2 = R2

ysinα + zcosα = 0
. (2)

Here, the radiuses of circles O1, O2, and O3 are equal to R. The intersection D between the two
circles O2 and O3 is represented as (R,−α, π

2 −φm) under the spherical coordinate system. Based on the
relationship between the spherical coordination expression and the rectangular coordinate expression,
the point D is further written as
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
xD = Rcos(

π

2
− φm)

yD = Rsin(
π

2
− φm)cosα

ZD = −Rsin(
π

2
− φm)sinα

. (3)

Substituting Equation (3) into Equations (1) and (2) yields

tanβ =
sinα

tanφm
. (4)

Equation (4) shows a useful relationship among β, α, and φm and depicts the model information
of the black and white right spherical triangle patterns on the rotor, which is next used to calculate the
azimuth Φ.

In the proposed azimuth determination system, optoelectronic sensors are required to detect the
reflected optical signals from the black and white patterns according to the means of rotation. When the
rotor has one-dimensional rotation, i.e., rotation about the Y-axis or Z-axis, one optoelectronic detector
is required and configured along the rotated Y-axis or Z-axis. Two optoelectronic detectors are necessary
for the two-dimensional rotation and placed about the rotated Y-axis and Z-axis. Whatever the rotation
type is, the optical spot is consistent to equinoctial circle OE in the OXYZ frame when the light beam of
the optoelectronic is injected on the rotor spinning about its inertial OX-axis. When the azimuth is
zero, the stripe width covering the black and white patterns on the circle OE is equal. Once there is an
azimuth, the stripe width changes. Moreover, the reflection rate from the black and white patterns
of the rotor is opposite; thus, the reflected optical signals can be transformed to the high-level and
low-level pulse signals via the optoelectronic detector, respectively, from which a pulse duty ratio
signal K is deduced. In principle, the duty ratio is related with the black and white stripe widths when
the rotor rotates at a certain azimuth. Thus, we can extract the azimuth information from the duty
ratio signal.

In our study, we mainly consider the case of two-dimensional rotation. Since one-dimensional
rotation is the basis of two-dimensional rotation, the duty ratio and azimuth in the one-dimensional
rotation are first described in the following. We then enter into the description of the two-dimensional
rotation case.

3. One-Dimensional Rotation

In the one-dimensional rotation case, the rotor can rotate about the Y-axis or Z-axis.
This corresponds to the pitch attitude or the yaw attitude of the object. However, whatever axis
the rotor rotates about, the theoretical results are the same. Here, we consider a γ counter-clockwise
rotation of the rotor about the Y-axis. One optoelectronic detector is placed along the OY-axis. In this
case, the coordinate OXYZ transfers to OX’Y’Z’ as shown in Figure 3a, where the angle between
OX and OX’ is equal to γ and represents the azimuth. This means Φ = γ. The latitude circle O4 is
formed when the beam of the optoelectronic detector is exposed on the spinning rotor. L is the distance
between the configuration position of the optoelectronic detector with the center of the latitude circle
O4. From this figure, it can be seen that the rotated black and white strip widths are different on the
latitude circle O4. To calculate the strip width, we can take the γ counter-clockwise rotation of the
rotor about the Y-axis as the γ clockwise rotation of the latitude circle O4 about the Y-axis while the
rotor keeps its original spinning status. This can be observed in Figure 3b.
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(a) (b)

Figure 3. (a) Rotation of OXYZ about OY. (b) Rotation of circle O4 about OY.

The circle O5 across Points G, H, and I can be obtained by an α clockwise rotation of the
longitudinal circle O1 about OX and expressed as{

x2 + y2 + z2 = R2

− ysinα + zcosα = 0
. (5)

When the latitude circle O4 has a γ clockwise rotation about OY, its equation is obtained as{
x2 + y2 + z2 = R2

xcosγ + zsinγ = b
(6)

where b represents the height of the latitude circle O4.
From Figure 3b, one can see that the lengths of the arcs LN and LM present the black and white

stripe widths. Thus, the duty ratio is calculated as K = L̂M
L̂M+L̂N

= L̂M
M̂N

. Point L is the intersection
between Circles O2 and O4, so Equations (1) and (6) can obtain the coordinate (xL, yL, zL) of Point L as

xL = bcosβsec(β + γ)

yL =
√

R2 − b2sec2(β + γ)

zL = −bsinβsec(β + γ)

