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Abstract: An effective bearing fault detection and diagnosis (FDD) model is important for ensuring
the normal and safe operation of machines. This paper presents a reliable model-reference observer
technique for FDD based on modeling of a bearing’s vibration data by analyzing the dynamic
properties of the bearing and a higher-order super-twisting sliding mode observation (HOSTSMO)
technique for making diagnostic decisions using these data models. The HOSTSMO technique
can adaptively improve the performance of estimating nonlinear failures in rolling element bearings
(REBs) over a linear approach by modeling 5 degrees of freedom under normal and faulty conditions.
The effectiveness of the proposed technique is evaluated using a vibration dataset provided by
Case Western Reserve University, which consists of vibration acceleration signals recorded for REBs
with inner, outer, ball, and no faults, i.e., normal. Experimental results indicate that the proposed
technique outperforms the ARX-Laguerre proportional integral observation (ALPIO) technique,
yielding 18.82%, 16.825%, and 17.44% performance improvements for three levels of crack severity of
0.007, 0.014, and 0.021 inches, respectively.

Keywords: Model-reference fault diagnosis; bearing fault diagnosis; super-twisting higher-order
sliding mode observation technique; ARX-Laguerre proportional integral observation method

1. Introduction

Rolling element bearings (REBs) are very important components in rotating machines, as they
are used to reduce the friction between moving parts for linear and rotational motion [1]. Bearings
have been widely used in the rotating machinery in various industries, such as steel mills, paper
mills, and wind power generators, to improve their lifespan and efficiency by reducing friction and
facilitating motion [2]. Complexities of the tasks and nonlinear parameters in REBs make their fault
detection and diagnosis (FDD) very challenging. The detection and diagnosis (FDD) of faults is
necessary to prevent the complete failure of the bearing and hence avoid the impairment of the
machinery. Several types of faults have been defined in REBs, which are divided into four main
categories, i.e., inner raceway faults, outer raceway faults, ball faults, and cage faults [3].

Different techniques have been introduced for the diagnosis of faults in bearings, including
signal-based fault diagnosis [4–9], knowledge-based fault diagnosis [10,11], model-based fault
diagnosis [12–14], and hybrid/active approaches to fault diagnosis [15,16]. Although signal-based
fault diagnosis has several advantages, this method has challenges associated with system reliability
in the presence of uncertainty and external disturbances. Knowledge-based fault diagnosis has its
own challenges, as it requires massive quantities of data for training the system to make diagnostic
decisions. Model-based fault diagnosis identifies the faults by using a small dataset, but it needs to
model the system’s dynamics [17]. Various model-based methods have been rigorously studied in the
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field of detection, isolation, and identification for REBs [1,17]. Model-reference methodologies detect
faults by setting a threshold for the residual signal, which is generated from the difference between
an actual signal and the system’s estimation of that signal [18]. These residuals are highly sensitive to
the possible faults in the system, which can affect the diagnostic performance [2,19]. These signals are
certainly independent of the inputs and outputs under normal conditions. Model-reference based fault
diagnosis utilizes output observers, system identification and parameter estimation, and the parity
equation [1,12,20,21].

Specifically, the system-observer-based technique is regarded as an important model-reference
methodology for FDD [1]. Observation methods are designed using different algorithms, such as the
proportional-integral (PI) observation technique [22,23], the proportional multiple-integral (PMI)
observation method [24–26], the descriptor observation technique [27,28], adaptive observation
methods [29–31], and sliding mode observation techniques [14,32–35]. Sliding mode observer
(SMO) is an excellent FDD candidate for systems that operate in uncertain and noisy conditions.
In this technique, the output estimation error is forced to zero based on the nonlinear switching
term. This method can detect and isolate a fault as it adaptively updates the system parameters,
which can significantly improve the diagnostic performance of this method if applied for FDD
in bearings. Furthermore, this observer works based on the system’s behavior, which tends to
work very well when most of the dynamic and physical parameters are adequately known [36–39].
Apart from several advantages, such as stability and reliability, this method of using an SMO suffers
from the chattering phenomenon, and requires the relative degree of the outputs concerning the
uncertainties or disturbances to be one. In mechanical systems based on the position observation,
the estimation of the first and second derivative of position, such as velocity and acceleration,
respectively, is necessary. Thus, in the acceleration equation, uncertainties and external disturbances
are relative to the second derivative of the measured position [39]. The higher-order sliding mode
observer (HOSMO) has been proposed to improve the performance of SMO in the presence of
uncertainty and disturbances [40–45]. Since HOSMO employs a discontinuous control algorithm on
the higher-order derivatives, chattering can be attenuated by moving the switching to the higher
derivatives in HOSMO. The performance of the higher-order sliding mode technique has been
improved by using different algorithms, such as the suboptimal algorithm [46], the quasi-continuous
technique [47], and the twisting method [48]. Apart from the many advantages of sub-optimal
HOSMC, the quasi-continuous HOSMC, and the twisting HOSMC, these methods face a critical
challenge related to the first-order derivative of the sliding variable. This issue has been addressed
by proposing a higher-order super-twisting sliding mode technique [38]. For unmeasurable state
observers and high-accuracy velocity estimation without filtration, the higher-order super-twisting
sliding mode observer (HOSTSMO) was proposed [32,33,49,50]. In this paper, we propose a robust
higher-order super-twisting sliding mode observer for fault detection and isolation in the presence of
uncertainty and external disturbances for rolling element bearings (REBs).

