
sensors

Article

An Adaptive Method for Switching between
Pedestrian/Car Indoor Positioning Algorithms based
on Multilayer Time Sequences

Zhining Gu 1,3, Wei Guo 1,3,*, Chaoyang Li 2, Xinyan Zhu 1,3 and Tao Guo 4

1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430072, China; zhininggu@whu.edu.cn (Z.G.); xinyanzhu@whu.edu.cn (X.Z.)

2 National Network SiJiShenWang Location Service (Beijing) Co., Ltd., Beijing 102200, China; clsdcn@163.com
3 Collaborative Innovation Center of Geospatial Technology, Wuhan University, 129 Luoyu Road,

Wuhan 430079, China
4 Wuhan Digital Engineering Research Institute, No. 718, Luoyu Road, Hongshan District,

Wuhan 430000, China; guotao32@126.com
* Correspondence: guowei-lmars@whu.edu.cn; Tel.: +86-27-6877-8322; Fax: +86-27-6877-8969

Received: 19 December 2017; Accepted: 22 February 2018; Published: 27 February 2018

Abstract: Pedestrian dead reckoning (PDR) positioning algorithms can be used to obtain a target’s
location only for movement with step features and not for driving, for which the trilateral Bluetooth
indoor positioning method can be used. In this study, to obtain the precise locations of different
states (pedestrian/car) using the corresponding positioning algorithms, we propose an adaptive
method for switching between the PDR and car indoor positioning algorithms based on multilayer
time sequences (MTSs). MTSs, which consider the behavior context, comprise two main aspects:
filtering of noisy data in small-scale time sequences and using a state chain to reduce the time delay
of algorithm switching in large-scale time sequences. The proposed method can be expected to realize
the recognition of stationary, walking, driving, or other states; switch to the correct indoor positioning
algorithm; and improve the accuracy of localization compared to using a single positioning algorithm.
Our experiments show that the recognition of static, walking, driving, and other states improves by
5.5%, 45.47%, 26.23%, and 21% on average, respectively, compared with convolutional neural network
(CNN) method. The time delay decreases by approximately 0.5–8.5 s for the transition between states
and by approximately 24 s for the entire process.

Keywords: behavior context; MTS; state recognition; switching pedestrian/car positioning algorithm

1. Introduction

In recent years, the importance of mobile devices, particularly smartphones, has increased for
indoor positioning. The widespread use of these devices enables location-based services (LBSs) to
be easily made available [1] for every user. Moreover, this makes indoor positioning and navigation
more realizable. Accurate user localization, which is regarded as an essential component of LBSs,
can be provided using the embedded sensors and modules of smartphones [1]. The inner sensors of
mobile phones are used widely to assist with localization in indoor parking, as they overcome the
problem of weak signals in indoor environments and provide a convenient method for users to park.
Numerous indoor positioning methods are being developed for use inside covered structures. Wi-Fi,
Radio Frequency Identification (RFID), Bluetooth, Ultra Wideband (UWB), pedestrian dead reckoning
(PDR), and a few other technologies are widely used on the basis of existing deployment environments
or different targets [2]. Current indoor positioning approaches are already quite mature owing to
these technologies.

Sensors 2018, 18, 711; doi:10.3390/s18030711 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s18030711
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 711 2 of 24

There are some methods which are popularly used for positioning in indoor environments
such as parking lots, with different principles [3–5]. The Wi-Fi-based indoor positioning method
takes advantage of received signal strength, but usually, Wi-Fi is not available in parking areas
and other facilities on which this work focuses. On the other hand, Bluetooth can offer better indoor
positioning accuracy than Wi-Fi AP’s [6,7]. The fingerprint-based indoor positioning method comprises
offline training and online testing to realize localization [8–10], but it needs a lot of computation
and some other resource consumption. IBeacon is a Bluetooth signal source. Targets can receive
the signals emitted by IBeacons through smartphones [8,11,12] to locate their positions. All these
signals-of-opportunity approaches are available as infrastructure and can be utilized. Among these
various methods, IBeacons are easier to be deployed with low cost, and can be used for many years
due to low power consumption [13,14]. Compared with other position approaches [15], it’s more
convenient, cheaper and lower power [16]. However, almost all methods used in indoor positioning
for obtaining highly precise location results depend on existing deployment environments and do not
use the context information generated by the movement of targets such as users or mobile phones [17].
Furthermore, several states exist in indoor environments, such as driving, stationary, and walking.
One positioning method cannot be used for all states. The PDR algorithm is frequently used for
the pedestrian state; the algorithm can be used for movement with the step feature and not for
driving, and it estimates the movement of pedestrians on the basis of the sensors (accelerometer,
gyroscope, and magnetometer) embedded in a smartphone [18]. This type of method can reduce
the cost, power consumption, and computational resources and utilize the modules in smartphones.
For example, taking car positioning in parking lots, the driving state typically occurs on roads and
effectively removes one dimension from the position solution [19]. Thus, it lacks the periodic pedestrian
accelerations during movement. The PDR positioning algorithm cannot be used in this case, and
positioning can only be achieved based on WiFi, Bluetooth or some other technology. There is no single
navigation positioning technology that can be used in all situations. From this viewpoint, a new robust
positioning switching method that is suitable for different situations such as the pedestrian or driving
states should be developed with environmental feature matching and context detection methods to
obtain a reliable, cost-effective, and integrated system [20]. Therefore, we choose PDR for detecting
pedestrians’ movement, and IBeacons for cars movement. These two algorithms’ combination can
reduce some unnecessary computation and power consumption according to the corresponding states.

The basis of the switching algorithm is recognition [21]. Previous work on recognition has focused
on the sensors embedded in mobile devices, particularly smartphones, which is a popular research
topic [22]. The data obtained from these smartphone sensors can be used as context to provide useful
and relevant information or services to users [23]. The motions involved in daily activities, such as
walking, jogging, sitting, and running, are more complicated on account of arbitrary gestures [24].
MEMS inertial sensors are attached to humans, and an inference model can be trained according
to a few body positions [25,26]. The aim of activity recognition algorithms is to obtain information
about the activity of a user [24]. Altun et al. classified human activities using body-worn inertial and
magnetic sensors [17,23]. The results showed reasonable accuracy, however, individual adaptation is
necessary for applications that require extra context information. In addition, extensive computation
is required to recognize the current state in real-time. Gu et al. introduced several classification
and automatic feature selection algorithms [23,27]. They focused on common daily activities that
collaboratively or concurrently involve multiple users and presented the first formal study on using a
body sensor network for multiuser activity recognition. However, the design of their sensor network
is still premature and a long way from real-life deployment [27].

Human activity recognition is a significant research field with several challenges, most of which
focus on the accuracy, robustness, and real-time capability [28]. Machine learning is a well-known
approach for recognition [29]. Numerous related works have used machine learning to design, develop,
and evaluate the capability of learning from sensor data and have demonstrated its learning capacity
and encouraging performance in widespread fields. Data are used as the input of learning processes [7].

Sensors 2018, 18, 711 3 of 24

Recognition results are the output after passing through a trained model. A number of methods can be
applied to recognition. Chen and Xue proposed a convolutional neural network (CNN) approach for
recognition, which can extract features and does not require any domain-specific knowledge about
acceleration data [2,30]. Lee and Yoon proposed a method of constructing a novel activity image for
deep CNNs using gyroscope and acceleration signals [31]. The method exhibited better performance
than the feature selection method [31]. In addition to the CNN approach, there are other methods
such as support vector machines (SVMs), decision trees, Bayesian methods, neural networks, logistic
regression, and hidden Markov models [2,32]. However, most of these methods mainly describe
how to use machine learning to recognize a single state such as walking or jogging. The following
challenges still remain:

(a) All these approaches are based on single-state identification (monomer identification), for which
the accuracy is high. However, under natural conditions, there are numerous complex and diverse
continuous states, which should be recognized precisely. Therefore, in this case, CNN recognition
cannot satisfy the requirements of preciseness, even though it can achieve high-accuracy results
for a single state.

(b) Under natural conditions, there is a large amount of noisy data because certain correct states can
be recognized as other false states in sophisticated indoor environments. Noisy data must be
removed on the basis of recognition.

(c) The methods that use CNNs utilize the accelerometer data in the sensors embedded in
smartphones and neglect the features of moving targets [33–35]. This leads to failure in
differentiating between similar states. For example, the stationary state and the driving state
with a constant speed are difficult to recognize if the data from sensors are used. However, these
states are significantly different in terms of the movement velocity, which can be obtained from
an indoor positioning scene based on the features of moving objects. Therefore, we require the
movement features of targets in indoor positioning environments to assist with the switching of
algorithms during recognition.

Figure 1 shows that there is a large amount of noisy data when the CNN method is used in a
natural environment. The states are not easy to distinguish. As it shown, there are two bands: the
upper band named CNN accuracy and the lower band called ground accuracy. The ground accuracy is
the authentic movement results in natural environment and can be considered as the reference of CNN
accuracy results which are based on CNN method. From this figure, we can see that there is a large
amount of noisy data. For example, during the 60 s–80 s, the real state of user’s movement was “car”
(driving), which can be seen in the ground accuracy band. However, when we used CNN method to
recognize the current state which should have been shown the color of “car”, it generated a lot of some
“others” states (yellow color) which we call noisy data.