. (7)

Similarly, Point M is the intersection between Circles O3 and O4, so Equations (2) and (6) can yield

xM =
bcosγ + sinαsinγ

√
R2(cos2αcos2γ + sin2α)− b2

cos2αcos2γ + sin2α

yM =
−bsinαcosαsinγ + cosαcosγ

√
R2(cos2αcos2γ + sin2α)− b2

cos2αcos2γ + sin2α

zM =
bsinγsin2α − sinαcosγ

√
R2(cos2αcos2γ + sin2α)− b2

cos2αcos2γ + sin2α

. (8)
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According to Equations (5) and (6), the common point N between Circles O4 and O5 equals

xN =
bcosγ − sinαsinγ

√
R2(cos2αcos2γ + sin2α)− b2

cos2αcos2γ + sin2α

yN =
bsinαcosαsinγ + cosαcosγ

√
R2(cos2αcos2γ + sin2α)− b2

cos2αcos2γ + sin2α

zN =
bsinγsin2α + sinαcosγ

√
R2(cos2αcos2γ + sin2α)− b2

cos2αcos2γ + sin2α

. (9)

Based on Equations (7) and (8), the length of the arc LM equals

L̂M = Rarccos
2R2 − [(xL − xM)2 + (yL − yM)2 + (zL − ZM)2]

2R2
. (10)

Using Equations (8) and (9), the length of the arc MN is calculated as

M̂N = Rarccos
2R2 − [(xN − xM)2 + (yN − yM)2 + (zN − ZM)2]

2R2
. (11)

From Equations (10) and (11), we then obtain the duty ratio K = L̂M
M̂N

. When b = 0, the duty ratio

K = 1
2 constantly and is unrelated with the azimuth Φ. Thus, in real implementation, the optoelectronic

detector may be placed in any latitude circle except the equinoctial circle OE.

4. Two-Dimensional Rotation

Here, we denote a γ counter-clockwise rotation of the rotor about OY, followed by a δ

counter-clockwise rotation about OZ. The frame OXYZ then produces a new orientation OX”Y”Z” as
shown in Figure 4a. The γ angle orientation is a description of the pitch attitude of the object, and the
δ angle orientation depicts the yaw attitude of the object. In the new orientation OX”Y”Z”, the unit
vector of the OX-axis (1, 0, 0) in the original OXYZ frame is transformed to (cosγcosδ, cosγsinδ,−sinγ).
Thus, the angle between OX and OX” represents the azimuth Φ = arccos(cosγcosδ), which indicates
that the γ and δ angles have to be known. To do this, two optoelectronic detectors are required and
configured along the OY- and OZ-axes, resulting in two duty ratio signals K1 and K2. They are related
to γ and δ angles, which are to be introduced in the following.

(a) (b)

Figure 4. (a) Rotation of OXYZ about OY and OZ. (b) Rotation of Circle O6 about OY and OZ.
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4.1. Duty Ratio K1

Similar to one-dimensional rotation, the duty ratio K1 is determined according to the different

black and white stripe widths, i.e., K = L̂1 M1

L̂1 M1+L̂1 N1
= L̂1 M1

M̂1 N1
. This can be observed in Figure 4b.

To calculate them, the two-dimensional rotation of the rotor described above is equivalently regarded
as a γ clockwise rotation of the latitude circle O6 about OY, followed by a δ clockwise rotation of
O6 about OZ. At the same time, the rotor remains unchanged. The circle O6 after the rotation is
expressed as {

x2 + y2 + z2 = R2

xcosγcosδ − ycosγsinδ + zsinγ = b
. (12)

From Figure 4b, Point L1 is the intersection between Circles O2 and O6, so Equations (1) and (12)
can obtain the coordinate (xL1 , yL1 , zL1 ) of Point L1 as

xL1 =
bcosβ(cosβcosγcosδ − sinβsinγ) + cosβcosγsinδTempL1

1 − (cosβsinγ + sinβcosγsinδ)2

yL1 =
−bcosγsinδ + (cosβcosγcosδ − sinβsinγ)TempL1

1 − (cosβsinγ + sinβcosγsinδ)2

zL1 =
−bsinβ(cosβcosγcosδ − sinβsinγ)− sinβsinδcosγTempL1

1 − (cosβsinγ + sinβcosγsinδ)2

(13)

where TempL1 =
√
−b2 + R2[1 − (cosβsinγ + sinβcosγsinδ)2].