The rest of this paper is organized as follows. Section 2 gives the problem statements and
fault diagnosis objectives. Section 3 presents the detailed mathematical modeling of an REB with
5 degrees of freedom. Section 4 shows a comprehensive methodology to design a robust higher-order
super-twisting sliding mode observation technique for fault detection and diagnosis. Datasets, results,
and discussion are presented in Section 5. Section 6 concludes this paper.

2. Problem Statements and Fault Diagnosis Objectives

The main objective of this paper is to devise a robust scheme for the detecting and estimating
of faults in rolling element bearings (REBs), including inner, outer, and roller faults. The proposed
scheme is based on vibration modeling and a higher-order sliding mode observer in the presence of
uncertainty and disturbance. The foremost challenge is to model the REB vibration data in terms of the
energy. This paper utilizes vibration data collected using an experimental testbed, which is illustrated
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in Figure 1 [2]. The corresponding Lagrangian formulation for this system consists of potential energy,
kinetic energy, and generalized forces as shown below:

d
dt

(
∂K
∂

.
qi

)
− ∂K

∂qi
+

∂P
∂qi

= Qi, i = 1, 2, 3, . . . , nDOF, (1)

where K is the kinetic energy, P represents the potential energy, Qi represents a generalized force,
qi is the generalized coordinate, and nDOF is the number of degrees of freedom. Each generalized
coordinate corresponds to a degree of freedom (DOF) of the system, and each generalized force in
the system acts along the corresponding generalized coordinate. The energy equation is obtained by
taking the derivative of Equation (1) with respect to each generalized coordinate as follows:

F(θ) = M(θ)[
..
θ] + H(θ,

.
θ) + ϕ + ∆ + δ(t− Tf ), (2)

where F(θ), M(θ), ϕ, ∆, δ, (t− Tf ) and Tf are the force vector, time-variant mass matrix, time-variant
nonlinear bearing vector, unknown modeling parameters, faults vector (inner, outer, and ball), time
profile of the faults, and time of fault occurrence, respectively. If H(θ,

.
θ) = C(θ)[

.
θ] + K(θ)[θ] and

∆ = (∆M)(θ)[
..
θ] + (∆C)(θ)[

.
θ] + (∆K)(θ)[θ], then the Lagrange dynamic formulation of a bearing

can be written as follows:

F(θ) = (M + ∆M)(θ)[
..
θ] + (C + ∆C)(θ)[

.
θ] + (K + ∆K)(θ)[θ] + ϕ + δ(t− Tf ), (3)

where C(θ), K(θ) and (∆M, ∆C, ∆K) are the time-variant stiffness matrix, time-variant damping matrix,
and unknown modeling parameters for mass, stiffness, and damping matrices, respectively.

Figure 1. The system geometry, measurement location, and configuration of the system.

To simplify the modeling and analysis, (2) and (3) are re-written as follows:

[
..
θ] = [M−1(θ)]× (F(θ) −Ψ(θ,

.
θ))− λ(θ,

.
θ, t), (4)

where Ψ(θ,
.
θ) = C(θ)[

.
θ] + K(θ)[θ] + ϕ and λ(θ,

.
θ, t) = M−1

(θ) × (∆ + δ(t − Tf )) represent the
modeling uncertainty and faults of the bearings. For a bearing in healthy condition, it is assumed that
the uncertainty is bounded as follows:

i f (t < Tf )→ δ(t− Tf ) = 0→ ‖M−1(θ)× ∆‖ ≤ Γ, (5)

where Γ is a constant. In the faulty condition, (5) can be written as follows:

i f (t > Tf )→ ‖M−1
(θ) × (∆ + δ(t− Tf ))‖ = λ(θ,

.
θ, t) > Γ. (6)
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Based on the above formulations, we can see that mathematical modeling of REBs is very
complicated, and it is not exact. Moreover, the model’s behavior may be different from the real
system’s behavior in both healthy and faulty conditions because the model is usually obtained under
various assumptions that may not hold true for a real system. This makes the detection and diagnosis of
faults in rolling element bearings more challenging and warrants the development of an algorithm that
is robust to modeling uncertainties and disturbances. To solve the challenge of uncertain parameters in
system modeling, a higher-order super-twisting sliding mode observer is recommended in this study.
This observation technique estimates the faults based on robust model-based nonlinear methods and
improves the rate of fault detection and diagnosis. The objectives of fault diagnosis for an REB in
the presence of uncertainty is the estimation of inner, outer, and ball faults based on model reference
HOSTSMO, which is defined as follows:

[δiestimate]→ [δid]

[δoestimate]→ [δod],
[δbestimate]→ [δbd]

(7)

where [δiestimate], [δid], [δoestimate], [δod], [δbestimate] and [δbd] are the estimated inner fault, desired inner
fault, estimated outer fault, desired outer fault, estimated ball fault, and desired ball fault, respectively.
The block diagram of systems, faults, and fault diagnosis in an REB is illustrated in Figure 2.