Sensors 2018, 18, x FOR PEER REVIEW 3 of 23

capacity and encouraging performance in widespread fields. Data are used as the input of learning
processes [7]. Recognition results are the output after passing through a trained model. A number of
methods can be applied to recognition. Chen and Xue proposed a convolutional neural network
(CNN) approach for recognition, which can extract features and does not require any domain-specific
knowledge about acceleration data [2,30]. Lee and Yoon proposed a method of constructing a novel
activity image for deep CNNs using gyroscope and acceleration signals [31]. The method exhibited
better performance than the feature selection method [31]. In addition to the CNN approach, there
are other methods such as support vector machines (SVMs), decision trees, Bayesian methods, neural
networks, logistic regression, and hidden Markov models [2,32]. However, most of these methods
mainly describe how to use machine learning to recognize a single state such as walking or jogging.
The following challenges still remain:

(a) All these approaches are based on single-state identification (monomer identification), for which
the accuracy is high. However, under natural conditions, there are numerous complex and
diverse continuous states, which should be recognized precisely. Therefore, in this case, CNN
recognition cannot satisfy the requirements of preciseness, even though it can achieve high-
accuracy results for a single state.

(b) Under natural conditions, there is a large amount of noisy data because certain correct states can
be recognized as other false states in sophisticated indoor environments. Noisy data must be
removed on the basis of recognition.

(c) The methods that use CNNs utilize the accelerometer data in the sensors embedded in
smartphones and neglect the features of moving targets [33–35]. This leads to failure in
differentiating between similar states. For example, the stationary state and the driving state
with a constant speed are difficult to recognize if the data from sensors are used. However, these
states are significantly different in terms of the movement velocity, which can be obtained from
an indoor positioning scene based on the features of moving objects. Therefore, we require the
movement features of targets in indoor positioning environments to assist with the switching of
algorithms during recognition.

Figure 1 shows that there is a large amount of noisy data when the CNN method is used in a
natural environment. The states are not easy to distinguish. As it shown, there are two bands: the
upper band named CNN accuracy and the lower band called ground accuracy. The ground accuracy
is the authentic movement results in natural environment and can be considered as the reference of
CNN accuracy results which are based on CNN method. From this figure, we can see that there is a
large amount of noisy data. For example, during the 60 s–80 s, the real state of user’s movement was
“car” (driving), which can be seen in the ground accuracy band. However, when we used CNN
method to recognize the current state which should have been shown the color of “car”, it generated
a lot of some “others” states (yellow color) which we call noisy data.

80

walk carothers static

20 40 60 100

CNN accuracy

Ground accuracy

time(s)

Figure 1. Recognition results obtained using the CNN method. The upper band called CNN accuracy
is the result based on CNN method. The lower band named ground accuracy is the real movement
results as a reference of CNN accuracy.

To solve these problems, in this paper we propose an adaptive method for switching between
indoor positioning algorithms. This method is based on current conventional indoor positioning
technology and the sensors embedded in smartphones. We use the data collected from these sensors
to obtain the related behavior information to recognize if the current state is the pedestrian or driving

Figure 1. Recognition results obtained using the CNN method. The upper band called CNN accuracy
is the result based on CNN method. The lower band named ground accuracy is the real movement
results as a reference of CNN accuracy.

To solve these problems, in this paper we propose an adaptive method for switching between
indoor positioning algorithms. This method is based on current conventional indoor positioning

Sensors 2018, 18, 711 4 of 24

technology and the sensors embedded in smartphones. We use the data collected from these sensors to
obtain the related behavior information to recognize if the current state is the pedestrian or driving
state and to switch to the correct algorithm accordingly. By using the algorithm that corresponds to
the current state, more accurate positioning can be obtained. Therefore, we mainly aim to recognize
the current state of users under indoor localization conditions to realize this method for improving
position technology.

The rest of this paper is organized as follows: Section 2 presents the proposed adaptive method
for switching between positioning algorithms. In Section 3, our results are compared with the results
of other methods. Finally, the conclusions and the plans for future work are presented in Section 4.

2. Methods

To overcome the abovementioned challenges, we propose an adaptive indoor algorithm switching
method based on a CNN using four states: static, vehicle, pedestrian, and “other”. If a user uses a
smartphone, his/her speed under any type of these four states can be obtained. We can get his/her
Bluetooth speed by using a Bluetooth indoor positioning method. His/her PDR speed also can be
obtained by taking advantage of the accelerometer and gyroscope in the smartphone. For these two
kinds of speed, they will show different features in different states. Here, for a static state, both of them
should theoretically give a value of 0 or close to 0. However, because the embedded sensors, mainly
including accelerometers and gyroscopes, are so sensitive, the PDR speed can be influenced by tiny
quivering of targets, even if their positions have not changed. Second, for vehicle states, which we also
can call driving or car, we consider it as a vehicle state when the car is driven speeding up or slowing
down, but not at constant speed. If car is travelling at a constant speed, a smartphone with embedded
sensors as modules placed in the car will detect a stationary state through these sensors. At this time,
the real state of the target, namely the smartphone or some other device with embedded sensors, is
stationary even though the car is moving. For convenience in our further study, we can classify this
state as a stationary state as a first approach, and in the following process, we will decide whether it’s
really a stationary or an in-car state depending on the velocity. As for the pedestrian state, we consider
it as walking. Of course in an indoor environment, people can run or walk faster than a car, so here we
include these as walking states for further processing convenience. In addition, it has step detection
features, so the PDR and Bluetooth velocity should be similar theoretically and they will be stable
around a certain speed when walking, but for other stats, they don’t have similar features. Therefore,
we can differentiate walking from the others depending on the speed. Fourth, we consider when users
shake their phones or some other random vibrations which do not generate any position changes as
the “other” states. They can be that phones are put in bags or held in hands with shaking. For example,
a user just stands in a spot, shaking his/her phone. In this kind of situation, there is no position change,
which means the Bluetooth velocity will be 0 or closed to 0 in theory, but the acceleration values will
change dramatically and with no regularity. The entire process is based on the data obtained from the
sensors embedded in smartphones and the indoor positioning scene information which are related
with users’ current state (stationary, in-car, walking, others) by using of PDR and Bluetooth velocity of
users with portable smartphones [22,36]. The CNN method is adopted owing to its superiority for
extracting features without any domain-specific knowledge about the acceleration data. In terms of the
indoor positioning information, the velocity is different among the states; hence, we utilize Bluetooth
positioning results, which are trained by an SVM, to assist users in determining their current state.
The main contributions of this method are as follows:

(a) First, a well-known deep learning method is used to train the state data. It extracts features
without any domain-specific knowledge about the acceleration data.

(b) Second, we propose a multilayer time sequence (MTS) method that combines the positioning
information of an indoor environment to improve the accuracy of recognition or to remove noise
and switch to the correct algorithm according to the current state. This method can consider the
unique features of each state.

Sensors 2018, 18, 711 5 of 24

(c) Third, our method can reduce the cost, power consumption, and computational resources because
all algorithms do not require extensive computation or a high power. The power consumption
can be reduced if one algorithm is switched to another.Sensors 2018, 18, x FOR PEER REVIEW 5 of 23

Data reprocess

Smaller-scale layer process

Larger-scale layer process

Sensor data Position data

Behavior model

Current state

Figure 2. Overall flowchart of proposed method.

As shown in Figure 2, data are obtained from mobile phones and reprocessed in real-time. On
the basis of the behavior-trained models developed using the deep learning method, we propose an
MTS approach that provides two channels of abstraction. These channels enable users to reach their
desired target. First, we describe a smaller scale that uses sliding time plots to remove noisy data
according to the priority of the results trained from the sensors and indoor positioning technology.
Second, on the basis of the results obtained from the first channel, we present a state chain method
in a larger-layer to filter noisy data more extensively and to reduce the time delay when switching to
another algorithm. As the final aim of recognition is to switch to the appropriate algorithm, the time
delay of switching into the current state should be considered. Therefore, in this section, we first
define the state codes and state events to comprehend the method more conveniently. Then, we
describe the proposed method in more detail by dividing it into the following three parts: priority
strategy, noise filtering with fine granularity (a smaller-scale), and optimization based on a state chain
in a higher layer (a larger-scale).

2.1. Definition

In this section, we define two terms used to describe the MTS method, i.e., the state codes and
state events. The state codes are the results based on two types of training models. The first is
expressed as ℎܽ݁݀݋ܥ݁ݐܽݐܵݎ; it is obtained from the CNN method using the acceleration of the inner
sensors. The second is generated by the positioning information of targets using SVM training; it is
referred to as ݁݀݋ܥ݁ݐܽݐܵ݉ݒݏ. A state event is a basic component of a series of continuous states; it is
expressed in the “end-to-end” form, which contains the states that generate movement at the start
and end.

2.1.1. State Codes

We primarily use state codes as processed data to realize the MTS method. They contain the
following two parts: the state codes obtained from CNN results and the state codes generated by the
SVM in terms of the velocity. In this study, we select four basic human daily behavior modes:
stationary, walking, in car, and others. They are represented into ܵݐ, ܹܽ, .respectively ,ݐܱ and ܽܥ
For the following explanation, we will discuss two different situations using these four states. One is
the state that doesn’t generate any changes of positioning (ܵݐ, another is that location will change ,(ݐܱ
,ܽܥ) ܹܽ). Therefore, in order to describe more conveniently, we define these basic modes as number
codes as follows: ܵܤ = ܵܯ ∪ ܵܯ (1) ,ܵܵ = ሼܽܥ, ܹܽሽ, ܵܵ = ሼܵݐ, ,ሽݐܱ

Figure 2. Overall flowchart of proposed method.

As shown in Figure 2, data are obtained from mobile phones and reprocessed in real-time. On the
basis of the behavior-trained models developed using the deep learning method, we propose an MTS
approach that provides two channels of abstraction. These channels enable users to reach their desired
target. First, we describe a smaller scale that uses sliding time plots to remove noisy data according to
the priority of the results trained from the sensors and indoor positioning technology. Second, on the
basis of the results obtained from the first channel, we present a state chain method in a larger-layer to
filter noisy data more extensively and to reduce the time delay when switching to another algorithm.
As the final aim of recognition is to switch to the appropriate algorithm, the time delay of switching
into the current state should be considered. Therefore, in this section, we first define the state codes and
state events to comprehend the method more conveniently. Then, we describe the proposed method
in more detail by dividing it into the following three parts: priority strategy, noise filtering with fine
granularity (a smaller-scale), and optimization based on a state chain in a higher layer (a larger-scale).

