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Statistical analysis of the relationship between cell 

concentration (CC), optical density (OD880) and 

permittivity ( 

1. Basic assumptions and considerations 

1.1 classical and inverse regression 

The main goal of the analysis was the establishment of a valid calibration for the prediction of the 

cell concentration based on the measurement of optical density (OD880) or permittivity (). In the 

following paragraph, we describe the fundamental ideas of classical and inverse regression [1–3] 

and their application to our data.  

In the classical regression approach (denoted as: cl), the dependent variable y (i.e. OD880 or ) is 

regressed on the independent variable x (i.e. cell concentration). Here, the derived signal output is to 

be explained by its underlying cause (i.e. higher cell concentration causes higher light scattering). 

The cell concentration is assumed to be free of measurement error, whereas the signal output 

represents a stochastic variable. In other words, the signal output can be explained as a function of 

cell concentration plus an unexplained error e 1, resulting from the uncertainty of the sensor 

measurement (Equations 1 and 2). In order to enable prediction of future cell concentrations, the 

model has to be rearranged to obtain the inverted classical calibration model. 

 

𝑂𝐷 = 𝑓(𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐) + 𝑒𝑐𝑙                                                                   (1) 

𝜀 = 𝑓(𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐) + 𝑒𝑐𝑙                                                                   (2) 

 

Instead of rearranging the classical model, a functional relationship can also be obtained by direct 

regression of the cell concentration on the signal output (Equations 3 and 4).  

 

𝐶𝑒𝑙𝑙 𝑐𝑜𝑛𝑐 = 𝑓(𝑂𝐷) + 𝑒𝑖𝑛𝑣                                                                           (3) 

  𝐶𝑒𝑙𝑙 𝑐𝑜𝑛𝑐 = 𝑓(𝜀) + 𝑒𝑖𝑛𝑣                                                                               (4) 

 

This procedure is called inverse regression (denoted as: inv) and its model can be used directly to 

predict the cell concentration for future sensor outputs. However, this model is fit without 

considering which of the variables incorporates errors and which one is random, independent and 

error-free. Although this violates basic assumptions underlying linear regression and results in a 

biased model, it was mathematically shown that inverse models perform as well or even better in 

terms of predicting future observations [1,2]. It is obvious that classical and inverse models are not 

interchangeable, but as the determination coefficient tends to become 1, the difference between both 

will be minimized [1]. 

In the following analysis both methods were used for the purpose of online cell density monitoring. 

Thereby we focus rather on practical aspects, than giving a detailed mathematical comparison, 

which can be found elsewhere [1–3]. The analysis was restricted to standard diagnostic plots for 

regression.  

 

                                                 
1 In statistics the errors are usually represented by . Because  is preassigned to the permittivity value, we changed the 

designation of the errors to e  
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1.2 Considerations on meassurements and data aquesition 

All variables in our dataset (cell conc, , OD880) were determined experimentally and may contain a 

certain error, a situation which is usually not reflected in simple regression models. Because OD880 

and valuesare the result of a device-internal running average calculation (by default 10 seconds for 

OD880 or 6 minutes for ), we used these values directly without any modification. The 

corresponding values of cell concentration were determined by flow cytometry. In order to validate 

our reference method we analyzed the cell concentration of eight samples with different cell 

concentrations multiple times and constructed corresponding box blots (Fig. S1). Based on the plot 

we can conclude that the accuracy of our reference method is very high and the error of cell 

concentration determination can be neglected in the classical calibration procedure, where we used 

the mean of cell concentration as our independent variable. Additionally, according to Levene’s test 

we do not reject the hypothesis of variance homogeneity (homoscedasticity) between the different 

samples (Output S2), indicating that our reference method seems to work over a wide range of cell 

concentrations.  

 

 
 

Figure S1. Box plots for eight samples with different cell concentrations analyzed multiple times by 

flow cytometry. Jittered raw measurement values (red) and sample means (orange) are 

superimposed.  

 
Levene's Test for Homogeneity of Variance (center = median) 
      Df F value Pr(>F)   
group  7  2.0867 0.0696 . 
      37                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Output S2.  Results of Levene's Test for homogeneity of variance. 

1.3 Further restrictions  

To achieve a homogeneous dataset without data points with high leverage the analysis was 

restricted to cell concentrations below 35106 cells/mL. 

1.4 Software 

Analysis was conducted with R v3.4.2 [4] using the following additional packages: readr [5], car [6], 

investr [7], GGally [8], lattice [9], lattice extra[10] and nlme [11,12]. 
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2. Assessment of the optical density OD880 for the prediction of the cell concentration  

2.1 Retrospective modeling with ordinary least squares (OLS) linear regression  

Retrospective modeling refers to the case, where it was investigated how the data of one single 

experiment can be used to reconstruct a detailed growth curve. Based on an exemplary single 

cultivation (k_batch_007) we fitted the quadratic classical and inverse models to obtain the 

corresponding 𝛽̂ values (Equations 5 and 6).  