Point M1 is the intersection between Circles O3 and O6, and Equations (2) and (12) can yield

xM1 =
bcosγcosδ + (cosαcosγsinδ + sinαsinγ)TempM1

1 − (cosαsinγ − sinαcosγsinδ)2

yM1 =
−bcosα(sinαsinγ + cosαcosγsinδ) + cosαcosγcosδTempM1

1 − (cosαsinγ − sinαcosγsinδ)2

zM1 =
bsinα(sinαsinγ + cosαcosγsinδ)− sinαcosγcosδTempM1

1 − (cosαsinγ − sinαcosγsinδ)2

(14)

where TempM1 =
√
−b2 + R2[1 − (cosαsinγ − sinαcosγsinδ)2].

Based on Equations (5) and (12), the intersection N1 between Circles O5 and O6 equals

xN1 =
bcosγcosδ − (sinαsinγ − cosαcosγsinδ)TempN1

1 − (cosαsinγ + sinαcosγsinδ)2

yN1 =
bcosα(sinαsinγ − cosαcosγsinδ) + cosαcosγcosδTempN1

1 − (cosαsinγ + sinαcosγsinδ)2

zN1 =
bsinα(sinαsinγ − cosαcosγsinδ) + sinαcosγcosδTempN1

1 − (cosαsinγ + sinαcosγsinδ)2

(15)

where TempN1 =
√
−b2 + R2[1 − (cosαsinγ + sinαcosγsinδ)2].

According to Equations (13) and (14), the length of the arc L1M1 equals

L̂1M1 = Rarccos
2R2 − [(xL1 − xM1)

2 + (yL1 − yM1)
2 + (zL1 − ZM1)

2]

2R2
. (16)

Using Equations (14) and (15), the length of the arc M1N1 is calculated as

M̂1N1 = Rarccos
2R2 − [(xN1 − xM1)

2 + (yN1 − yM1)
2 + (zN1 − zM1)

2]

2R2
. (17)
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Then, from Equations (16) and (17), the duty ratio K1 is obtained, i.e., K1 = L̂1 M1

M̂1 N1
.

4.2. Duty Ratio K2

Similar to the duty ratio K1, K2 is determined according to the widths of the white and black
stripes that are detected by the optoelectronic detector installed in the OZ-axis. It is likely that the
stripe width difference is caused by the γ and δ counter-clockwise rotation of the rotor about OY and
about OZ, respectively. In this case, the latitude circle O6 including the rotor remains unchanged and
is expressed by Equation (12). However, the position of the circles O2, O3, and O5 is changed. Figure 5
illustrates the varied position of some of the points on these circles.

Figure 5. Varied positions of some of the points on O2, O3, and O5.

The circle O2 across the arc D’B’I’ is obtained by a β clockwise rotation of the circle O1 about OY
and expressed as {

x2 + y2 + z2 = R2

− xsinβ + ycosβ = 0
. (18)

The circle O3 across points D’, E’, and F’ is obtained by a α + 90 counter-clockwise rotation of the
circle O1 about OX and expressed as {

x2 + y2 + z2 = R2

ycosα − zsinα = 0
. (19)

The circle O5 across points G’, H’, and I’ is obtained by a α + 90 clockwise rotation of the circle O1

about OX and expressed as {
x2 + y2 + z2 = R2

ycosα + zsinα = 0
. (20)

Furthermore, we can obtain the intersection points L2 between circles O2 and O6, M2 between
circles O3 and O6, and N2 between circles O5 and O6. They are given as follows:

xL2 =
bcosβcosγcos(β + δ)− cosβsinγTempL2

1 − sin2(β + δ)cos2γ

yL2 =
bsinβcosγcos(β + δ)− sinβsinγTempL2

1 − sin2(β + δ)cos2γ

zL2 =
bsinγ + cosγcos(β + γ)TempL2

1 − sin2(β + δ)cos2γ

(21)
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where TempL2 =
√
−b2 + R2[1 − sin2(β + δ)cos2γ].