2.1. Definition

In this section, we define two terms used to describe the MTS method, i.e., the state codes and state
events. The state codes are the results based on two types of training models. The first is expressed
as harStateCode; it is obtained from the CNN method using the acceleration of the inner sensors. The
second is generated by the positioning information of targets using SVM training; it is referred to as
svmStateCode. A state event is a basic component of a series of continuous states; it is expressed in the
“end-to-end” form, which contains the states that generate movement at the start and end.

2.1.1. State Codes

We primarily use state codes as processed data to realize the MTS method. They contain the
following two parts: the state codes obtained from CNN results and the state codes generated by
the SVM in terms of the velocity. In this study, we select four basic human daily behavior modes:
stationary, walking, in car, and others. They are represented into St, Wa, Ca and Ot, respectively. For
the following explanation, we will discuss two different situations using these four states. One is the
state that doesn’t generate any changes of positioning (St, Ot), another is that location will change

Sensors 2018, 18, 711 6 of 24

(Ca, Wa). Therefore, in order to describe more conveniently, we define these basic modes as number
codes as follows:

BS = MS ∪ SS, (1)

MS = {Ca, Wa}, SS = {St, Ot},

where MS is a collection of basic modes in which people change their position; it includes Ca (in car)
and Wa (walking). SS consists of St (stationary) and Ot (others) without movement. BS is a collection of
basic human behavior modes consisting of St, Ca, Wa, and Ot. We use the position indices of the state
codes as their values for convenient processing. For example, the state code value of St is 1 because its
index is 1. Therefore, Ca is 2, Wa is 3, and Ot is 4.

The first part of the state codes is generated from the CNN results. We adopt CNNs to train the
acceleration data obtained from sensors. A CNN can extract the feature values from these sensor data
automatically, preventing artificial extraction. The use of a CNN approach can be more efficiently and
accurately be implemented and reduces human effort. Furthermore, the X/Y/Z acceleration data can
be regarded as three channels of images, i.e., the length, width, and height. The data we collect are
continuous. Thus, we can utilize a CNN thanks to its advantages to resolve our problem, considering
the three-axis data as images to train an appropriate model. We design the CNN with an input layer,
two convolutional layers, two max pooling layers, a fully connected layer, and an output layer [3,24].
On the basis of the trained model, we can obtain a human activity in real-time:

fcnn(ω, b)→ harStateCode (harStateCode ∈ BS), (2)

where ω and b denote the weight and bias in the trained CNN model, respectively. We use fcnn

to calculate and recognize the current behavior activity, namely, harStateCode. harStateCode should
belong to one of the BS collections (stationary, in car, walking, or “other”).

The second part of the state codes is generated from the SVM results. We use the PDR velocity,
vpdr, and the Bluetooth velocity of an user who takes a portable smartphone in trilateral Bluetooth
positioning, vtri. Here, we adopted IBeacon to deploy our experiment environment due to its low
power consumption with lower cost. And we also define the velocity of a target in the form (vpdr, vtri).
We employ these two categories because PDR positioning is based on step detection, step-length
estimation, and heading estimation. This velocity is closer to the speed of a user when they are walking.
The other states (such as the driving state) cannot adapt to this walking situation well, in that the
velocities are completely different and the velocity while driving is greater than that during walking.
More information about other states can be obtained using a few features of the Bluetooth velocity. For
instance, when a user is stationary, his/her velocity is extremely small and close to (0, 0). When a user is
walking, because of the accuracy of PDR and the trilateral positioning, the velocity is maintained within
a certain range and is lower than the speed of a car. Moreover, these two velocities are considerably
close under conditions where the PDR and trilateral positioning results are ensured. PDR cannot be
applied precisely to the in-car state owing to the lack of the characteristic steps, however, trilateral
Bluetooth positioning provides accurate results in this case. Thus, vpdr does not exhibit regularity,
but vtri is comparatively stable and higher. For the other states, vpdr and vtri are messy and have no
regularity. This can be used to classify the states. Furthermore, to classify the four states, at least two
eigenvalues are required to separate them. According to the trained SVM model, we can obtain the
current state as:

fsvm(ω
∗, b∗)→ svmStateCode (svmStateCode ∈ BS), (3)

where ω∗ and b∗ are the weight and bias in the trained SVM model, respectively. We use fsvm to
calculate and recognize the current behavior activity in terms of the velocity, namely, svmStateCode.
svmStateCode should belong to one of the BS collections.

Sensors 2018, 18, 711 7 of 24

The two main state code values (harStateCode and svmStateCode) can be used for further
processing to obtain the final state of the target as follows:

g(harStateCode, svmStateCode)→ f inalStateCode (f inalStateCode ∈ BS), (4)

where g(harStateCode, svmStateCode) uses (harStateCode, svmStateCode) as the input for the MTS
method. f inalStateCode is the final state of the target as the output.

2.1.2. State Event

Targets have flexible motions indoors; they can change their states. Our aim is to recognize the
current state of a target and switch to the appropriate algorithm when the positioning of the target
changes; that is, the corresponding positioning algorithm can be triggered only when a target’s location
changes. When a user is in the stationary state, his/her position does not change; thus, there is no
need to use a positioning algorithm to update the localization. For the walking state, the algorithm
should be switched to PDR positioning in real-time. The trilateral Bluetooth positioning algorithm can
be used in the in-car state.

This study considered four behavior states; however, only the walking and in-car states cause a
change in localization. Among them, we assume that the target motion state is continuous rather than
a variety of simultaneous states. Therefore, we can regard all movements as a combination of these
basic states and trigger the corresponding positioning algorithm in the walking or in-car states. Here,
we define an end-to-end “state event” as a basic unit that contains the state that leads to a change in
the position. For example, for a state segment, the start and end points can be the walking or in-car
states, in which a user moves. Between the start and the end, the middle states should be the stationary
state or other states; in this case, the target is still at the same location.

Figure 3 shows an example in which it is assumed that a user performs certain actions (in-car→
stationary→ others→ in-car→ walking→ others→ in-car→ stationary). These types of continuous
states can be considered as a combination of a few end-to-end basic events. That is, (in-car, stationary,
others, in-car, walking, others, in-car, stationary) can be expressed as <in-car, . . . , in-car>, <in-car,
walking>, and <walking, . . . , in-car>. Each component contains the in-car or walking state at the start
and end, and the stationary and other states are between them.

Sensors 2018, 18, x FOR PEER REVIEW 7 of 23

Targets have flexible motions indoors; they can change their states. Our aim is to recognize the
current state of a target and switch to the appropriate algorithm when the positioning of the target
changes; that is, the corresponding positioning algorithm can be triggered only when a target’s
location changes. When a user is in the stationary state, his/her position does not change; thus, there
is no need to use a positioning algorithm to update the localization. For the walking state, the
algorithm should be switched to PDR positioning in real-time. The trilateral Bluetooth positioning
algorithm can be used in the in-car state.

This study considered four behavior states; however, only the walking and in-car states cause a
change in localization. Among them, we assume that the target motion state is continuous rather than
a variety of simultaneous states. Therefore, we can regard all movements as a combination of these
basic states and trigger the corresponding positioning algorithm in the walking or in-car states. Here,
we define an end-to-end “state event” as a basic unit that contains the state that leads to a change in
the position. For example, for a state segment, the start and end points can be the walking or in-car
states, in which a user moves. Between the start and the end, the middle states should be the
stationary state or other states; in this case, the target is still at the same location.

Figure 3 shows an example in which it is assumed that a user performs certain actions (in-car 
stationary  others  in-car  walking  others  in-car  stationary). These types of continuous
states can be considered as a combination of a few end-to-end basic events. That is, (in-car, stationary,
others, in-car, walking, others, in-car, stationary) can be expressed as <in-car, …, in-car>, <in-car,
walking>, and <walking, …, in-car>. Each component contains the in-car or walking state at the start
and end, and the stationary and other states are between them.

stationary walking in-car others
<in-car, stationary, others, in-car, walking, others, in-car, stationary>

<in-car, stationary, others, in-car>
<in-car, walking>

<walking, others, in-car>
Figure 3. Example of a state event.

Therefore, we define a state event ܵܧ as follows: ܵܧ = ⋃ < ௦௧௔௥௧௜݁ݐܽݐݏ ∶ ௘௡ௗ௜݁ݐܽݐݏ >௜ே௜ୀଵ ௦௧௔௥௧௜݁ݐܽݐݏ) : ௘௡ௗ௜݁ݐܽݐݏ ∈ >(5) ,(ܵܵ\ܵܤ ௦௧௔௥௧௜݁ݐܽݐݏ ∶ ௘௡ௗ௜݁ݐܽݐݏ >= ൫݁ݐܽݐݏ௦௧௔௥௧௜ , ௦௧௔௥௧ାଵ௜݁ݐܽݐݏ ൯ ∪ ൫݁ݐܽݐݏ௘௡ௗିଵ௜ , ௘௡ௗ௜݁ݐܽݐݏ ൯ (6)

where ܵܧ is a series of continuous movements in a period. It contains ܰ end-to-end basic state
events, indicated as < ௦௧௔௥௧௜݁ݐܽݐݏ ∶ ௘௡ௗ௜݁ݐܽݐݏ >௜. In this expression, the start and end points belong to ܵܤ\ܵܵ, namely, ሼܽܥ, ܹܽሽ, but among it there are still several states which belong to ܵܯ. So we use
Equation (6) to divide the whole process into several segments shown in the right part whose ܵܯ
states are only in the start and end. There are numerous state events; however, there are only a few
end-to-end basic state events, as listed in Table 1.