 

𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐 = 𝛽0 𝑖𝑛𝑣 + 𝛽1 𝑖𝑛𝑣 ∙ 𝑂𝐷880 + 𝛽2 𝑖𝑛𝑣 ∙ 𝑂𝐷880
2 + 𝑒𝑖𝑛𝑣         𝑤𝑖𝑡ℎ  𝑒𝑖𝑛𝑣~𝒩(0, 𝜎𝑒𝑖𝑛𝑣

2)                    (5) 

 

𝑂𝐷880 = 𝛽0 𝑐𝑙 + 𝛽1 𝑐𝑙 ∙ 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐 + 𝛽2 𝑐𝑙 ∙ 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐2 + 𝑒𝑐𝑙              𝑤𝑖𝑡ℎ  𝑒𝑐𝑙~𝒩(0, 𝜎𝑒𝑐𝑙
2)                      (6) 

  

Diagnostic plots (Fig. S3) are acceptable concerning normality and homoscedasticity of the residuals. 

However, due to the fact that they are constructed based on only eight data points, interpretation 

remains difficult. 

 

  

Figure S3. Diagnostic plots for inverse and classical regression: (a) Residuals vs. fitted values for 

homoscedasticity evaluation, (b) Cook’s distance plot for determination of points with high 

influence, (c) QQ-Plots for normality assessment and (d) scatter plots with pointwise confidence and 

prediction bands (level=0.95). 

A detailed summary of the fits is given in the corresponding R-outputs S4 and S5.  

 
Inverse model: 
 
Coefficients: 
                         Estimate Std. Error t value Pr(>|t|)     

𝛽̂0 𝑖𝑛𝑣                      0.07983    0.27380   0.292 0.782334     

𝛽̂1 𝑖𝑛𝑣                     20.85018    2.34410   8.895 0.000299 *** 

𝛽̂2 𝑖𝑛𝑣                     38.20587    4.09488   9.330 0.000238 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2382 on 5 degrees of freedom 
Multiple R-squared:  0.9992, Adjusted R-squared:  0.9989  
F-statistic:  3215 on 2 and 5 DF,  p-value: 1.683e-08 
 

Output S4.  Inverse regression model for cultivation k_batch_007. 
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Classical model: 
 
Coefficients: 
                           Estimate Std. Error t value Pr(>|t|)     

𝛽̂0 𝑐𝑙                        1.523e-02  8.862e-03   1.718   0.1463     

𝛽̂1 𝑐𝑙                        3.387e-02  2.095e-03  16.166 1.65e-05 *** 

𝛽̂2 𝑐𝑙                       -4.876e-04  9.457e-05  -5.156   0.0036 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.009577 on 5 degrees of freedom 
Multiple R-squared:  0.9977, Adjusted R-squared:  0.9968  
F-statistic:  1101 on 2 and 5 DF,  p-value: 2.441e-07 
 

Output S5.  Classical regression model for cultivation k_batch_007. 

Estimations based on both models (according to Equations 7 and 9) yielded nearly identical growth 

curves (Fig. S6), which is particularly a result of the high determination coefficient adj. R2. In 

summary, both calibration approaches can be used for retrospective modelling based on the OD880. 

 

Inverse model for k_batch_007: 

𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑝𝑟𝑒𝑑 =0.07983+20.85018 ∙ 𝑂𝐷880 +38.20587 ∙ 𝑂𝐷880
2             𝑤𝑖𝑡ℎ  𝑎𝑑𝑗. 𝑅2= 0.9989      (7) 

 

Classical model for k_batch_007: 

𝑂𝐷880= 0.015229+0.033870 ∙ 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐− 0.000487 ∙ 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐2  𝑤𝑖𝑡ℎ  𝑎𝑑𝑗. 𝑅2= 0.9968         (8) 

 

Inverted classical model for k_batch_007: 

𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑝𝑟𝑒𝑑 =  
−0.033870 + √0.0338702 − (4 ∙ 0.000487 ∙ (0.015229 − 𝑂𝐷880))

2 ∙ 0.000487 
                          (9) 

 

 

Figure S6. Offline cell concentration (black dot) and estimated time courses for cultivation 

k_batch_007 (inverse model in blue, classical model in red based on OD880).  
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2.2 Exploring a general realtionship using the full OD880 dataset 

2.2.1 Regression using pooled OD880 data 

As a first attempt of establishing a generally valid model we pooled the data from all available 

cultivations and fitted standard regression models analog to the case for a single cultivation. Despite 

the fact that the fit represents the data appropriately, the other diagnostic plots show major 

problems, because residuals are neither normally distributed nor homoscedastic (Fig. S7). 

Consequently, this modelling approach does not describe the dataset adequately. 

 

Figure S7.  Diagnostic plots for inverse and classical regression for the full dataset with n=76: (a) 

residuals vs. fitted values for homoscedasticity evaluation, (b) Cook’s distance plot for determination 

of points with high influence, (c) QQ-Plots for normality assessment and (d) scatter plots with 

pointwise confidence and prediction bands (level=0.95). 