Figure 2. A block diagram of systems, faults, and fault diagnosis and their associations.

3. Mathematical Modeling of REBs

As bearing data is inherently nonlinear, we choose the HOSTSMO technique for fault detection
and diagnosis. This robust method is highly efficient and can provide excellent detection and diagnostic
performance. The HOSTSMO technique offers a flexible way to find the optimized parameters for
a nonlinear data model.
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The mathematical model of the REB can be expressed in terms of the angular position of the ball,
the fundamental train frequency (FTF), and time, using the following formulations [51–53]:

θj =
2Π(j−1)

nb
+ ωct + θ0

ωc =
ωi
2 (1− d

D )
, (8)

where θj, nb, ωc, ωi, t, θ0, d, and D are the angular position of the j-th ball, number of balls, FTF,
constant rotor velocity, elapsed time, initial position, ball diameter, and pitch diameter of the bearing,
respectively. Figure 3 illustrates the 5 degrees of freedom for modeling the REB.

Figure 3. Five degrees of freedom of the rolling element bearing (REB) [53].

The contact forces are defined by the following equations [52,53]:

Fx =
Nb
∑

j=1
Cpδ

γ
j cos(θj).h(−δj)

Fy =
Nb
∑

j=1
Cpδ

γ
j cos(θj).h(−δj)

(9)

h(x) =

{
1 x ≥ 0

0 x < 0
. (10)

The contact deformation is defined as follows:

δj = θxd.Cos(θj) + θyd.Sin(θj −ω). (11)

Here, δj, θj, γ, h(x), Cp, θxd, and θyd are the contact deformation, angular position of the j-th REB,
force exponent, Heaviside function, stiffness of outer race, and displacements between inner race
and ball in the inner, outer, and ball faults in the x and y directions, respectively. Based on [51,53],
the 5-DOF REB model has three main parts: an outer race, which is modeled by 2-DOF, an inner race,
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which is modeled by 2-DOF, and the sprung mass, which is modeled by 1-DOF. The equation of the
outer race is defined as follows [53]:

Mp
..
θxo = Fx − Kp

.
θxo − Cpθxo

Mp
..
θyo = Fy −Mpg− (Kp + KR)

.
θyo − (Cp + CR)θyo + CRθyR + KR

.
θyR

, (12)

where Mp, θxo, θyo, Kp, g, KR, CR, and θyR are the outer mass, outer center of mass along the x-axis,
outer center of mass along the y-axis, outer damping, gravity, damping of the sprung-mass, stiffness of
the sprung-mass, and sprung-mass displacement, respectively. To model the inner race, the equation
of the inner race is defined as follows [53]:

Ms
..
θxi = −Fx + Ks

.
θxi + Csθxi

Ms
..
θyi = −Fy −Msg− Ks

.
θyi − Csθyi

, (13)

where Ms, θxi, θyi, Ks, and Cs are the mass of the shaft, inner center of mass along the x-axis, inner
center of mass along the y-axis, damping of the shaft, and stiffness of the shaft, respectively. The sprung
mass equation (1-DOF) along the y-axis is given as follows [53]:

MR
..
θyR = CR(θyo − θyR) + KR(

.
θyo −

.
θyR)−mR.g. (14)

Here, MR is the mass of the sprung-mass. Based on [51,53], the localized faults for the outer race,
inner race, and ball are given in the following equations. If centers of mass in the x and y directions are
different, then the fault deformation is given by Equations (15) and (16):

θxd = θxi − θxo
θyd = θyi − θyo

and (15)

δ f =

{
ωd φd < θj < φd + ∆φd

0 otherwise
, (16)

whereas the outer contact deformation fault is defined as follows:

δo = max(θxd.Cos(θj) + θyd.Sin(θj)−ω− δ f , 0). (17)

The inner contact deformation fault is defined by Equation (20) if the specified angular position
(φd) and fault deformation (δ f ) are given by Equations (18) and (19), respectively:

φd = ωit + φ0, (18)

δ f =

{
ωd φd < θj < φd + ∆φd

0 otherwise
, and (19)

δi = max(θxd.Cos(θj) + θyd.Sin(θj)−ω− δ f , 0), (20)

where (φ0) and (δi) are the initial spall location and the inner contact deformation fault, respectively.
If the fault deformation is expressed as follows:

δ f =


ωdr −ωdo 0 < φs < φbo
ωdr + ωdo Π < φs < Π + φbi
0 otherwise

, (21)
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where (φbi
) and (φbo) are the angular widths of inner and outer faults, respectively, then ωdr and ωdo

can be given as follows:

ωdr =
1

2[d−
√
(d2 − 4x2)]

, (22)

ωdo =
1

2[Do −
√
(Do

2 − 4x2)]
. (23)

Therefore, the ball contact deformation fault is then defined as follows:

δb = max(θxd.Cos(θj) + θyd.Sin(θj)−ω− δ f , 0). (24)

Thus, the rolling element bearing model in the presence of uncertainty and faults can be expressed
as follows:

F(θx,y) = [M(θ)]
..
θ + [C(θ)]

.
θ + [K(θ)]θ + ϕ + F

d(
.
θ)
+ (δi(t− Tfi

)) + (δo(t− Tfo )) + (δb(t− Tfb
)), (25)

The block diagram of the mathematical model of an REB is illustrated in Figure 4. To design
a model-reference-based fault diagnosis scheme for bearings, this paper uses a 5-DOF mathematical
model for an REB system and a benchmark bearing dataset, which was acquired from Case Western
Reserve University (CWRU) [54]. The data is collected using vibration acceleration sensors installed
on the bearing housings. The bearings used for the collection of this data are 6205-2RS JEM SKF roller
bearings, and their parameters for the 5 degrees of freedom model are given in Table 1 [55,56].