Table 1. Basic state events.

Basic State Event < ࢏࢚࢘ࢇ࢚࢙ࢋ࢚ࢇ࢚࢙ ∶ ࢏ࢊ࢔ࢋࢋ࢚ࢇ࢚࢙ ࢏<
 <ܹܽ,ܽܥ>
 <ܽܥ,ܽܥ>

<ܹܽ,ܹܽ>
 <ܽܥ,ܹܽ>

Considering Figure 3 as an example, a state event can be expressed as ܵܧ = ⋃ < ௦௧௔௥௧௜݁ݐܽݐݏ ∶ଷ௜ୀଵ ݁ݐܽݐݏ௘௡ௗ௜ >௜ = < :ܽܥ ܽܥ >ଵ∪< :ܽܥ ܹܽ >ଶ∪< ܹܽ: ܽܥ >ଷ. For < :ܽܥ ܽܥ >ଵ, this is equal to (ܽܥ, ଵ(ݐܵ ,ݐܵ)∪ ଵ(ݐܱ ∪ ,ݐܱ) > ,ଵ. Similarly(ܽܥ :ܽܥ ܹܽ >ଶ = ,ܽܥ) ܹܽ)ଵ and < ܹܽ: ܽܥ >ଷ = (ܹܽ, ଷ(ݐܱ ∪ ,ݐܱ) .ଷ(ܽܥ

2.2. MTS Process Based on Behavior Context

Figure 3. Example of a state event.

Therefore, we define a state event SE as follows:

SE = ∪N
i=1

〈
statei

start : statei
end

〉
i

(
statei

start : statei
end ∈ BS\SS

)
, (5)

〈
statei

start : statei
end

〉
=
(

statei
start, statei

start+1

)
∪
(

statei
end−1, statei

end

)
(6)

where SE is a series of continuous movements in a period. It contains N end-to-end basic state events,
indicated as

〈
statei

start : statei
end
〉

i. In this expression, the start and end points belong to BS\SS,
namely, {Ca, Wa}, but among it there are still several states which belong to MS. So we use Equation
(6) to divide the whole process into several segments shown in the right part whose MS states are only

Sensors 2018, 18, 711 8 of 24

in the start and end. There are numerous state events; however, there are only a few end-to-end basic
state events, as listed in Table 1.

Table 1. Basic state events.

Basic State Event
〈
statei

start : statei
end
〉

i

<Ca,Wa>
<Ca,Ca>

<Wa,Wa>
<Wa,Ca>

Considering Figure 3 as an example, a state event can be expressed as SE =

∪3
i=1
〈
statei

start : statei
end
〉

i = 〈Ca : Ca〉1 ∪ 〈Ca : Wa〉2 ∪ 〈Wa : Ca〉3. For 〈Ca : Ca〉1, this is equal to
(Ca, St)1 ∪ (St, Ot)1 ∪ (Ot, Ca)1. Similarly, 〈Ca : Wa〉2 = (Ca, Wa)1 and 〈Wa : Ca〉3 = (Wa, Ot)3 ∪
(Ot, Ca)3.

2.2. MTS Process Based on Behavior Context

On the basis of the abovementioned definitions, we propose a processing method using MTSs
based on the behavior context. The MTS process contains two components. The first is noise filtering
in a lower layer with sliding time plots. The second is optimization using the state chain proposed in a
higher layer with a given behavior context (harStateCode, svmStateCode) from the first channel to filter
more extensively and reduce the time delay. First, we discuss the priority strategy, which contributes
to the priority of harStateCode and svmStateCode. In this section, we consider the MTS process based
on three aspects: priority strategy, noise filtering with fine granularity, and optimization based on the
state chain proposed with a coarse time granularity.

2.2.1. Priority Strategy

According to the abovementioned descriptions of svmStateCode and harStateCode, they are the
results of human activity recognition. Given these two types of results, we select one of them as the
final behaviors of users, namely, f inalStateCode. These states have their own different characteristics
in the aspect of PDR velocity and Bluetooth velocity. For the stationary state, the speed of PDR and
Bluetooth is 0 or close to 0. Cars do not have any feature in PDR due to their lack of step features, but
have high or low speed. Pedestrians have both. For “other” states, the results of Bluetooth will be
close to 0 and they don’t have PDR features when shaking or vibrating. Because the accelerometer
and gyroscope can detect velocity changes in these conditions, these velocities can be very high at
some time, and become slow at other times. A PDR velocity without any regularity will exist. Based
on the above, if svmStateCode and harStateCode are inconsistent, we select one of them as the final
behavior result or use a process to obtain the result in accordance with the actual movement state of a
user based on these features in PDR velocity and Bluetooth velocity in order to preprocess the data
and make a forecast. Therefore, on this basis, we propose the priority strategy concept for determining
which of the two state codes occupies a larger proportion.

We consider that svmStateCode and harStateCode have the same priority when their values are
equal. In the next step, we can use their code values as the final behavior results. However, when the
values are not equal, the priorities are determined by the behavior context. That is, if a svmStateCode’s
characteristic is closer to a certain feature of PDR and Bluetooth velocity than harStateCod, we consider
it’s more suitable for the current behavior context than harStateCode, then svmStateCode is more
preferred than harStateCode. Note that we only consider the priorities as a judgement and do not
depend entirely on the priorities in the final state. In the next step of noise filtering and optimization,
we use the priorities as a basis for processing in complicated and ambiguous situations.

Sensors 2018, 18, 711 9 of 24

2.2.2. Noise Filtering with Fine Granularity

When people move, the mobile phones carried by them can detect their behavior in real-time to
output a series of svmStateCode and harStateCode results. These results are not exactly the same as
the actual movement state. Incorrect state data always exist. Thus, noisy data should be removed to
obtain continuous correct data according to the situation. We propose a noise filtering method based
on fine granularity.

We generate three continuous time plots based on the proposed approach, each with a fixed width
of approximately 3 s. The overlap between two adjacent periods is 1 s. We can use Figure 4 to express
the noise filtering method using time plots abstractly. In Figure 4, we regard each rectangle as states
of 1 second. For example, rectangle ABFE contains the harStateCode and svmStateCode for first one
second. Rectangle EFGH stands for the states for second one second. These rectangles with the same
texture in different time plots are the same one. In other words, the second rectangle of timeplot1 is
the first one in timeplot2. The third one of timeplot1 is the second one of timeplot2, etc. Each rectangle
with own texture represents corresponding state codes for 1 second. The time interval of each adjacent
rectangle (timeplot1 & timeplot2, or timeplot2 & timeplot3) is one second. We mainly process the 1 s
time sequence with the maximum overlap, namely rectangle HGCD which exists in all of time plots.
Among the figure, rectangle ABGH can be regarded as the a priori behavior context, and rectangle IJKL
can be seen as the posterior behavior context. Our method extracts the maximum voting values from
each time plot, which means the value exists in current time plot with most frequency in a certain time
plot and are represented into rectangle A’B’D’C’, E’F’H’G’ and I’J’K’L’. Then we use them to obtain the
final noise filtering result.

Sensors 2018, 18, x FOR PEER REVIEW 9 of 23

maximum voting values from each time plot, which means the value exists in current time plot with
most frequency in a certain time plot and are represented into rectangle A’B’D’C’, E’F’H’G’ and
I’J’K’L’. Then we use them to obtain the final noise filtering result.

A

B

C

D

E

F

G

H

I

L

timeplot1

timeplot2

timeplot3

J

K

Noise
filtering
result

A’

B’

C’
D’

E’
F’

G’ H’

I’

J’

K’

L’

Figure 4. Noise filtering model.

Therefore, on the basis of the current context with the a priori context and posteriori context, we
can obtain the noise filtering result of the current context, which means the generation of wrong states
in real state, just like the description of Figure 1. We use the majority voting rule based on the a priori
context and posterior context. First, we obtain the state codes from ݁݀݋ܥ݁ݐܽݐܵ݉ݒݏ and ℎܽ݁݀݋ܥ݁ݐܽݐܵݎ. If they are equivalent, then the state label is ݁݀݋ܥ݁ݐܽݐܵ݉ݒݏ or ℎܽ݁݀݋ܥ݁ݐܽݐܵݎ; both
have the same priority. Otherwise, we mark the state label as 0, and its priority is determined by the
a priori context and posterior context as: ݈ܾܵ݁ܽܮ݁ݐܽݐ = ൜݁݀݋ܥ݁ݐܽݐܵ݉ݒݏ, ݁݀݋ܥ݁ݐܽݐܵ݉ݒݏ) = ℎܽ0 (݁݀݋ܥ݁ݐܽݐܵݎ , ݁݀݋ܥ݁ݐܽݐܵ݉ݒݏ) ! = ℎܽ݁݀݋ܥ݁ݐܽݐܵݎ) ,݁݀݋ܥ݁ݐܽݐܵ݉ݒݏ , ℎܽ݁݀݋ܥ݁ݐܽݐܵݎ ∈ (7) .ܵܤ

The state codes are placed into time plots as they are obtained. After the time plots are full, we
obtain the voting values that appear the most frequently from each time plot. If there is more than
one maximum voting value in a certain time plot, we should consider the a priori context results as
the maximum voting values. Then, we use the three maximum voting values obtained from time
plots 1–3 to generate the noise filtering result. If these three values are completely different, then we
obtain the noise value according to the behavior context, updating the values of the time plots. As
shown in Figure 4, we consider a certain state in BS as an example. For convenience, we only consider
a specific state named ܣ, and any other state is referred to as ିܣ. In Figure 5, the maximum voting
values obtained from the corresponding time plots are 1, 2, and 3. We combine these three values
with the behavior context to obtain the final noise filtering result. There are four circumstances, as
follows. In Figure 5a, the three values are the same; they are the specified state. Thus, the result is the
same as the values. In Figure 5b, the three values are ିܣ. In this case, the values may be completely
different; thus, the result depends on the behavior context and is temporarily marked as “?”. In Figure
5c, there is only one state that does not satisfy state ܣ. This state can be considered as noise data and
can be removed. In this case, the results are the same as the majority values. In Figure 5d, only one
value satisfies state ܣ, and the remaining values may be different. Therefore, we consider that the
noise filtering result should be based on the a priori behavior context and the priorities of ݁݀݋ܥ݁ݐܽݐܵ݉ݒݏ and ℎܽ݁݀݋ܥ݁ݐܽݐܵݎ. Here, we substitute “?” for the noise filtering results in order to
further process which will be used into the flowing part of state chain. As shown in Figure 6, it’s a
process flowchart of time plots.