2.2.2  Linear mixed effects models (LME) for inverse calibration based on the OD880 dataset 

The data used for the analysis were obtained from eleven experimental runs causing a hierarchical 

structure in our dataset, where each subgroup represents the time course of a single cultivation. This 

violates the independence assumption underlying linear regression, because responses from the 

same cultivation cannot be regarded as independent. To account for this data structure we employed 

linear mixed effects models (LME) with “cultivation run” as grouping factor [12]. Here the response 

is modeled as being composed of a systematic fixed effect (a common relationship between cell 

concentration and OD880) and a random effect which accounts for an unknown deviation associated 

with each distinct experiment. Hence the cultivation runs are regarded as exemplary and each new 

run will result in an unknown individual deviation from the fixed effect. Variance, which is not 

explained by the fixed and random effects, is represented in the error  𝑒𝑖,𝑗. In the case of inverse 

calibration this results in model Equations 10 and 11, where 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑖,𝑗 is the j-th cell concentration 

of the i-th cultivation with its corresponding optical density 𝑂𝐷880𝑖,𝑗
. Fixed effects are denoted by 𝛽, 

whereas random effects are termed 𝑏𝑖 . 𝜎𝑏1
2,𝜎𝑏2

2 and𝜎𝑏1𝑏2 represent the corresponding (co)variance. 

𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑖,𝑗 = 𝛽0 𝑖𝑛𝑣 + (𝛽1 𝑖𝑛𝑣 + 𝑏1,𝑖 𝑖𝑛𝑣) ∙ 𝑂𝐷880𝑖,𝑗
+ (𝛽2 𝑖𝑛𝑣 + 𝑏2,𝑖 𝑖𝑛𝑣) ∙ 𝑂𝐷880𝑖,𝑗

2 + 𝑒𝑖,𝑗 𝑖𝑛𝑣                          (10) 

(
𝑏1,𝑖 𝑖𝑛𝑣

𝑏2,𝑖 𝑖𝑛𝑣
) ~𝒩2 ((

0
0

) , (
𝜎𝑏1

2 𝜎𝑏1𝑏2

𝜎𝑏1𝑏2 𝜎𝑏2
2 ))                                                                    (11) 

To account for the observed heteroscedasticity the error 𝑒𝑖,𝑗 𝑖𝑛𝑣   was allowed to have an 

OD-dependent variance of the following form:  

𝑒𝑖,𝑗 𝑖𝑛𝑣 ~𝒩 (0, 𝜎2 ∙ 𝑂𝐷880𝑖,𝑗
2𝛿)                                                                               (12) 
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Based on restricted maximum likelihood estimation (REML) the model was fit to the hierarchical 

dataset. The results are shown in R-output S8. 

 
 
Linear mixed-effects model fit by REML 
 Data: ODDatenRed  
       AIC      BIC    logLik 
  169.2678 187.5915 -76.63392 
 
Random effects: 
 Formula: ~(0 + OD + I(OD^2)) | cultivation_run 
 Structure: General positive-definite, Log-Cholesky parametrization 
         StdDev    Corr  
OD        3.037481 OD    
I(OD^2)  12.442086 -0.82 
Residual  2.513469       
 
Variance function: 
 Structure: Power of variance covariate 
 Formula: ~OD  
 Parameter estimates: 
    power  
0.9491688  
 
Fixed effects: CC ~ 1 + OD + I(OD^2)  
               Value Std.Error DF   t-value p-value 
(Intercept)  0.36456  0.076825 63  4.745325       0 
OD          18.45652  1.634912 63 11.289001       0 
I(OD^2)     42.40418  4.976843 63  8.520296       0 
 
 Correlation:  
        (Intr) OD     
OD      -0.732        
I(OD^2)  0.503 -0.852 
 
Standardized Within-Group Residuals: 
        Min          Q1         Med          Q3         Max  
-3.82148533 -0.40507981 -0.04962088  0.42019529  2.51568090  
 
Number of Observations: 76 
Number of Groups: 11 
 

Output S8.  Linear mixed effects model (inverse approach): Fixed effects contains the 𝛽̂  values; 

Random effects contains the estimated  𝜎̂𝑏1, 𝜎̂𝑏2 , and 𝜎̂ values; Variance function contains the 

estimate for 𝛿̂. 

The pure fixed effects term, usable for population predictions, is represented in Equation 13. 

 

𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑖,𝑗𝑝𝑟𝑒𝑑
=0.36456+ 18.45652 ∙ 𝑂𝐷880𝑖,𝑗

+ 42.40418 ∙ 𝑂𝐷880𝑖𝑗
2                                 (13) 

 

Plotting the residuals of this model shows that the heteroscedasticity still remains (Fig. S9). However 

it is taken into consideration within the variance model (Equation 12) and hence the standardized 

residuals (defined as: 𝑒̂𝑖,𝑗 𝑖𝑛𝑣 /(𝜎̂ ∙ 𝑂𝐷880𝑖,𝑗
𝛿̂) exhibit a uniform shape (Fig. S9).  