Figure 4. Mathematical modeling of bearing.



Sensors 2018, 18, 1128 8 of 22

Table 1. Parameters of REB model.

Parameters Value

Number of balls 9
Stiffness of ball 5.96 × 107 (N/m)

Mass of outer (Kg) 2.7 (Kg)
Stiffness of outer 1.31 × 105 (N/m)

Mass of shaft (Kg) 1.36 (Kg)
Stiffness of Shaft 23.3 × 106 (N/m)

Damping 654 (NS/m)
Ball diameter 7.940 (mm)

Pitch diameter 39.04 (mm)
Defect size 7 (mm)

Defect depth 2 (mm)

4. Proposed Method

The vibration signals of an REB have various types of disturbances. Thus, designing a robust
approach for fault detection and diagnosis is the principal challenge. In the first step, ARX-Laguerre
proportional integral observer (APIO) is briefly discussed. The primary challenge of this technique is
robustness. To address this challenge, the proposed higher-order super-twisting sliding mode observer
(HOSTSMO) is the second candidate for fault diagnosis in an REB. This technique is designed to ensure
fast convergence of the estimated faults to the measured faults in the presence of uncertainties, and to
attenuate the chattering.

4.1. ARX-Laguerre Proportional-Integral Observer (APIO)

As the rolling element bearing is a nonlinear system, if.. and X2 =
.
θ, the state-space formulation

for an REB can be given as follows:
.

X1 = X2 =
.
θ,

.
X2 = α(X1, X2, u) + ∆(X1, X2, t)
Y = (K)TX1,

+ δi(t) + δo(t) + δb(t), (26)

where u = F(θ), α(X1, X2, u) = M−1(θ)× (F(θ)−Ψ(θ,
.
θ)), (

.
X1,

.
X2) are system states, K is a coefficient,

u is the control input, δi(t) is the inner fault, δo(t) is the outer fault, δb(t) is the ball fault, ∆(X1, X2, t) is
the system uncertainty, and Y is the measured output. The ARX-Laguerre orthonormal technique is
given as follows [57]:

Y(K) =
Na−1

∑
0

Kn,a(
∞
∑

j=1

√
1−ζa

2

Z−ζa
( 1−ζa ,z

Z−ζa
)

n
∗y(k)).xn,y(k)+

Nb−1
∑
0

Kn,b(
∞
∑

j=1

√
1−ζb

2

Z−ζb
( 1−ζb ,z

Z−ζb
)

n
∗u(k)).xn,u(k)

(27)

where Y(K), u(k), (Kn,a & Kn,b), (Na, Nb), (
√

1−ζi
2

Z−ζi

1−ζi
2,z

Z−ζi

n
), ξi, ∗, xn,y(k), and xn,u(k) are the system

output, system input, Fourier coefficients, system order, Laguerre-based orthonormal function,
Laguerre pole, convolution product, output signal filter, and input signal filter, respectively. The state
space equation for the ARX-Laguerre orthonormal function can be written as follows:{

X(k) = [AX(k− 1) + byy(k− 1) + buu(k− 1)] + ∆(k− 1) + δ(k− 1)]
Y(k) = (K)TX(k)

(28)
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where X(k), Y(k), u(k), ∆(k), δ(k), (A, by, bu) and (K)T are the input/output filter, measured output,
control input, uncertainty and disturbance, faults, coefficient matrices, and the Fourier coefficient,
respectively. The matrix A is given as follows:

A =

[
Ay ONa ,Nb

ONb ,Na Au

]
, (29)



Ay =



ζa 0 . . . 0
1− ζa

2 ζa . . . 0
−ζa(1− ζa

2) 1− ζa
2 . . . 0

. . .

. . .
(−ζa)

Na−1(1− ζa
2)

. . .

. . .

. . .

. . .

. . .

. . .

0
0
ζa



Au =



ζb 0 . . . 0
1− ζb

2 ζa . . . 0
−ζb(1− ζb

2) 1− ζb
2 . . . 0

. . .

. . .
(−ζb)

Nb−1(1− ζb
2)

. . .

. . .

. . .

. . .

. . .

. . .

0
0
ζb



, , (30)

ONa ,Nb and ONb ,Na are null matrices of dimensions Na ×Nb and Nb ×Na, respectively. The vectors
by and bu can be defined as follows:

by =
√

1− ζ2
a



1
−ζa

(−ζa)
2

..

..
(−ζa)

Na−1


(31)

bu =
√

1− ζ2
b



1
−ζb

(−ζb)
2

..