Figure 4. Noise filtering model.

Therefore, on the basis of the current context with the a priori context and posteriori context, we
can obtain the noise filtering result of the current context, which means the generation of wrong states
in real state, just like the description of Figure 1. We use the majority voting rule based on the a priori
context and posterior context. First, we obtain the state codes from svmStateCode and harStateCode.
If they are equivalent, then the state label is svmStateCode or harStateCode; both have the same priority.
Otherwise, we mark the state label as 0, and its priority is determined by the a priori context and
posterior context as:

Sensors 2018, 18, 711 10 of 24

StateLabel =

{
svmStateCode, (svmStateCode = harStateCode)

0 , (svmStateCode ! = harStateCode)
, svmStateCode, harStateCode ∈ BS.

(7)
The state codes are placed into time plots as they are obtained. After the time plots are full, we

obtain the voting values that appear the most frequently from each time plot. If there is more than one
maximum voting value in a certain time plot, we should consider the a priori context results as the
maximum voting values. Then, we use the three maximum voting values obtained from time plots
1–3 to generate the noise filtering result. If these three values are completely different, then we obtain
the noise value according to the behavior context, updating the values of the time plots. As shown
in Figure 4, we consider a certain state in BS as an example. For convenience, we only consider a
specific state named A, and any other state is referred to as A−. In Figure 5, the maximum voting
values obtained from the corresponding time plots are 1, 2, and 3. We combine these three values with
the behavior context to obtain the final noise filtering result. There are four circumstances, as follows.
In Figure 5a, the three values are the same; they are the specified state. Thus, the result is the same as
the values. In Figure 5b, the three values are A−. In this case, the values may be completely different;
thus, the result depends on the behavior context and is temporarily marked as “?”. In Figure 5c, there
is only one state that does not satisfy state A. This state can be considered as noise data and can be
removed. In this case, the results are the same as the majority values. In Figure 5d, only one value
satisfies state A, and the remaining values may be different. Therefore, we consider that the noise
filtering result should be based on the a priori behavior context and the priorities of svmStateCode
and harStateCode. Here, we substitute “?” for the noise filtering results in order to further process
which will be used into the flowing part of state chain. As shown in Figure 6, it’s a process flowchart
of time plots.Sensors 2018, 18, x FOR PEER REVIEW 10 of 23

(b)

1 2 3

(a)

1 2 3

(c)

1 2 3 1 2 3 1 2 3

(d)

1 2 3 1 2 3 1 2 3

Specific state named A Any other state called A-

Figure 5. Circumstances of a certain state.

Start

Build time plots
(prior/current/post)

Data acquisition

harStateCode svmStateCode velocity

Time plots full?Remove the first one

Add to plots

Time plots ready?

Get max value

prioriMax ppMax postMax

A priori
strategy

N

Y

Y

Noisy filtering
results

prioriMax==ppMax?

prioriMax==postMax?

prioriMax==0?

A priori states
context+threshold value

Threshold value
of velocity

Behavior
context

Fix the time
plots

Y

Y

Y

N

N

N

Figure 6. Process flowchart for the time plots.

2.2.3. Optimization Based on a State Chain

On the basis of the given noise filtering results, we propose an optimization method based on a
state chain to reduce the time delay of the basic state events. As indicated in Table 1, these basic state
events are <𝐶𝐶𝐶𝐶, 𝑊𝑊𝑊𝑊>, <𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶>, <𝑊𝑊𝑊𝑊, 𝑊𝑊𝑊𝑊>, and <𝑊𝑊𝑊𝑊, 𝐶𝐶𝐶𝐶>. However, switching to the corresponding
positioning algorithm will occur when a user is in <𝐶𝐶𝐶𝐶, 𝑊𝑊𝑊𝑊> or <𝑊𝑊𝑊𝑊, 𝐶𝐶𝐶𝐶>. A few states in <𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶> or
<𝑊𝑊𝑊𝑊, 𝑊𝑊𝑊𝑊> may be stationary or other states, which do not change a user’s localization. In addition,
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 are the same; hence, we do not change the positioning algorithm. We should
recognize the current state precisely and reduce the time delay of each different state as accurately as
possible to ensure switching to the correct localization algorithm. Therefore, we use a state chain to
further filter the noisy data and optimize the time delay for recognition.

We present the concept of a state chain under the condition of coarse time granularity.
Considering the relationship between the current-state context and the a priori context/posterior

Figure 5. Circumstances of a certain state.

Sensors 2018, 18, 711 11 of 24

Sensors 2018, 18, x FOR PEER REVIEW 10 of 23

(b)

1 2 3

(a)

1 2 3

(c)

1 2 3 1 2 3 1 2 3

(d)

1 2 3 1 2 3 1 2 3

Specific state named A Any other state called A-
Figure 5. Circumstances of a certain state.

Start

Build time plots
(prior/current/post)

Data acquisition

harStateCode svmStateCode velocity

Time plots full?Remove the first one

Add to plots

Time plots ready?

Get max value

prioriMax ppMax postMax

A priori
strategy

N

Y

Y

Noisy filtering
results

prioriMax==ppMax?

prioriMax==postMax?

prioriMax==0?

A priori states
context+threshold value

Threshold value
of velocity

Behavior
context

Fix the time
plots

Y

Y

Y

N

N

N

Figure 6. Process flowchart for the time plots.

2.2.3. Optimization Based on a State Chain

On the basis of the given noise filtering results, we propose an optimization method based on a
state chain to reduce the time delay of the basic state events. As indicated in Table 1, these basic state
events are <ܽܥ ,ܽܥ> ,<ܹܽ ,ܽܥ>, <ܹܽ, ܹܽ>, and <ܹܽ, ܽܥ>. However, switching to the corresponding
positioning algorithm will occur when a user is in <ܽܥ, ܹܽ> or <ܹܽ, ܽܥ>. A few states in <ܽܥ ,ܽܥ> or
<ܹܽ, ܹܽ> may be stationary or other states, which do not change a user’s localization. In addition, ݁ݐܽݐݏ௦௧௔௥௧௜ and ݁ݐܽݐݏ௘௡ௗ௜ are the same; hence, we do not change the positioning algorithm. We should
recognize the current state precisely and reduce the time delay of each different state as accurately as
possible to ensure switching to the correct localization algorithm. Therefore, we use a state chain to
further filter the noisy data and optimize the time delay for recognition.

We present the concept of a state chain under the condition of coarse time granularity.
Considering the relationship between the current-state context and the a priori context/posterior
context, we establish a weight ߱௜௝, which indicates the consistency between the two state contexts,

Figure 6. Process flowchart for the time plots.

2.2.3. Optimization Based on a State Chain

On the basis of the given noise filtering results, we propose an optimization method based on a
state chain to reduce the time delay of the basic state events. As indicated in Table 1, these basic state
events are <Ca, Wa>, <Ca, Ca>, <Wa, Wa>, and <Wa, Ca>. However, switching to the corresponding
positioning algorithm will occur when a user is in <Ca, Wa> or <Wa, Ca>. A few states in <Ca, Ca> or
<Wa, Wa> may be stationary or other states, which do not change a user’s localization. In addition,
statei

start and statei
end are the same; hence, we do not change the positioning algorithm. We should

recognize the current state precisely and reduce the time delay of each different state as accurately as
possible to ensure switching to the correct localization algorithm. Therefore, we use a state chain to
further filter the noisy data and optimize the time delay for recognition.

We present the concept of a state chain under the condition of coarse time granularity. Considering
the relationship between the current-state context and the a priori context/posterior context,
we establish a weight ωij, which indicates the consistency between the two state contexts, and a
distance influence factor δij, which means farther distance between two states, the less influence the
former state has on the latter one. For example, in Figure 7, the distance between B3 and A1 is 2,
so δ13 = 1/2. And also, δ23 = 1. We use these factors to model the state influence factor, Ij, of the state
chain. Then, we obtain the chain type to fix it and output the final human activity state. Note that each
state chain has 50% overlap with another chain. When the states are the same as the current state, the
weight is 1; otherwise, it is −1. δij is inversely proportional to the distance between the i-th and j-th
noise filtering results. The entire state chain contains the following three parts: the a priori context
I1
k , current context I2

k , and posterior context I3
k . Each of these contexts is a sum of the products of the

weights and influence factors:
Ik = I1

k + I2
k + I3

k , (8)

Sensors 2018, 18, 711 12 of 24

where, k represents the number index of the middle state in a chain. For instance, in Figure 7, k = 3 in
that the index of B3 is 3: 

I1
k = ωk−2,k × δk−2,k + ωk−1,k × δk−1,k

I2
k = ωk−1,k × δk−1,k + ωk+1,k × δk+1,k
I3
k = ωk+1,k × δk+1,k + ωk+2,k × δk+2,k

, (k ≥ 2).