 

Figure S9. Residuals and standardized residuals of the linear mixed model (inverse case) plotted versus 

the fitted values. 
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The random effects estimators  𝑏̂1,𝑖 𝑖𝑛𝑣 and 𝑏̂2,𝑖 𝑖𝑛𝑣 are given for each group as follows (Output S10): 
 

 
Random effects estimators:    
                                        OD        I(OD^2) 
k_fed_batch_005 (S2 GmGlv-GFP)    -2.74759893   9.5350569 
k_batch_007 (S2 GmGlv-HisD7)      -0.64780345   1.4063047 
k_batch_008 (S2 GmGlv-His D7)      1.65870522   1.5899946 
k_batch_010 (S2 GmGlv-His D7)      3.10104030  -6.6422191 
k_batch_013 (S2 GmGlv-His D7)     -0.80328069   2.3259866 
k_batch_014 (S2 GmGlv His D7)     -2.22480018  15.3138551 
k_fedbatch_011 (S2 GmGlv-His D7)  -0.09840578  -8.6924469 
k_fedbatch_012 (S2 GmGlv-His D7)   4.30132184 -11.6169132 
k_Perfusion 1 (S2 GmGlv-His D7)    2.23101414 -19.0722073 
k_Perfusion_018 (S2 GmGlv His D7) -1.58894556   0.9727003 
k_Perfusion_020 (S2 GmGlv His D7) -3.18124691  14.8798884 
 

Output S10.  Random effects estimators 𝑏̂1,𝑖  and 𝑏̂2,𝑖 (here indicated by OD and I(OD^2)). 

Plotting the calibration curves for each subset shows that the fixed effects term describes the 

relationship adequately, especially for lower cell densities. Inter-cultivation variations (indicated by 

deviations of model predictions including the random effects terms (group predictions) from the 

model predictions of the purely fixed effects (population predictions)) become prevalent at higher 

cell densities (respectively at later cultivation stages, Fig. S11). 

 

Figure S11. Scatter plots for the eleven cultivations: offline determined values are depicted as black 

dots, corresponding fixed effects and mixed effects predictions are shown as blue and red lines. 

Based on the continuously measured sensor data, the fixed effects term (Equation 13) was used as a 

general method for cell density prediction (Fig. S12). Because the predicted growth curves are in 

good agreement with the offline data and represent plausible time courses, we assume that the fixed 

effects term can be used for online prediction in future experiments.  
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Figure S12. Time courses of cell concentration of eleven culture runs, based on the mixed effects 

predictions (red) and the pure fixed effects term (blue) (inverse calibration approach based on OD880). 

2.2.3  Linear mixed effects models (LME) for classical calibration based on the OD880 dataset 

Analog to the inverse calibration an LME model was used for the classical approach. It is described 

by the following Equations: 

𝑂𝐷880𝑖,𝑗
= 𝛽0 𝑐𝑙 + (𝛽1 𝑐𝑙 + 𝑏1,𝑖 𝑐𝑙) ∙ 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑖,𝑗 + (𝛽2 𝑐𝑙 + 𝑏2,𝑖 𝑐𝑙) ∙ 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑖,𝑗

2 + 𝑒𝑖,𝑗 𝑐𝑙            (14) 

(
𝑏1,𝑖 𝑐𝑙

𝑏2,𝑖 𝑐𝑙
) ~𝒩2 ((

0
0

) , (
𝜎𝑏1

2 𝜎𝑏1𝑏2

𝜎𝑏1𝑏2 𝜎𝑏2
2 ))                                                                               (15) 

𝑒𝑖,𝑗 𝑐𝑙 ~𝒩(0, 𝜎2 ∙ 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑖,𝑗
2𝛿)                                                                           (16) 

The model is summarized in R-output S13 and calibration curves as well as residual plots are shown 

in Figure S14. 

 
 
Linear mixed-effects model fit by REML 
 Data: ODDatenRed  
        AIC       BIC   logLik 
  -342.2721 -323.9485 179.1361 
 
Random effects: 
 Formula: ~(0 + CC + I(CC^2)) | cultivation_run 
 Structure: General positive-definite, Log-Cholesky parametrization 
         StdDev       Corr   
CC       0.0024730272 CC     
I(CC^2)  0.0001324089 -0.754 
Residual 0.0071148947  
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Variance function: 
 Structure: Power of variance covariate 
 Formula: ~CC  
 Parameter estimates: 
    power  
0.3754071  
 
Fixed effects: OD ~ 1 + CC + I(CC^2)  
                  Value    Std.Error DF   t-value p-value 
(Intercept)  0.00318860 0.0026609945 63  1.198274  0.2353 
CC           0.03684048 0.0011663508 63 31.586105  0.0000 
I(CC^2)     -0.00057766 0.0000614199 63 -9.405026  0.0000 
 
 Correlation:  
        (Intr) CC     
CC      -0.612        
I(CC^2)  0.497 -0.857 
 
Standardized Within-Group Residuals: 
        Min          Q1         Med          Q3         Max  
-2.82612284 -0.41949377  0.05622856  0.48276514  2.63196750  
 