..
(−ζb)

Nb−1


. (32)

The ARX-Laguerre PI observer for a faulty system is given as follows:

X̂(k) = [AX̂(k− 1) + byŶ(k− 1) + buu(k− 1)] + ∆̂(k− 1)
+δ̂i(k− 1) + δ̂o(k− 1) + δ̂b(k− 1) + Kp[Y(k− 1)− Ŷ(k− 1)]]
Ŷ(k) = (Kα)

TX̂(k)
δ̂i(k) = δ̂i(k− 1) + Kii[Y(k− 1)− Ŷ(k− 1)]
δ̂o(k) = δ̂o(k− 1) + Kio[Y(k− 1)− Ŷ(k− 1)]
δ̂b(k) = δ̂b(k− 1) + Kib[Y(k− 1)− Ŷ(k− 1)]

(33)

where X̂(k), Ŷ(k), u(k), ∆̂(k), δ̂i(k), δ̂o(k), δ̂b(k) and (Kα, Kp, Kii, Kio, Kib) are the estimated system state
for (inner, outer, and ball) faulty conditions, estimated measured output for (inner, outer, and ball)
faulty conditions, control input, estimated uncertainty and disturbance, estimated inner fault, estimated
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outer fault and estimated ball fault, and gains, respectively. Gains are optimized based on the Linear
Matrix Inequality (LMI) optimization method as follows:

(1− 2γ)P− (AT
γ P− KT

γ)P−1(PAγ − Kγ) > 0
γ ∈ [0, 0.5]

Kε =

[
KP
Ki∗

]
, ∗ = i, o, b

Kγ =
[

KT 0
]

Aγ =

[
A + byCT bu

01,M 1

]
(34)

where γ is the decay rate that is used to quantify the convergence rate of the estimation error and P is
the Lyapunov symmetric and positive definite matrix. The ALPIO is able to detect the system faults.
According to (5), δ(t− Tf ) = 0 when t < Tf , the system works in a healthy condition and the residual
is defined as follows:

r(k) = Y(k)− Ŷ(k) ≤ Γ. (35)

Based on (6), in faulty conditions, δ(t− Tf ) 6= 0 when t > Tf , then the residual signal is defined by

r(k) = Y(k)− Ŷ(k) > Γ. (36)

Since in normal condition the residual r(k) is smaller than Γ, whereas in a faulty state it is greater
than Γ, Γ is therefore defined as the threshold value for fault detection. Based on (33), the ball, inner,
and outer faults can be estimated using the ALPIO method. To calculate the threshold value for the
ball, inner, and outer fault conditions, we can define an error control term for the error compensator
for the ball, inner, and outer thresholds as follows:

∆b = −M(X̂).(Kprb +
.
rb). (37)

∆i = −M(X̂).(Kpri +
.
ri). (38)

∆o = −M(X̂).(Kpri +
.
ri) (39)

where ∆i, ∆b and ∆o are the threshold values for inner fault, ball fault, and outer fault, respectively.
Based on (37)–(39), the ball, inner, and outer faults can be identified as follows:

r = [Y]− [Ŷ]
i f : r > Γ, r < ∆b, r < ∆i, r < ∆o → r = rb
i f : r > Γ, r > ∆b, r < ∆i, r < ∆o → r = ri
i f : r > Γ, r > ∆b, r > ∆i, r < ∆o → r = ro

(40)

where rb, ri and are the residual signals for ball fault, inner fault, and outer fault, respectively. Based
on (40), the fault can be isolated whenever the residuals (rb, ri, ro) overshoot their corresponding
thresholds (Γ, ∆b, ∆i), respectively. Though useful in many cases, this method is not robust in detecting
and isolating faults in the presence of uncertainties and disturbances. To improve its robustness,
a sliding mode observer is used.
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4.2. Proposed Higher-Order Super-Twisting Sliding Mode Observer (HOSTSMO)

The simple sliding mode observer is defined as follows [39]:
.

X̂1 = X̂2 + λa.sgn(e1), (e1 = X1 − X̂1).
X̂2 = α(X1, X̂2, u) + λb.sgn(e2), (e2 =

.
X̂1 − X̂2)

Ŷ = (Kβ)
TX̂1

(41)

where u = F(θ), α(X1, X2, u) = M−1(θ) × (F(θ) − Ψ(θ,
.
θ)), (

.̂
X1,

.̂
X2) are estimated system states,

(Kβ, λa, λb) are coefficients, u is the control input, and Ŷ is the estimated measured output. The SMO is
stable and robust; however, it suffers from the chattering phenomenon. The new part is defined as follows:

H = λ|ei|0.5sgn(ei) , λ > 0, (42)

where H and λ are an observation function and coefficient, respectively. If the uncertainties are
estimated, the sliding dynamics can converge to zero in finite time.{

H = λ‖ei‖0.5sgn(ei)− χ̂
.̂
χ = −λ0 × sgn(ei)

, (43)

where
.̂
χ and λ0 are the super-twisting variable and coefficient, respectively. The compensate sliding

variable dynamic is defined as follows:{
λ‖ei‖0.5sgn(ei)− χ̂ = λ̂(X1, X2, t)
.̂
χ = −λ0 × sgn(ei)

(44)

where λ(θ,
.
θ, t) = M−1

(θ)× (∆+ δ(t− Tf )) represents the modeling uncertainty and estimated bearing
faults. Based on (43) and (44), the challenge of uncertainties and unknown inputs (faults) estimation
can be solved in finite time. Equation (44) is called the super-twisting algorithm. Based on (43),
the formulation of HOSTSMO can be given as follows:

.
X̂1 = X̂2 + λ1|e1|2/3.sgn(e1), (e1 = X1 − X̂1).
X̂2 = α(x1, x̂2, u) + λ2|e2|0.5.sgn(e2) + χ̂, (e2 =

.
X̂1 − X̂2).