xM2 =
bcosγcosδ + (sinαsinδcosγ − cosαsinγ)TempM2

1 − (sinαsinγ + cosαcosγsinδ)2

yM2 =
bsinα(cosαsinγ − sinαcosγsinδ) + sinαcosγcosδTempM2

1 − (sinαsinγ + cosαcosγsinδ)2

zM2 =
bcosα(cosαsinγ − sinαcosγsinδ) + cosαcosγcosδTempM2

1 − (sinαsinγ + cosαcosγsinδ)2

(22)

where TempM2 =
√
−b2 + R2[1 − (sinαsinγ + cosαcosγsinδ)2].

xN2 =
bcosγcosδ − (cosαsinγ + sinαcosγsinδ)TempN2

1 − (sinαsinγ − cosαcosγsinδ)2

yN2 =
bsinα(cosαsinγ + sinαcosγsinδ) + sinαcosγcosδTempN2

1 − (sinαsinγ − cosαcosγsinδ)2

zN2 =
bcosα(cosαsinγ + sinαcosγsinδ) + cosαcosγcosδTempN2

1 − (sinαsinγ − cosαcosγsinδ)2

(23)

where TempN2 =
√
−b2 + R2[1 − (sinαsinγ − cosαcosγsinδ)2].

According to the distance between the spherical points, we can further achieve the duty ratio

K2 = L̂2 M2

M̂2 N2
.

5. Numerical Solution

In the proposed seeker-azimuth determination approach, the duty ratios K1 and K2 can be
measured directly, but the azimuth Φ needs to be determined from the information of γ and δ

according to Φ = arccos(cosγcosδ). In this case, we first need to determine how γ and δ are related
to K1 and K2 so that γ and δ are calculated accordingly. Based on this, the azimuth Φ is determined.
From what we have described above, it can be found that the manner in which γ and δ is related to K1

and K2 is nonlinear. Here, an approximated method is adopted to obtain their relationship. To suit the
real requirement, the system parameters are selected as R = 1, α = π

16 , β = π
9 . The range of γ and δ

are set in the range [−0.4rad, 0.4rad], respectively. At an interval of 0.01 rad, the γ and δ data points
are chosen in this range and input into Equations (13)–(17). We then obtain a set of K1 data points.
Similarly, the same γ and δ data points with an interval of 0.01 rad are input into Equations (21)–(23),
and a set of K2 data points are obtained. Based on these data points, the polynomial functions [19]
are applied to approximate the mathematical equations depicting K1 = f1(γ, β) and K2 = f2(γ, β),
which are given as

K1 = f1(γ, β)

= 0.5 − 0.0000001517γ − 0.9268δ + 0.0000002943γ2 − 0.435γδ − 0.0000003576δ2

− 0.00000005382γ3 − 0.1361γ2δ + 0.000005755γδ2 − 0.2551δ3 − 0.000002704γ4

− 0.1943γ3δ + 0.000002178γ2δ2 + 0.1297γδ3 + 0.000002338δ4 + 0.00001957γ5

− 0.1035γ4δ − 0.0001071γ3δ2 + 0.2169γ2δ3 + 0.00004104γδ4 − 0.1433δ5

(24)
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K2 = f2(γ, β)

= 0.5 + 0.9268γ + 0.00007863δ + 0.3378γ2 + 0.09762γδ − 0.0009562δ2 + 0.8426γ3

+ 0.9197γ2δ − 0.9053γδ2 − 0.002693δ3 + 0.8832γ4 − 0.1119γ3δ + 0.5357γ2δ2

− 1.253γδ3 + 0.01843δ4 + 1.235γ5 − 0.2093γ4δ − 3.026γ3δ2 + 2.093γ2δ3

+ 0.1357γδ4 + 0.00593δ5 + 0.1227γ6 − 2.626γ5δ + 2.524γ4δ2 − 1.05γ3δ3

− 0.5787γ2δ4 + 1.023γδ5 − 0.02855δ6 − 1.845γ7 + 2.141γ6δ − 3.503γ5δ2

− 0.04513γ4δ3 + 8.729γ3δ4 − 6.163γ2δ5 + 0.2892γδ6 + 0.1944δ7 − 0.6482γ8

− 1.973γ7δ + 1.631γ6δ2 + 14.2γ5δ3 − 19.76γ4δ4 + 2.907γ3δ5 + 6.077γ2δ6

− 1.852γδ7 − 0.4197δ8 − 3.77γ9 + 5.774γγ8δ + 9.071γ7δ2 − 30.43γ6δ3 + 25.65γ5δ4

+ 9.478γ4δ5 − 24.79γγ3δ6 + 7.587γ2δ7 + 2.981γδ8 − 0.83δ9

. (25)