Sensors 2018, 18, x FOR PEER REVIEW 11 of 23

and a distance influence factor ߜ௜௝ , which means farther distance between two states, the less
influence the former state has on the latter one. For example, in Figure 7, the distance between Bଷ
and Aଵ is 2, so ߜଵଷ = 1/2. And also, ߜଶଷ = 1. We use these factors to model the state influence factor, ܫ௝, of the state chain. Then, we obtain the chain type to fix it and output the final human activity state.
Note that each state chain has 50% overlap with another chain. When the states are the same as the
current state, the weight is 1; otherwise, it is −1. ߜ௜௝ is inversely proportional to the distance between
the i-th and j-th noise filtering results. The entire state chain contains the following three parts: the a
priori context ܫ௞ଵ, current context ܫ௞ଶ, and posterior context ܫ௞ଷ. Each of these contexts is a sum of the
products of the weights and influence factors: ܫ௞ = ௞ଵܫ + ௞ଶܫ + ௞ଷ, (8)ܫ

where, k represents the number index of the middle state in a chain. For instance, in Figure7, k = 3 in
that the index of ܤଷ is 3:

ቐܫ௞ଵ = ߱௞ିଶ,௞ × ௞ିଶ,௞ߜ + ߱௞ିଵ,௞ × ௞ଶܫ௞ିଵ,௞ߜ = ߱௞ିଵ,௞ × ௞ିଵ,௞ߜ + ߱௞ାଵ,௞ × ௞ଷܫ௞ାଵ,௞ߜ = ߱௞ାଵ,௞ × ௞ାଵ,௞ߜ + ߱௞ାଶ,௞ × ௞ାଶ,௞ߜ , (݇ ≥ 2).

As shown in Figure 7, we consider the time series ܣ → ܣ → ܤ → ܣ → as an example. This series ܣ
can be separated into the following three parts: ܫଷଵ (ܣ → ܣ → ܣ) ଷଶܫ ,(ܤ → ܤ → ܤ) ଷଷܫ and ,(ܣ → ܣ ହ is the actual state at the current time. Here, we consider that if the time interval is considerablyܣ ଷ in the current context is not the actual state and thatܤ Readers may think that the current state .(ܣ→
small (approximately 2–4 s), then these two states are the same, namely, ܤଷ = ,ହ. For this equationܣ
there is an inherent relationship that the latter state is influenced by the former state in short time
interval, like ܤଷ has influence on ܣହ. From the first part, the distance between ܣଵ and ܤଷ is 2; thus,
the distance influence factor ߜଵଷ = 1/2. In addition, ܣଵ and ܤଷ are different states; hence, the weight ߱ଵଷ = −1. The other parameters can be obtained in the same manner. Therefore, the final state
influence factor is ܫଷ = ଷଵܫ + ଷଶܫ + ଷଷܫ = ቀ− ଷଶቁ + (−2) + ቀ− ଷଶቁ = −5 (here, the subscript number 3 of ܫ
comes from ܤଷ). From Figure 7, we find that the middle state ܤଷ is different from other states; thus,
we regard this state as noisy data and fix it by replacing it with ܣ.

A1 A2

B3

A4 A5

A2

A4

B3

A2A1

B3

B3

A4 A5

߱13 = −1, 13ߜ = 1/2 ߱23 = −1, 23ߜ = 1

߱23 = −1, 23ߜ = 1߱43 = −1, 43ߜ = 1 ߱43 = −1, 43ߜ = 1߱53 = −1, 53ߜ = 1/2
Figure 7. Example of calculating the final influence factor.

In the state chain method, we classify all possible state chains into three categories: the
continuous, switching, and noisy states. Each state has a unique feature. We use these features to
determine the category that a state belongs to. Figure 8 shows a few instances of these categories.

Figure 7. Example of calculating the final influence factor.

As shown in Figure 7, we consider the time series A→ A→ B→ A→ A as an example.
This series can be separated into the following three parts: I1

3 (A→ A→ B), I2
3 (A→ B→ A), and

I3
3 (B→ A→ A). Readers may think that the current state B3 in the current context is not the actual

state and that A5 is the actual state at the current time. Here, we consider that if the time interval is
considerably small (approximately 2–4 s), then these two states are the same, namely, B3 = A5. For this
equation, there is an inherent relationship that the latter state is influenced by the former state in short
time interval, like B3 has influence on A5. From the first part, the distance between A1 and B3 is 2;
thus, the distance influence factor δ13 = 1/2. In addition, A1 and B3 are different states; hence, the
weight ω13 = −1. The other parameters can be obtained in the same manner. Therefore, the final state
influence factor is I3 = I1

3 + I2
3 + I3

3 =
(
− 3

2
)
+ (−2) +

(
− 3

2
)
= −5 (here, the subscript number 3 of I

comes from B3). From Figure 7, we find that the middle state B3 is different from other states; thus, we
regard this state as noisy data and fix it by replacing it with A.

In the state chain method, we classify all possible state chains into three categories: the continuous,
switching, and noisy states. Each state has a unique feature. We use these features to determine the
category that a state belongs to. Figure 8 shows a few instances of these categories.Sensors 2018, 18, x FOR PEER REVIEW 12 of 23

A A

A

A A

A A

B

A A

A A

A

B B

A A

B

B B

(a)continuous state (b)noisy state

(c)switching state (d)switching state
Figure 8. Instances of the three categories.

As seen in Figure 8a, there is only one case in the continuous state, and the value of the final
influence factor in this case is ቂଷଶ + 2 + ଷଶቃ = 5. Figure 8c,d show the switching states, and the final
influence factor is 0. There are several cases for the noisy state. Figure 8b shows one of them, and the
final influence factor is −5. Therefore, we can confirm which category the state chain belongs to, fix
the noise on the basis of the behavior context by replacing the state A, and recognize the switching
node. Figure 9 shows the flowchart of the state chain method.

Noise filtering
result

Put into buffer pool

Buffer ready?

Calculate factors ܫ݇

N

Y

Continuous Type?

N

The final state

Noisy Type?
YN

Switch to positioning
algorithm accordingly

Swtiching Type Combine with
behavior context

Fix wrong nodes

Y

Figure 9. Flowchart of state chain method.

After obtaining the final states, we can build end-to-end basic state events such as < ,ܽܥ ܹܽ >, < ,ܽܥ ܽܥ >, < ܹܽ, ܹܽ > , and < ܹܽ, ܽܥ >. If the current states belong to < ,ܽܥ ܽܥ > or <ܹܽ, ܹܽ >, the positioning algorithm is not changed. If they belong to < ܹܽ, ܽܥ > or < ,ܽܥ ܹܽ >,
switching to the corresponding algorithm occurs.

3. Experiments and Discussion

We performed a few experiments using the proposed method. We selected a parking lot at
WuHan University as the experimental site. Bluetooth devices were deployed and combined with
the sensors embedded in mobile phones to realize the switching positioning algorithm. Figure 10
shows the experimental site, and the points show the Bluetooth devices.

Figure 8. Instances of the three categories.

Sensors 2018, 18, 711 13 of 24

As seen in Figure 8a, there is only one case in the continuous state, and the value of the final
influence factor in this case is

[3
2 + 2 + 3

2
]
= 5. Figure 8c,d show the switching states, and the final

influence factor is 0. There are several cases for the noisy state. Figure 8b shows one of them, and the
final influence factor is −5. Therefore, we can confirm which category the state chain belongs to, fix
the noise on the basis of the behavior context by replacing the state A, and recognize the switching
node. Figure 9 shows the flowchart of the state chain method.

Sensors 2018, 18, x FOR PEER REVIEW 12 of 23

A A

A

A A

A A

B

A A

A A

A

B B

A A

B

B B

(a)continuous state (b)noisy state

(c)switching state (d)switching state
Figure 8. Instances of the three categories.

As seen in Figure 8a, there is only one case in the continuous state, and the value of the final
influence factor in this case is ቂଷଶ + 2 + ଷଶቃ = 5. Figure 8c,d show the switching states, and the final
influence factor is 0. There are several cases for the noisy state. Figure 8b shows one of them, and the
final influence factor is −5. Therefore, we can confirm which category the state chain belongs to, fix
the noise on the basis of the behavior context by replacing the state A, and recognize the switching
node. Figure 9 shows the flowchart of the state chain method.

Noise filtering
result

Put into buffer pool

Buffer ready?

Calculate factors ܫ݇

N

Y

Continuous Type?

N

The final state

Noisy Type?
YN

Switch to positioning
algorithm accordingly

Swtiching Type Combine with
behavior context

Fix wrong nodes

Y

Figure 9. Flowchart of state chain method.

After obtaining the final states, we can build end-to-end basic state events such as < ,ܽܥ ܹܽ >, < ,ܽܥ ܽܥ >, < ܹܽ, ܹܽ > , and < ܹܽ, ܽܥ >. If the current states belong to < ,ܽܥ ܽܥ > or <ܹܽ, ܹܽ >, the positioning algorithm is not changed. If they belong to < ܹܽ, ܽܥ > or < ,ܽܥ ܹܽ >,
switching to the corresponding algorithm occurs.

3. Experiments and Discussion

We performed a few experiments using the proposed method. We selected a parking lot at
WuHan University as the experimental site. Bluetooth devices were deployed and combined with
the sensors embedded in mobile phones to realize the switching positioning algorithm. Figure 10
shows the experimental site, and the points show the Bluetooth devices.

Figure 9. Flowchart of state chain method.