χ̂ = λ0.sgn(e1)

Ŷ = (Kβ)
TX̂1

. (45)

According to Equations (26) and (45), the estimation error performance of model reference
HOSTSMO in REBs can be given as follows:

.
X̃1 =

.
X1 −

.
X̂1.

X̃2 =
.

X2 −
.

X̂2.
X̃1 = X̃2 − λ1|e1|2/3.sgn(e1).
X̃2 = (X1, X̂2, X̃2, u)− λ2|e2|0.5.sgn(e2)− χ̂

(X1, X̂2, X̃2, u) = α(X1, X2, u)− α(X1, X̂2, u) + ∆(X1,X2,t) + δi + δo + δb

Ỹ = (K)TX1 − (Kβ)
TX̂1

. (46)
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If the system states are bounded as
∣∣∣X(X1, X̂2, X̃2, F)

∣∣∣ < H+, then the sliding gains (λ0, λ1, λ2)
can be calculated as follows to guarantee stability and convergence:

λ0 = 1.1H+

λ1 = 1.9 3√H+

λ2 = 1.5
√

H+

. (47)

Based on Equation (43) and convergence theory, we have:

∆(X1,X2,t) + δi + δo + δb − λ2|e2|0.5.sgn(e2)− χ̂ = 0→
λ2|e2|0.5.sgn(e2) = 0→
∆(X1,X2,t) + δi + δo + δb > Γ
i f (δi = 0, δo = 0, δb = 0)→ ∆(X1,X2,t) ≤ Γ

. (48)

Based on (5), in healthy condition (δi = 0, δo = 0, δb = 0) the residual is defined as follows:

χ̂ = ∆(X1,X2,t) ≤ Γ. (49)

Whereas, in faulty conditions, δ(t− Tf ) 6= 0 when t > Tf , the residual signal is defined by:

χ̂ = (∆(X1,X2,t) + δ(t− Tf )) > Γ (50)

Thus, Γ is defined as the threshold value for normal condition and can be used for fault detection.
Therefore, based on the proposed HOSTSMO, the following formulation is used for fault detection in REBs:{

i f (δ(i,o,b) = 0)→ χ̂ ≤ Γ
i f ((δ(i,o,b) 6= 0)→ χ̂ > Γ

. (51)

The block diagram of the proposed HOSTSMO for fault detection in REBs is given in Figure 5.
Based on Equations (26), (45), and (46), the ball, inner, and outer faults are estimated by the proposed
HOSTSMO method and defined in (52)–(54), respectively.

.
X̂i1 = X̂i2 + λi1 |ei1|

2/3.sgn(ei1), (ei1 = Xi1 − X̂i1).
X̂i2 = αi(Xi1, X̂i2 , u) + λi2|ei2|

0.5.sgn(ei2) + χ̂i,

(ei2 =
.

X̂i1 − X̂i2).̂
χi = λi0.sgn(ei1)

Ŷi = (Ki)
TX̂i1

, (52)



.
X̂o1 = X̂o2 + λo1 |eo1|2/3.sgn(eo1), (eo1 = Xo1 − X̂o1).
X̂o2 = αo(Xo1 , X̂o2 , u) + λo2|eo2|0.5.sgn(eo2) + χ̂o,

(eo2 =
.

X̂o1 − X̂o2)
.̂
χo = λo0.sgn(eo1)

Ŷo = (Ko)
TX̂o1

, (53)



.
X̂b1 = X̂b2 + λb1

∣∣eb1

∣∣2/3.sgn(eb1), (eb1 = Xb1 − X̂b1).
X̂b2 = αb(Xb1 , X̂b2 , F) + λb2

∣∣eb2

∣∣0.5.sgn(eb2) + χ̂b,

(eb2 =
.

X̂b1 − X̂b2).̂
χb = λb0 .sgn(eb1)

Ŷb = (Kb)
TX̂b1

, (54)
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Figure 5. Block diagram of modeling and fault detection of bearing.

where (
.

X̂i,
.

X̂o,
.