Number of Observations: 76 

Number of Groups: 11 

 
Random effects estimators: 
                                             CC       I(CC^2) 
k_fed_batch_005 (S2 GmGlv-GFP)     3.774719e-03 -1.602338e-04 
k_batch_007 (S2 GmGlv-His)         1.306505e-04 -3.931560e-05 
k_batch_008 (S2 GmGlv-His D7)     -1.322710e-03 -9.460547e-06 
k_batch_010 (S2 GmGlv-His D7)     -1.169962e-03  3.141510e-05 
k_batch_013 (S2 GmGlv-His D7)      3.490008e-04 -2.473990e-05 
k_batch_014 (S2 GmGlv His D7)     -9.056331e-06 -1.226139e-04 
k_fedbatch_011 (S2 GmGlv-His D7)   7.312492e-04  6.348296e-05 
k_fedbatch_012 (S2 GmGlv-His D7)  -3.613356e-03  1.953135e-04 
k_Perfusion 1 (S2 GmGlv-His D7)    1.971664e-03  5.706405e-05 
k_Perfusion_018 (S2 GmGlv His D7)  1.266503e-03 -5.195154e-05 
k_Perfusion_020 (S2 GmGlv His D7) -2.108702e-03  6.103968e-05 

 

Output S13. Linear mixed effects model (classical approach): Fixed effects contains the 𝛽̂  values; 

Random effects contains the estimated  𝜎̂𝑏1 , 𝜎̂𝑏2  and 𝜎̂  values; Variance function contains the 

estimate for 𝛿̂; Random effects estimators contains the estimated 𝑏̂1,𝑖  and 𝑏̂2,𝑖 (here indicated by 

CC and I(CC^2)). 

 

Figure S14.  Scatter plots for eleven cultivations: offline determined values are depicted as black 

dots, corresponding fixed effects and mixed effects predictions are shown as blue and red lines (left 

panel). Plot of the raw and standardized residuals (right panel).  
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For prediction with the classical approach, the quadratic Equation 14 has to be rearranged according 

to the Equation 17. 

𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑖,𝑗𝑝𝑟𝑒𝑑
=

−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
                                                                       (17) 

with 

𝑎 = (𝛽̂2 𝑐𝑙 + 𝑏̂2,𝑖 𝑐𝑙)                                                                                   

𝑏 =  (𝛽̂1 𝑐𝑙 + 𝑏̂1,𝑖 𝑐𝑙)                                                                                  

𝑐 = (𝛽̂0 𝑐𝑙 − 𝑂𝐷880𝑖,𝑗
)                                                                             

The pure fixed effects term (that may be used for future predictions) results from Equation 17 

when 𝑏̂2,𝑖 𝑐𝑙 = 𝑏̂1,𝑖 𝑐𝑙 = 0. The resulting plots show nearly equal time courses compared to the inverse 

approach (Fig. S15). 

 

Figure S15.  Time courses of cell concentration of eleven culture runs, based on the mixed effects 

predictions (red) and the pure fixed effects term (blue) (classical calibration approach based on 

OD880). 

3. Assessment of the permittivity  for the prediction of the cell concentration  

3.1 Selection of a suitable regressor variable 

In contrast to the optical density measurement system the dielectric spectroscope provides five 

output variables (, , fc,  and conductivity), which are possible candidates for cell density 

prediction. In order to select a suitable variable and to reveal possible relationships within the group 

we constructed a scatter plot matrix with corresponding pairwise correlation coefficients (Fig. S16). 

Because three of the five variables ( and ) show strong multicollinearity among each other, 

and since we wanted to keep the model simple, a multiple regression approach (utilizing several 

covariables) was considered inappropriate. We selected for further analysis as it shows the highest 

correlation with the cell concentration. 
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Figure S16. Scatter plot matrix for time, cell concentration and the corresponding output variables of 

the Incyte system. 

3.2 Retrospective modeling with ordinary least squares (OLS) linear regression  

The permittivity (𝜀) data of a single cultivation can be used for the reconstruction of a detailed 

growth curve. Based on an exemplary cultivation (k_batch_008) simple linear regression models 

were fitted to obtain the corresponding 𝛽̂ values. Again classical and inverse approaches were 

considered (Equations 18 and 19).  

𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐 = 𝛽0 𝑖𝑛𝑣 + 𝛽1 𝑖𝑛𝑣 ∙ 𝜀 + 𝑒𝑖𝑛𝑣         𝑤𝑖𝑡ℎ  𝑒𝑖𝑛𝑣~𝒩(0, 𝜎𝑒𝑖𝑛𝑣
2)                    (18) 

𝜀 = 𝛽0 𝑐𝑙 + 𝛽1 𝑐𝑙 ∙ 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐 + 𝑒𝑐𝑙              𝑤𝑖𝑡ℎ  𝑒𝑐𝑙~𝒩(0, 𝜎𝑒𝑐𝑙
2)                      (19) 

Corresponding diagnositic plots and model outputs are shown below (Output S17, Fig. S18). 

Inverse model  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     

𝛽̂0 𝑖𝑛𝑣         0.6166     0.3111   1.982   0.0947 .   