After obtaining the final states, we can build end-to-end basic state events such as
〈Ca, Wa〉, 〈Ca, Ca〉, 〈Wa, Wa〉, and 〈Wa, Ca〉. If the current states belong to 〈Ca, Ca〉 or 〈Wa, Wa〉,
the positioning algorithm is not changed. If they belong to 〈Wa, Ca〉 or 〈Ca, Wa〉, switching to the
corresponding algorithm occurs.

3. Experiments and Discussion

We performed a few experiments using the proposed method. We selected a parking lot at Wuhan
University as the experimental site. Bluetooth devices were deployed and combined with the sensors
embedded in mobile phones to realize the switching positioning algorithm. Figure 10 shows the
experimental site, and the points show the Bluetooth devices.Sensors 2018, 18, x FOR PEER REVIEW 13 of 23

Figure 10. Experimental site.

We describe the related work on data collection before presenting our experiments. We used
two assessment factors to evaluate the proposed method: the rate of correct judgement and the time
delay. We aim to recognize each state as accurately as possible so that the entire behavior movement
can be more precise. Thus, we use the rate of correct judgement as the factor that represents the
accuracy. In addition, we aim to switch to the appropriate positioning algorithm as accurately as
possible; hence, we cannot neglect the importance of the time delay. The sensitivity of the method
increases as the time delay decreases. Therefore, we tested numerous behavior states. The
experiments consisted of the following two parts: a single-behavior-state experiment to evaluate the
accuracy of recognition using the rate of correct judgement and a multistate-event experiment with
continuous multiple states to assess the influence of the time delay. We can assess the proposed
method by acquiring the actual states. On the basis of the experimental results, we analyze the related
consequences and discuss the proposed method.

3.1. Data Collection

Before recognizing the current motion mode of users, we must collect raw data for various
movement states using inertial sensors (e.g., accelerometers and gyroscopes) as the input of deep
learning neural networks for training and evaluation. Three-axis (X, Y, Z) data are acquired from the
inertial accelerometers and gyroscopes in mobile phones, both of which provide excellent
performance in extracting behavior features. The linear accelerated velocity of users can be collected
from accelerometers and can be transformed into output signals. Gyroscopes measure the angular
velocity related to the deflection and slope. Each movement state has its characteristics in these data.
Therefore, we can use these data to analyze the movements of users. On this basis, we analyze the
unique features by processing the raw data among the four categories. For the stationary state, the
change in the accelerometer values remains smooth. When a user is walking, the acceleration data
fluctuate regularly with a certain period. For other states, these data change without any regularity.
In addition, when sitting in a car, captured data have different characteristics according to the
movement states such as speeding up, slowing down, or braking; however, there is a clear distinction
compared to the stationary state in terms of the velocity.

Theoretically, naturalistic environments are desired for our experiments; however, it is not
practicable to apply these environments [3]. Thus, we select a specific parking lot to carry out
controlled experiments [3]. We consider various situations such as mobile phone locations for
different behaviors, which result in differences between the same movements, to collect as many
different types of data as possible to include diverse behavior states for training. Table 2 summarizes
the various types of data captured, each class declares what kind of data we should collect in order
to cover various situations as much as possible.

Figure 10. Experimental site.

Sensors 2018, 18, 711 14 of 24

We describe the related work on data collection before presenting our experiments. We used two
assessment factors to evaluate the proposed method: the rate of correct judgement and the time delay.
We aim to recognize each state as accurately as possible so that the entire behavior movement can be
more precise. Thus, we use the rate of correct judgement as the factor that represents the accuracy.
In addition, we aim to switch to the appropriate positioning algorithm as accurately as possible; hence,
we cannot neglect the importance of the time delay. The sensitivity of the method increases as the
time delay decreases. Therefore, we tested numerous behavior states. The experiments consisted of
the following two parts: a single-behavior-state experiment to evaluate the accuracy of recognition
using the rate of correct judgement and a multistate-event experiment with continuous multiple states
to assess the influence of the time delay. We can assess the proposed method by acquiring the actual
states. On the basis of the experimental results, we analyze the related consequences and discuss the
proposed method.

3.1. Data Collection

Before recognizing the current motion mode of users, we must collect raw data for various
movement states using inertial sensors (e.g., accelerometers and gyroscopes) as the input of deep
learning neural networks for training and evaluation. Three-axis (X, Y, Z) data are acquired from the
inertial accelerometers and gyroscopes in mobile phones, both of which provide excellent performance
in extracting behavior features. The linear accelerated velocity of users can be collected from
accelerometers and can be transformed into output signals. Gyroscopes measure the angular velocity
related to the deflection and slope. Each movement state has its characteristics in these data. Therefore,
we can use these data to analyze the movements of users. On this basis, we analyze the unique features
by processing the raw data among the four categories. For the stationary state, the change in the
accelerometer values remains smooth. When a user is walking, the acceleration data fluctuate regularly
with a certain period. For other states, these data change without any regularity. In addition, when
sitting in a car, captured data have different characteristics according to the movement states such as
speeding up, slowing down, or braking; however, there is a clear distinction compared to the stationary
state in terms of the velocity.

Theoretically, naturalistic environments are desired for our experiments; however, it is not
practicable to apply these environments [3]. Thus, we select a specific parking lot to carry out
controlled experiments [3]. We consider various situations such as mobile phone locations for different
behaviors, which result in differences between the same movements, to collect as many different types
of data as possible to include diverse behavior states for training. Table 2 summarizes the various types
of data captured, each class declares what kind of data we should collect in order to cover various
situations as much as possible.

In the data collection campaign, 10 users carried phones (HUAWEI mate9, XIAOMI NOTE,
MEIZU) with them. Each type of data set is at least 40 min, and the interval time is at least 20 s.
We developed a simple application for collecting data; it obtains the accelerated velocity from the
inertial sensors. The interface is shown in Figure 11.

We preprocess the raw collected data to remove noise using a third-order median filter, a low-pass
Butterworth filter with a cutoff frequency of 20 Hz, and a high-pass filter [29]. The collected data are
used as the input for CNN training. In addition, we must collect the velocity of a target movement on
the basis of Bluetooth positioning. This is because the use of only the results from the CNN cannot
ensure highly precise state recognition with 100% certainty. The noise states will appear in the correct
behavior state. In addition, when sitting in a car that is moving at a constant speed, it is difficult to
distinguish between the in-car and stationary states using only the CNN recognition result. Thus,
we cannot fully depend on the CNN result and should utilize these states’ unique features that are
different from the others to obtain the correct results. Therefore, we use the difference between the
velocities of each state for our proposed method. On this basis, we collected the velocity of a target
movement on the basis of Bluetooth positioning to make the localization as accurate as possible.

Sensors 2018, 18, 711 15 of 24

Given the precise position coordinates, (xt, yt) and (xt+interval , yt+interval), we can calculate a target’s
velocity as:

velocity =

√
(xt+interval − xt)

2 + (yt+interval − yt)
2/interval, (9)

where (xt, yt) are the coordinates at time t, and interval is the time interval. The velocity is the average
speed within a specified time period. Thus, we can utilize the given initial state recognition results and
speed data to solve problems.

Table 2. Data collection types.

First Class (Categories) Second Class (Location) Third Class (Action) Fourth Class
(Additional)

Static Everywhere

Place
Hold reading
Hold calling

In car (constant speed)

None

Walking Hold in hand Shaking arm
Reading/calling None

Place in pocket In coat
In trousers None

In car In car
Hold reading
Hold calling

Place

Speed up/slow
down/braking

Others In bag/hold Shaking the phone None

Sensors 2018, 18, x FOR PEER REVIEW 14 of 23

Table 2. Data collection types.

First Class
(Categories)

Second Class
(Location) Third Class (Action)

Fourth Class
(Additional)

Static Everywhere

Place
Hold reading
Hold calling

In car (constant speed)

None

Walking
Hold in hand Shaking arm

Reading/calling
None

Place in pocket In coat
In trousers

None

In car In car
Hold reading
Hold calling

Place

Speed up/slow
down/braking

Others In bag/hold Shaking the phone None

In the data collection campaign, 10 users carried phones (HUAWEI mate9, XIAOMI NOTE,
MEIZU) with them. Each type of data set is at least 40 min, and the interval time is at least 20 s. We
developed a simple application for collecting data; it obtains the accelerated velocity from the inertial
sensors. The interface is shown in Figure 11.

Figure 11. Data collection application.

We preprocess the raw collected data to remove noise using a third-order median filter, a low-
pass Butterworth filter with a cutoff frequency of 20 Hz, and a high-pass filter [29]. The collected data
are used as the input for CNN training. In addition, we must collect the velocity of a target movement
on the basis of Bluetooth positioning. This is because the use of only the results from the CNN cannot
ensure highly precise state recognition with 100% certainty. The noise states will appear in the correct
behavior state. In addition, when sitting in a car that is moving at a constant speed, it is difficult to
distinguish between the in-car and stationary states using only the CNN recognition result. Thus, we
cannot fully depend on the CNN result and should utilize these states’ unique features that are
different from the others to obtain the correct results. Therefore, we use the difference between the
velocities of each state for our proposed method. On this basis, we collected the velocity of a target
movement on the basis of Bluetooth positioning to make the localization as accurate as possible.
Given the precise position coordinates, (ݔ௧, ,௧ ା ௜௡௧௘௥௩௔௟ݔ) ௧) andݕ ௧ ା ௜௡௧௘௥௩௔௟), we can calculate aݕ
target’s velocity as: ݕݐ݅ܿ݋݈݁ݒ = ඥ(ݔ௧ା௜௡௧௘௥௩௔௟ − ௧)ଶݔ + ௧ା௜௡௧௘௥௩௔௟ݕ) − ௧)ଶݕ ⁄݈ܽݒݎ݁ݐ݊݅ , (9)

Figure 11. Data collection application.