X̂b), (χ̂i, χ̂o, χ̂b), (λi, λo, λb) and (Ki, Ko, Kb) are the estimated fault states (inner, outer,
ball), (inner, outer, ball) faults and uncertainties estimators, sliding gains for (inner, outer, ball) faults,
and output gains for (inner, outer, ball) faults, respectively. Based on (52)–(54), the ball, inner, and outer
faults are estimated by the proposed HOSTSMO method. To calculate the threshold values for the ball,
inner, and outer fault conditions, a robust partly sliding mode method is used as follows:

∆b = −M(X̂1).Kωb sgn(sb)

sb = λbe1b +
.
e1b

(55)

∆i = −M(X̂1).Kωi sgn(si)

si = λie1i +
.
e1i

(56)

∆o = −M(X̂1).Kωo sgn(so)

so = λoe1o +
.
e1o

(57)
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where ∆b, ∆i, ∆o, (Kωb , Kωi , Kωo ), (sb, si, so) and (λb, λi, λo) are threshold values for ball fault, inner
fault, outer fault, sliding coefficients for (ball, inner, and outer) faults, sliding surface for (ball, inner,
and outer) fault states, and sliding surface slope for (ball, inner, and outer) fault states, respectively.
Based on (52)–(57), the ball, inner, and outer faults are identified as follows:

i f : χ̂ > Γ, χ̂ < ∆b, χ̂ < ∆i, χ̂ < ∆o → χ̂ = χ̂b
i f : χ̂ > Γ, χ̂ > ∆b, χ̂ < ∆i, χ̂ < ∆o → χ̂ = χ̂i
i f : χ̂ > Γ, χ̂ > ∆b, χ̂ > ∆i, χ̂ < ∆o → χ̂ = χ̂o

(58)

where χ̂b, χ̂i and χ̂o are the residual signals for ball fault, inner race fault, and outer race fault,
respectively. Based on (58), the faults are isolated whenever the residuals (χ̂b, χ̂i, χ̂o) overshoot their
corresponding thresholds (Γ, ∆b, ∆i), respectively. Figure 6 shows the block diagram for fault detection,
estimation, identification, and isolation.

Figure 6. Block diagram of modeling and fault diagnosis of bearing.
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5. Datasets, Results, and Analysis

To validate the effectiveness of the proposed algorithm, this paper uses the 5-DOF mathematical
formulation in [2,52] for REB system modeling and a benchmark bearing dataset that was acquired
from Case Western Reserve University (CWRU) [49]. The apparatus employed in the experiment
included a 2-hp motor, a torque transducer, a load motor, and a dynamometer. Figure 7 illustrates the
detailed location of each component [2]. In this system, the vibration sensor is used for data collection
from roller bearings 6205-2RS JEM SKF for the diagnosis of bearing faults. Single-point faults with
three different crack sizes (i.e., severity levels) of 0.007, 0.014, and 0.021 inches in diameter were seeded
on the drive-end bearings at different bearing locations as the outer raceway fault (OR), inner raceway
fault (IR), and the ball fault (Ball), respectively. Data was collected for the three fault conditions and
bearings in normal healthy state. The data was recorded at a 12 kHz sampling rate under four different
motor loads from 0 to 3 hp. The description of the data is given in Table 2.

Figure 7. The seeded roller bearing test rig for recording fault data.

Table 2. The detailed description of the datasets used in this study.

Dataset Fault Types Load (hp) Fault Crack Sizes (in)

Dataset 1

Normal state 0

0.007, 0.014, and 0.021
IR fault states 0
OR fault states 0
Ball fault states 0

Dataset 2

Normal state 1

0.007, 0.014, and 0.021
IR fault states 1
OR fault states 1
Ball fault states 1

Dataset 3

Normal state 2

0.007, 0.014, and 0.021
IR fault states 2
OR fault states 2
Ball fault states 2

Dataset 4

Normal state 3

0.007, 0.014, and 0.021
IR fault states 3
OR fault states 3
Ball fault states 3

IR = inner raceway fault; OR = outer raceway fault; Ball = ball fault.

To validate the efficacy of the proposed HOSTSMO fault diagnosis method, we test it with
benchmark bearing datasets as described in Table 2. Figure 8 shows the residual signals for the normal,
inner fault, outer fault, and ball fault conditions, and the threshold values for fault detection.
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Figure 8. Residual of acceleration for normal, inner, outer, and ball faults and normal threshold value
for fault detection.

The residual signals are calculated based on the fault models. Based on (55)–(57), the threshold
values can be estimated for normal condition (59), ball fault condition (60), inner race fault condition
(61), and outer race fault condition (62), respectively.

− Γ < χ̂n < Γ→ −0.5 < χ̂n < +0.5 (59){
−∆b < χ̂b < −Γ
Γ < χ̂b < ∆b

→
{

0.5 < χ̂b < 1.8
−1.8 < χ̂b < −0.5

(60)

{
−∆i < χ̂i < −∆b
∆b < χ̂i < ∆i

→
{

1.8 < χ̂i < 3.5
−3.5 < χ̂b < −1.8

. (61)

{
−∆i > χ̂o

χ̂o > ∆i
→
{

χ̂o > 3.5
χ̂o < −3.5

(62)

Figure 9 shows the residual signal and threshold values for normal bearings calculated by the
proposed HOSTSMO using Dataset 1. The residual signal and thresholds for bearings with a ball
fault as calculated by the proposed HOSTSMO technique are displayed in Figure 10. As shown in
Figure 10 and given in (60), the ball fault is detected and isolated whenever the residual (χ̂b) overshoots
its normal threshold value. The inner fault signal is estimated based on our proposed HOSTSMO
estimation technique. The residual signal and threshold range for the inner fault signal are depicted
in Figure 11. According to the bearing dynamics, the energy level of the defective inner state is
comparatively higher than that of the normal state.
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Figure 9. Residual of acceleration for normal signal: normal threshold (±0.5), ball fault threshold
(±1.8), and inner fault threshold (±3.5) for a crack width of 0.007.