𝛽̂1 𝑖𝑛𝑣         4.9803     0.1157  43.027 1.05e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.5185 on 6 degrees of freedom 
Multiple R-squared:  0.9968, Adjusted R-squared:  0.9962  
F-statistic:  1851 on 1 and 6 DF,  p-value: 1.055e-08 
 
Classical model 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     

𝛽̂0 𝑐𝑙        -0.116394    0.064633  -1.801    0.122     

𝛽̂1 𝑐𝑙         0.200144    0.004652  43.027 1.05e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1039 on 6 degrees of freedom 
Multiple R-squared:  0.9968, Adjusted R-squared:  0.9962  
F-statistic:  1851 on 1 and 6 DF,  p-value: 1.055e-08 
 

Output S17. Inverse and classical regression models based on  for cultivation k_batch_008. 
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Figure S18. Diagnostic plots for inverse and classical regression: (a) Residuals vs. fitted values for 

homoscedasticity evaluation, (b) Cook’s distance plot for determination of points with high 

influence, (c) QQ-Plots for normality assessment and (d) scatter plots with pointwise confidence and 

prediction bands (level=0.95).   

Estimations based on both models yielded identical growth curves, as shown in Figure S19. This is 

again the result of a determination coefficient close to one (multiple and adj. R² > 0.99). In summary 

both methods, inverse and classical calibration, can be used for retrospective modelling based on . 

 

Figure S19. Time course of k_batch_008, prediction was based on the inverse and classical regression 

models with  

3.3 Exploring a general realtionship using the full  dataset 

3.3.1 Regression using pooled   data  

Similar to the OD880 case we pooled the  data from all available cultivations and fitted standard 

regression models to get a first impression of the relationship between cell concentration and . 

Based on the scatter plot, it can be concluded that a linear term is sufficient, and the quadratic term 

from the OD880 model can be omitted. The overall fit represented the data sufficiently, but again 

residuals exhibited strong heteroscedasticity (Fig. S20).  
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Figure S20. Diagnostic plots for inverse and classical regression of the pooled  data: (a) Residuals vs. 

fitted values for homoscedasticity evaluation, (b) Cook’s distance plot for determination of points 

with high influence, (c) QQ-Plots for normality assessment and (d) scatter plots with pointwise 

confidence and prediction bands (level=0.95).   

3.3.2 Linear mixed effects models (LME) for inverse calibration based on the   data  

The full dataset consisted of thirteen subgroups, each representing the time course of a single 

cultivation. Based on the appearance of the scatter plots (Fig. S20) we decided to use a simple LME 

model according to Equations 20-22. Here, 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑖,𝑗 indicates the j-th cell concentration of the i-th 

cultivation, 𝛽0 𝑖𝑛𝑣  and 𝛽1 𝑖𝑛𝑣  represent the fixed effects and 𝑏1,𝑖 𝑖𝑛𝑣  denotes the cultivation 

dependent random effect with its variance 𝜎𝑏1
2. 

𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑖,𝑗 = 𝛽0 𝑖𝑛𝑣 + (𝛽1 𝑖𝑛𝑣 + 𝑏1,𝑖 𝑖𝑛𝑣) ∙ 𝜀𝑖,𝑗 + 𝑒𝑖,𝑗 𝑖𝑛𝑣                                                                       (20) 

𝑏1,𝑖 𝑖𝑛𝑣~𝒩(0, 𝜎𝑏1
2)                                                                                                    (21) 

During analysis it turned out that heteroscedasticity is not linked to the value of , but can be 

modeled using a constant, but cultivation-dependent variance (Equation 22). In the employed 

model  𝛿𝑖  is a parameter connecting the standard deviation of the residuals 𝜎  with a distinct 

cultivation i.  

𝑒𝑖,𝑗 𝑖𝑛𝑣 ~𝒩(0, 𝜎2 ∙ 𝛿𝑖
2)                                                                               (22) 

 

The corresponding model is shown in output S21. 

 
 
Linear mixed-effects model fit by REML 
 Data: ImpDatenRed  
       AIC      BIC    logLik 
  301.1257 341.2994 -134.5628 
 
Random effects: 
 Formula: ~0 + e | cultivation_run 
                e Residual 
StdDev: 0.5948544 2.032631 
 
Variance function: 
 Structure: Different standard deviations per stratum 
 Formula: ~1 | cultivation_run  
 Parameter estimates: 
               k_batch_002(S2 GmGlv-GFP C9)               k_batch_004 (S2 GmGlv-GFP C9)  
                                  1.0000000                                   0.4895169  
              k_batch_007 (S2 GmGlv-His D7)               k_batch_008 (S2 GmGlv-His D7)  
                                  0.5935625                                   0.3207547 
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              k_batch_010 (S2 GmGlv-His D7)               k_batch_013 (S2 GmGlv-His D7)  
                                  0.5021930                                   0.1503195  
              k_batch_014 (S2 GmGlv His D7) k_batch_017 (S2 Mt-Glv-His AcGFPCoHygro A4)  
                                  0.3226619                                   0.4200694  
           k_fedbatch_005 (S2 GmGlv-GFP C9)            k_fedbatch_011 (S2 GmGlv-His D7)  
                                  1.2036433                                   0.2508674  
           k_fedbatch_012 (S2 GmGlv-His D7)           k_Perfusion_018 (S2 GmGlv-His D7)  
                                  0.4340070                                   0.2662578  
          k_Perfusion_020 (S2 GmGlv-His D7)  
                                  0.1758531  
Fixed effects: CC ~ 1 + e  
                Value Std.Error DF   t-value p-value 
(Intercept) -0.075501 0.1085423 79 -0.695595  0.4887 
e            4.659552 0.1745077 79 26.701132  0.0000 
 Correlation:  
  (Intr) 
e -0.217 
 