In a similar method, we determine the mathematical equations γ = f3(K1, K2) and δ = f4(K1, K2).
The range of duty ratios K1 and K2 are set in the range of [0.25, 0.85]. Then, with an interval of
0.01, a set of K1 and K2 data points are selected. With zero initial values of γ, δ, K1, and K2 data
points, the Newton numerical technique [20] is applied to solve Equations (24) and (25). In this case,
the mathematical equations γ = f3(K1, K2), δ = f4(K1, K2) are gained. They are expressed as follows:

γ = f3(K1, K2)

= −3.585 + 13.49K1 + 14.64K2 − 24.34K2
1 − 45.7K1K2 − 24.71K2

2 + 22.51K3
1 + 58.8K2

1K2

+ 57.35K1K2
2 + 24.64K3

2 − 11.04K4
1 − 33.21K3

1K2 − 48.53K2
1K2

2 − 30.88K1K3
2 − 14.69K4

2

+ 2.501K5
1 + 6.175K4

1K2 + 15.14K3
1K2

2 + 11.88K2
1K3

2 + 6.265K1K4
2 + 4.069K5

2

(26)

δ = f4(K1, K2)

= −0.05233 − 0.1852K1 + 0.004281K2 + 0.00113K3
2 + 0.01551K1K2 − 0.0008619K2

2

+ 0.002093K3
2 + 0.0008284K2

2K2 − 0.0009574K1K2
2 + 0.0001974K3

2 + 0.0001074K4
1

− 0.0001137K3
1K2 + 0.0007012K2

1K2
2 + 0.000122K1K3

2 + 0.0001014K4
2 − 0.00008928K5

2

− 0.0002575K4
1K2 − 0.0002451K3

1K2
2 − 0.0004166K2

1K3
2 − 0.0001407K1K4

2 − 0.00003762K5
2

. (27)

On the basis of Equations (26) and (27), the azimuth angle is then computed as
Φ = arccos (cos γ cos δ).

6. Experimental Results

In this section, the experimental setup used to verify and test the concept is described. The system
diagram is shown in Figure 6. The real experiment platform and azimuth determination module are
depicted in Figures 7 and 8, respectively. Since two optoelectronic sensors have a limited working
range, four optoelectronic sensors are applied to enlarge the working range. Two are installed along
the OY-axis in the opposite direction and the other two are installed along the OZ-axis in the opposite
direction, as shown in Figure 6. The signal processing module is used to implement data handling and
functional operation to calculate the real azimuth according to Equations (26) and (27). The total four
duty ratios Ki, i = 1, · · · , 4 are produced accordingly. Because the installation of four optoelectronic
sensors satisfies the orthogonal relationship, only two optoelectronic sensors output the duty ratios,
while the other two optoelectronic sensors have zero duty ratios. The resulting duty ratios in different
rotation types are summarized in Table 1.
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Figure 6. System diagram.

Figure 7. Real experiment platform.

Figure 8. Azimuth determination module.

Table 1. Different working states of the rotor and resulting duty ratios.

Working State Rotation about OY-Axis Rotation about OZ-Axis Duty Ratios

State 1 Counter-clockwise Counter-clockwise K3, K4
State 2 Clockwise Counter-clockwise K2, K3
State 3 Clockwise Clockwise K1, K2
State 4 Counter-clockwise Clockwise K1, K4