Figure 10. Residual of acceleration for ball fault signal: normal threshold (±0.5), ball fault threshold
(±1.8), and inner fault threshold (±3.5) for a crack width of 0.007.

Figure 11. Residual of acceleration for inner fault signal: normal threshold (±0.5), ball fault threshold
(±1.8), and inner fault threshold (±3.5) at a crack width of 0.007.

Based on Figure 11 and (61), the inner fault signal is detected and isolated whenever the residual
(χ̂i) overshoots the ball threshold value. The outer fault signal for our proposed HOSTSMO estimation
technique is illustrated in Figure 12. According to Figure 12 and (62), the outer fault signal is detected
and isolated whenever the residual (χ̂o) overshoots the inner threshold value.
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Figure 12. Residual of acceleration for outer fault signal: normal threshold (±0.5), ball fault threshold
(±1.8), and inner fault threshold (±3.5) at a crack width of 0.007.

According to the results in Figures 8–12, we observe that our proposed HOSTSMO technique
is highly effective in detecting different fault states. We compare our proposed HOSTSMO method
with the state-of-the-art ALPIO technique [57] for performance analysis. To validate our model further,
we calculate the diagnostic accuracy for each fault state for the four datasets described in Table 2
under various operating conditions. Tables 3–6 present the diagnostic performance of the proposed
HOSTSMO and ALPIO for each fault type for four datasets. The diagnostic performance is reported as
the percentage of correct detections in all data.

Table 3. Fault diagnosis results for Dataset 1 for the proposed method and ALPIO when torque load = 0 hp.

Algorithms Proposed Method ALPIO
Crack Diameters (in) 0.007 0.014 0.021 0.007 0.014 0.021

Normal State 100% 100% 100% 89% 89% 89%
IR Faults 96% 93% 96% 66% 70% 70%
OR Fault 100% 100% 100% 75% 80% 78%
Ball Fault 100% 100% 100% 81% 81% 84%
Average 99% 98.3% 99% 78% 80% 80.3%

Table 4. Fault diagnosis results for Dataset 2 for the proposed method and ALPIO when torque load = 1 hp.

Algorithms Proposed Method ALPIO
Crack Diameters (in) 0.007 0.014 0.021 0.007 0.014 0.021

Normal State 100% 100% 100% 89% 89% 89%
IR Faults 100% 100% 100% 66% 70% 70%
OR Fault 95% 93% 95% 75% 80% 78%
Ball Fault 98% 90% 98% 81% 81% 84%
Average 98.3% 95.7% 98.3% 78% 80% 80.3%

Table 5. Fault diagnosis results for Dataset 3 for the proposed method and ALPIO when torque load = 2 hp.

Algorithms Proposed Method ALPIO
Crack Diameters (in) 0.007 0.014 0.021 0.007 0.014 0.021

Normal State 100% 100% 100% 85% 85% 85%
IR Faults 100% 100% 100% 73% 70% 75%
OR Fault 92% 85% 95% 75% 75% 75%
Ball Fault 93% 90% 90% 78% 81% 81%
Average 96.3% 93.8% 96.3% 77.8% 77.8% 79%
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Table 6. Fault diagnosis results for Dataset 4 for the proposed method and ALPIO when torque load = 3 hp.

Algorithms Proposed Method ALPIO
Crack Diameters (in) 0.007 0.014 0.021 0.007 0.014 0.021

Normal State 100% 100% 100% 90% 90% 90%
IR Faults 94% 100% 100% 75% 75% 75%
OR Fault 90% 90% 90% 75% 75% 78%
Ball Fault 92% 86% 90% 78% 75% 81%
Average 94% 94% 95% 79.5% 78.75% 81%

As shown in Tables 3–6, the proposed HOSTSMO-based method for bearing fault diagnosis
outperforms the state-of-the-art ALPIO method, yielding average performance improvements of
18.82%, 16.825%, and 17.44% for three fault severity levels characterized by crack sizes of 0.007, 0.014,
and 0.021 inches, respectively. This performance improvement can be further validated by the fact
that our proposed HOSTSMO model is highly efficient in identifying the signal state and defining the
dynamic error threshold as can be seen in Figures 8–12.

6. Conclusions

This paper presented a nonlinear observation-based bearing fault diagnosis technique using
a higher-order super-twisting sliding mode observation method. The bearing fault signal is highly
nonlinear and composed of uncertain dynamic parameters, and its vibration measurement is noisy.
The filter-less high-order super-twisting sliding mode observation method generates a robust residual
signal for the detection, estimation, and identification of the different types of faults found in
bearings. To design a robust model-reference observation technique, bearings under normal and
faulty conditions were modeled using a 5-degree-of-freedom nonlinear system and applied to the
higher-order super-twisting sliding mode observer. The effectiveness of the proposed observation
technique was tested with a benchmark dataset that was provided by Case Western Reserve University.
The proposed method outperformed the conventional ARX-Laguerre proportional integral observation
technique, yielding average performance improvements of 18.82%, 16.825%, and 17.44% for three fault
severity levels characterized by crack sizes of 0.007, 0.014, and 0.021 inches, respectively.
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