Standardized Within-Group Residuals: 
       Min         Q1        Med         Q3        Max  
-2.2120705 -0.7987214  0.1535858  0.8277531  1.5350747  
 
Number of Observations: 93 
Number of Groups: 13  
 
Random effects estimators: 
                                                     e 
k_batch_002(S2 GmGlv-GFP C9)                 0.2686939 
k_batch_004 (S2 GmGlv-GFP C9)               -0.2321065 
k_batch_007 (S2 GmGlv-His D7)                0.2982819 
k_batch_008 (S2 GmGlv-His D7)                0.5179954 
k_batch_010 (S2 GmGlv-His D7)               -0.3768779 
k_batch_013 (S2 GmGlv-His D7)               -0.5258530 
k_batch_014 (S2 GmGlv His D7)                1.2512570 
k_batch_017 (S2 Mt-Glv-His AcGFPCoHygro A4)  0.4768638 
k_fedbatch_005 (S2 GmGlv-GFP C9)             0.2396000 
k_fedbatch_011 (S2 GmGlv-His D7)            -0.6765539 
k_fedbatch_012 (S2 GmGlv-His D7)            -0.8083132 
k_Perfusion_018 (S2 GmGlv-His D7)           -0.3214135 
k_Perfusion_020 (S2 GmGlv-His D7)           -0.1115741 

 

Output S21. Linear mixed effects model (inverse approach): Fixed effects contains the 𝛽̂  values; 

Random effects contains the estimated  𝜎̂𝑏1 and 𝜎̂ values; Variance function contains the estimates 

for 𝛿̂𝑖; Random effects estimators contains the estimated 𝑏̂1,𝑖  values (here indicated by e). 

The variance model was considered to be adequate, because the standardized residuals 

(𝑒̂𝑖,𝑗 𝑖𝑛𝑣 /(𝜎̂ ∙ 𝛿̂𝑖)) showed a uniform distribution (Fig. S22).  

 

Figure S22. Residuals and standardized residuals of the linear mixed model (inverse case based on ) 

plotted versus the fitted values.  
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Based on the fitted model, corresponding scatter plots were generated (Fig. S22). Growth curve 

estimations were based on the full time curses of  using the fixed effects term (Equation 23, Fig. 

S23). 
𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑖,𝑗𝑝𝑟𝑒𝑑

=− 0.075501 +  4.659552 ∙ 𝜀𝑖,𝑗                                                      (23) 

 

Figure S22. Scatter plots for thirteen cultivations: offline determined values are depicted as black 

dots, corresponding fixed effects and mixed effects predictions are shown as blue and red lines 

(inverse calibration approach based on ). 

 

Figure S23. Time courses of cell concentration of thirteen culture runs, based on the mixed effects 

predictions (red) and the pure fixed term (blue) (inverse calibration approach based on ). 
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3.3.3 Linear mixed effects models (LME) for classical calibration based on the   data  

Classical calibration using a LME model is described by Equations 24-26. 

𝜀𝑖,𝑗 = 𝛽0 𝑐𝑙 + (𝛽1 𝑐𝑙 + 𝑏1,𝑖 𝑐𝑙) ∙ 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑖,𝑗 + 𝑒𝑖,𝑗 𝑐𝑙                                                  (24) 

𝑏1,𝑖 𝑐𝑙~𝒩(0, 𝜎𝑏1
2)                                                                                     (25) 

𝑒𝑖,𝑗 𝑐𝑙 ~𝒩(0, 𝜎2 ∙ 𝛿𝑖
2)                                                                               (26) 

The model is summarized in Output S24 and residual plots as well as calibration curves are shown 

in Figure S25 and S26. 

 
 
Linear mixed-effects model fit by REML 
 Data: ImpDatenRed  
       AIC      BIC   logLik 
  24.09597 64.26973 3.952013 
 
Random effects: 
 Formula: ~0 + CC | cultivation_run 
                CC  Residual 
StdDev: 0.02696844 0.3984836 
 
Variance function: 
 Structure: Different standard deviations per stratum 
 Formula: ~1 | cultivation_run  
 Parameter estimates: 
               k_batch_002(S2 GmGlv-GFP C9)               k_batch_004 (S2 GmGlv-GFP C9)  
                                  1.0000000                                   0.5568557  
              k_batch_007 (S2 GmGlv-His D7)               k_batch_008 (S2 GmGlv-His D7)  
                                  0.6009229                                   0.3409433  
              k_batch_010 (S2 GmGlv-His D7)               k_batch_013 (S2 GmGlv-His D7)  
                                  0.5791894                                   0.1758280  
              k_batch_014 (S2 GmGlv His D7) k_batch_017 (S2 Mt-Glv-His AcGFPCoHygro A4)  
                                  0.2582992                                   0.3995654  
           k_fedbatch_005 (S2 GmGlv-GFP C9)            k_fedbatch_011 (S2 GmGlv-His D7)  
                                  1.2257886                                   0.3306219  
           k_fedbatch_012 (S2 GmGlv-His D7)           k_Perfusion_018 (S2 GmGlv-His D7)  
                                  0.5843147                                   0.3194630  
          k_Perfusion_020 (S2 GmGlv-His D7)  
                                  0.1907367  
Fixed effects: e ~ 1 + CC  
                 Value   Std.Error DF  t-value p-value 
(Intercept) 0.03968056 0.023447573 79  1.69231  0.0945 
CC          0.21435331 0.007907207 79 27.10860  0.0000 
 Correlation:  
   (Intr) 
CC -0.223 
 