In real implementation, two duty ratios are measured by the optoelectronic sensors in each
working state and then the azimuth angle is calculated on the basis of Equations (26) and (27) given
above. To evaluate the effectiveness of the proposed approach, the theoretical Φ values need to be
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known. In the experiment, the two-axis turntable is applied to generate the theoretical azimuth values.
It simulates the theoretical Y-axis and Z-axis rotations for producing the theoretical γ and δ. Then the
theoretical azimuth values are obtained through Φ = arccos (cos γ cos δ). It is noteworthy that,
in practice, the Y-axis and Z-axis rotations are produced by the real system and the duty ratio K
is then produced. Furthermore, the real azimuth values are achieved through the proposed approach.
Figures 9 and 10 depict the true and calculated azimuth angle values for the four working states.
From these figures, one can observe that the four duty ratios lie in the range [0.3, 0.8], and the range of
the azimuth is [0, 40]. According to the design requirement, the standard deviation between the true
and calculated azimuth angles is required to be less than than 0.005. Table 2 summarizes the standard
deviation between the desired and real azimuth values under four working states. From the table,
it can be observed that the standard deviations of all the four working states reach the design goal.
Additionally, Figure 11a–d gives the Bland–Altman plots, which represent the differences between
the true Φ and the measured Φ in the four working states. In these figures, the two blue lines show
error bars representing the 95% confidence interval for both the upper and lower limits of agreement.
The red line represents the mean of the differences between the true and measured Φ. The black line
depicts zero values. From these figures, one can find that almost all of the measure values fall inside
the agreement interval, which indicates that the measured Φ and the true Φ have good statistical
agreement. Moreover, one can see that the mean of the true and measured Φ is very close to zero.
This indicates that the error from the designed system is very low.
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Figure 9. True Φ, calculated Φ, and error of Φ in Working States 1 and 2. (a) Φ in State 1; (b) error of Φ
in State 1; (c) Φ in State 2; (d) error of Φ in State 2.
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Figure 10. True Φ, calculated Φ, and error of Φ in Working States 3 and 4. (a) Φ in State 3; (b) error of
Φ in State 3; (c) Φ in State 4; (d) error of Φ in State 4.

Table 2. Linearity error, intraclass correlation (ICC), and hysteresis error under four working states.

Working State State 1 State 2 State 3 State 4

Linearity error 0.00265 0.00276 0.00341 0.00363
ICC under different experiments 0.93070 0.95225 0.96829 0.96147

Hysteresis error 0.00226 0.00177 0.00208 0.00246

To further assess the consistency and reproducibility of measurements made by the designed
scheme, we conducted three experiments for each working state and adopted the intraclass correlation
(ICC) test to analyze the measurement reliability. The ICC results are given in Table 2. From the table,
one can note that the ICC results of the four working states are above 0.9, which indicates that the
three different experiments are highly correlated. This further verifies the conformity of measurements
and the effectiveness of the designed scheme. Figures 12 and 13 show the hysteresis test for the four
working states. To achieve this test, we conducted experiments by changing the duty ratios in reverse
from the maximum to the minimum. From these figures, we can see that the measurements from the
positive range and reverse range match well. The hysteresis errors calculated by the maximum error
divided by the maximum measured value are shown in Table 2. It can be found from the table that
the hysteresis errors are very small, which further indicates that the hysteresis can be ignored in our
designed system.
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Figure 11. The Bland–Altman plot of true Φ and calculated Φ in different working states. (a) State 1;
(b) State 2; (c) State 3; (d) State 4.
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Figure 12. Measured Φ via positive and reverse range and the produced error of Φ in Working
States 1 and 2. (a) Φ in State 1; (b) error of Φ in State 1; (c) Φ in State 2; (d) error of Φ in State 2.
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Figure 13. Measured Φ via positive and reverse range and the produced error of Φ in Working
States 3 and 4. (a) Φ in State 3; (b) error of Φ in State 3; (c) Φ in State 4; (d) error of Φ in State 4.

7. Conclusions

In this paper, a new approach for determining the azimuth of the seeker is proposed based on
the gyro rotor and optoelectronic sensors. The gyro rotor is comprised of a set of right spherical
triangle patterns in a black and white sequence on its surface. The optoelectronic sensors are placed
symmetrically around the gyro rotor. The black and white patterns on the gyro rotor are different
in case of an azimuth. The duty ratios are then generated when the optoelectronic sensors catch the
reflected optical signals on the different patterns. Formulas between the duty ratios and the azimuth
are derived when the rotor rotates in a two-dimensional way. To evaluate the effectiveness of the
proposed approach, multiple experiments are conducted under four different working states, and the
ICC test is utilized to analyze the consistency of measurements. The experimental results show that
the proposed approach satisfies the design goal. The ICC results show that different experiments have
high correlation, which ensures the conformity of measurements produced by the proposed approach.
The Bland–Altman plots between the true Φ and the measured Φ verify that both have good statistical
agreement. In addition, the designed system showed little hysteresis.
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