Standardized Within-Group Residuals: 
       Min         Q1        Med         Q3        Max  
-1.3678591 -0.7751521 -0.2054960  0.8244499  2.3656666  
 
Number of Observations: 93 
Number of Groups: 13 
 
Random effects estimators:  
                                                      CC 
k_batch_002(S2 GmGlv-GFP C9)                -0.015264209 
k_batch_004 (S2 GmGlv-GFP C9)                0.009308196 
k_batch_007 (S2 GmGlv-His D7)               -0.016119982 
k_batch_008 (S2 GmGlv-His D7)               -0.023070406 
k_batch_010 (S2 GmGlv-His D7)                0.016353649 
k_batch_013 (S2 GmGlv-His D7)                0.023914405 
k_batch_014 (S2 GmGlv His D7)               -0.048541393 
k_batch_017 (S2 Mt-Glv-His AcGFPCoHygro A4) -0.024068530 
k_fedbatch_005 (S2 GmGlv-GFP C9)            -0.015074243 
k_fedbatch_011 (S2 GmGlv-His D7)             0.033262676 
k_fedbatch_012 (S2 GmGlv-His D7)             0.042650736 
k_Perfusion_018 (S2 GmGlv-His D7)            0.012375035 
k_Perfusion_020 (S2 GmGlv-His D7)            0.004274067 
 

Output S24. Linear mixed-effects model (classical approach): Fixed effects contains the 𝛽̂  values; 

Random effects contains the estimated  𝜎̂𝑏1 and 𝜎̂ values; Variance function contains the estimates 

for 𝛿̂𝑖; Random effects estimators contains the estimated 𝑏̂1,𝑖  values (here indicated by CC ). 
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Figure S25. Residuals and standardized residuals of the linear mixed model (classical case based on ) 

plotted versus the fitted values. 

 

Figure S26. Scatter plots for thirteen cultivations: offline determined values are depicted as black 

dots, corresponding fixed effects and mixed effects predictions are shown as blue and red lines 

(classical case based on ). 

Prediction is enabled by rearranging the model according to Equation 27 (Fig. S27).   

𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑖,𝑗𝑝𝑟𝑒𝑑
=

𝜀𝑖,𝑗 − 𝛽̂0 𝑐𝑙

𝛽̂1 𝑐𝑙 + 𝑏̂1,𝑖 𝑐𝑙

                                                                              (27) 

For population predictions only the fixed effects model is used, hence 𝑏̂1,𝑖 𝑐𝑙 = 0. 

𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑖,𝑗𝑝𝑟𝑒𝑑
=

𝜀𝑖,𝑗 −  𝛽̂0 𝑐𝑙

𝛽̂1 𝑐𝑙

=    
𝜀𝑖,𝑗 − 0.03968056

0.21435331 
                                                       (28) 
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Figure S27.  Time courses of cell concentration of thirteen culture runs, based on the mixed effects 

predictions (red) and the pure fixed effects term (blue) (classical calibration approach based on ). 

4. Summary 

Within this analysis we investigated the relationship between cell concentration and optical density 

(OD880) or permittivity () for hierarchical datasets originating from different cultivations. Thereby 

the employment of LME models accounted for the grouping structure and heteroscedasticity. 

Concerning the assignment of the dependent and independent variable, inverse and classical 

approaches were tested, yielding corresponding models for cell density prediction. Because we were 

able to predict plausible time courses using only the fixed effects terms, it was assumed that the 

fixed effects terms are also applicable for future predictions (Table S28). From a practical viewpoint 

all models yielded comparable results. However, in a strict mathematical sense, only the classical 

models are in agreement with the assumption, that an error free cell concentration causes a stochastic 

signal output.  

Table S28. Summary of the fixed effects Equation for cell concentration prediction 

Prediction based on optical density OD880 

Inverse calibration 

 

𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝑖𝑛𝑣 =0.36456+ 18.45652 ∙ 𝑂𝐷880 + 42.40418 ∙ 𝑂𝐷880
2   

 

Classical calibration 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝑐𝑙 =
−0.03684048 + √0.036840482 − (−4 ∙ 0.00057766 ∙ (0.00318860 − 𝑂𝐷880))

−2 ∙ 0.00057766
    

 

Prediction based on permittivity  

Inverse calibration 

 

𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝑖𝑛𝑣 =− 0.075501 +  4.659552 ∙ 𝜀                                                     

 

Classical calibration 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝑐𝑙 =  
𝜀 − 0.03968056

0.21435331 
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To account for measurement error in the dependent and independent variable different error- 

in-variable-models can be used, including Deming regression or Passing-Bablok regression. 

However, these methods are not capable of representing the grouping structure of our data and 

were consequently not used in this analysis.    
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