3.2. Assessment Factors

As stated earlier, we use two factors for the experimental assessment. The first is the rate of correct
judgment Rcor, which indicates the recognition accuracy of the states, and the second is the time delay,
which are respectively expressed as:

Rcor = Nhit/Ntotal , (10)

tdelay = texper − treal . (11)

In a certain time sequence, the behavior state results are output every few seconds. There are
error states among these results, and we use the rate of correct judgment to assess the accuracy of

Sensors 2018, 18, 711 16 of 24

each state in BS. Ntotal is the total number of results output in a time sequence. Nhit is the number of
correct results. When Ntotal remains unchanged, Rcor increases with Nhit. Tdelay is used to measure the
time delay by comparing the actual behavior context and the experimental results. Texper is the time
required to change between different states during experiments. treal is the time in the actual situation.
If texper → treal , then tdelay → 0 .

3.3. Single-Behavior-State Experiment

For a single human movement state, we mainly use the single-behavior-state experiment to assess
the recognition effect adopting the rate of correct judgment. Tables 3–6 list comparisons of group tests
using the CNN and proposed methods. For each tabulated index, the respective graphs of the results
are shown in Figures 12–15.

Table 3. Recognition results for the other states.

Index
CNN Method Only MTS Method

Nhit Ntotal Rcor Nhit Ntotal Rcor

a 11 20 55% 15 20 75%
b 38 60 63.33% 56 60 93.33%
c 48 58 82.76% 54 58 93.10%
d 50 65 76.92% 61 65 93.85%
e 42 90 46.67% 70 90 77.78%
f 29 39 74.36% 36 39 92.31%

Table 4. Recognition results for the stationary state.

Index
CNN Method Only MTS Method

Nhit Ntotal Rcor Nhit Ntotal Rcor

a 81 87 93.10% 86 87 98.85%
b 171 188 90.96% 185 188 98.40%
c 152 173 87.86% 167 173 96.53%
d 193 201 96.02% 201 201 100%
e 159 166 95.78% 159 166 95.78%
f 85 94 90.43% 92 94 97.87%Sensors 2018, 18, x FOR PEER REVIEW 16 of 23

Ground accuracyGround accuracy

(f)

CNN accuracy

MTS accuracy

(e)

CNN accuracy

MTS accuracy

Ground accuracy

(d)

CNN accuracy

MTS accuracy

Ground accuracy

(c)

CNN accuracy

MTS accuracy

Ground accuracy

(b)

CNN accuracy

MTS accuracy

Ground accuracy

(a)

CNN accuracy

MTS accuracy

others static walk car
Figure 12. Graphs showing recognition of the other states.

Ground accuracy

Ground accuracy

(a)

(e)

CNN accuracy

MTS accuracy

Ground accuracy

(c)

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

(f)

CNN accuracy

MTS accuracy

Ground accuracy
(d)

CNN accuracy

MTS accuracy

(b)

CNN accuracy

MTS accuracy

Ground accuracy

others static walk car
Figure 13. Graphs showing recognition of the stationary state.

Table 5. Recognition results for the walking state.

Index CNN Method Only MTS Method ࢘࢕ࢉࡾ ࢒ࢇ࢚࢕࢚ࡺ ࢚࢏ࢎࡺ ࢚࢏ࢎࡺ ࢒ࢇ࢚࢕࢚ࡺ ࢘࢕ࢉࡾ
a 9 71 12.67% 48 71 67.61%
b 28 76 36.84% 63 76 82.89%
c 59 154 38.31% 147 154 95.46%
d 69 139 49.64% 122 139 87.77%
e 71 119 59.66% 108 119 90.76%

(d)

CNN accuracy

MTS accuracy

(e)

CNN accuracy

MTS accuracy

Ground accuracy
(c)

CNN accuracy

MTS accuracy

Ground accuracy Ground accuracy
(a)

CNN accuracy

MTS accuracy

(b)

CNN accuracy

MTS accuracy

Ground accuracy Ground accuracy

others static walk car

Figure 12. Graphs showing recognition of the other states.

Sensors 2018, 18, 711 17 of 24

Sensors 2018, 18, x FOR PEER REVIEW 16 of 23

Ground accuracyGround accuracy

(f)

CNN accuracy

MTS accuracy

(e)

CNN accuracy

MTS accuracy

Ground accuracy

(d)

CNN accuracy

MTS accuracy

Ground accuracy

(c)

CNN accuracy

MTS accuracy

Ground accuracy

(b)

CNN accuracy

MTS accuracy

Ground accuracy

(a)

CNN accuracy

MTS accuracy

others static walk car
Figure 12. Graphs showing recognition of the other states.

Ground accuracy

Ground accuracy

(a)

(e)

CNN accuracy

MTS accuracy

Ground accuracy

(c)

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

(f)

CNN accuracy

MTS accuracy

Ground accuracy
(d)

CNN accuracy

MTS accuracy

(b)

CNN accuracy

MTS accuracy

Ground accuracy

others static walk car
Figure 13. Graphs showing recognition of the stationary state.

Table 5. Recognition results for the walking state.

Index CNN Method Only MTS Method ࢘࢕ࢉࡾ ࢒ࢇ࢚࢕࢚ࡺ ࢚࢏ࢎࡺ ࢚࢏ࢎࡺ ࢒ࢇ࢚࢕࢚ࡺ ࢘࢕ࢉࡾ
a 9 71 12.67% 48 71 67.61%
b 28 76 36.84% 63 76 82.89%
c 59 154 38.31% 147 154 95.46%
d 69 139 49.64% 122 139 87.77%
e 71 119 59.66% 108 119 90.76%

(d)

CNN accuracy

MTS accuracy

(e)

CNN accuracy

MTS accuracy

Ground accuracy
(c)

CNN accuracy

MTS accuracy

Ground accuracy Ground accuracy
(a)

CNN accuracy

MTS accuracy

(b)

CNN accuracy

MTS accuracy

Ground accuracy Ground accuracy

others static walk car

Figure 13. Graphs showing recognition of the stationary state.

Table 5. Recognition results for the walking state.

Index
CNN Method Only MTS Method

Nhit Ntotal Rcor Nhit Ntotal Rcor

a 9 71 12.67% 48 71 67.61%
b 28 76 36.84% 63 76 82.89%
c 59 154 38.31% 147 154 95.46%
d 69 139 49.64% 122 139 87.77%
e 71 119 59.66% 108 119 90.76%

Sensors 2018, 18, x FOR PEER REVIEW 16 of 23

Ground accuracyGround accuracy

(f)

CNN accuracy

MTS accuracy

(e)

CNN accuracy

MTS accuracy

Ground accuracy

(d)

CNN accuracy

MTS accuracy

Ground accuracy

(c)

CNN accuracy

MTS accuracy

Ground accuracy

(b)

CNN accuracy

MTS accuracy

Ground accuracy

(a)

CNN accuracy

MTS accuracy

others static walk car
Figure 12. Graphs showing recognition of the other states.

Ground accuracy

Ground accuracy

(a)

(e)

CNN accuracy

MTS accuracy

Ground accuracy

(c)

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

(f)

CNN accuracy

MTS accuracy

Ground accuracy
(d)

CNN accuracy

MTS accuracy

(b)

CNN accuracy

MTS accuracy

Ground accuracy

others static walk car
Figure 13. Graphs showing recognition of the stationary state.

Table 5. Recognition results for the walking state.

Index CNN Method Only MTS Method ࢘࢕ࢉࡾ ࢒ࢇ࢚࢕࢚ࡺ ࢚࢏ࢎࡺ ࢚࢏ࢎࡺ ࢒ࢇ࢚࢕࢚ࡺ ࢘࢕ࢉࡾ
a 9 71 12.67% 48 71 67.61%
b 28 76 36.84% 63 76 82.89%
c 59 154 38.31% 147 154 95.46%
d 69 139 49.64% 122 139 87.77%
e 71 119 59.66% 108 119 90.76%

(d)

CNN accuracy

MTS accuracy

(e)

CNN accuracy

MTS accuracy

Ground accuracy
(c)

CNN accuracy

MTS accuracy

Ground accuracy Ground accuracy
(a)

CNN accuracy

MTS accuracy

(b)

CNN accuracy

MTS accuracy

Ground accuracy Ground accuracy

others static walk car
Figure 14. Graphs showing recognition of the walking state.

Sensors 2018, 18, 711 18 of 24

Table 6. Recognition results for the in-car state.

Index
CNN Method Only MTS Method

Nhit Ntotal Rcor Nhit Ntotal Rcor

a 49 104 47.12% 90 104 86.54%
b 31 60 51.67% 49 60 81.67%
c 32 140 22.86% 82 140 58.57%
d 35 81 43.21% 68 81 83.95%
e 37 131 28.24% 69 131 52.67%

Sensors 2018, 18, x FOR PEER REVIEW 17 of 23

Figure 14. Graphs showing recognition of the walking state.

Table 6. Recognition results for the in-car state.

Index CNN Method Only MTS Method ࢘࢕ࢉࡾ ࢒ࢇ࢚࢕࢚ࡺ ࢚࢏ࢎࡺ ࢚࢏ࢎࡺ ࢒ࢇ࢚࢕࢚ࡺ ࢘࢕ࢉࡾ
a 49 104 47.12% 90 104 86.54%
b 31 60 51.67% 49 60 81.67%
c 32 140 22.86% 82 140 58.57%
d 35 81 43.21% 68 81 83.95%
e 37 131 28.24% 69 131 52.67%

(1) (2)

(3) (4)

CNN accuracy

MTS accuracy

CNN accuracy

MTS accuracy

CNN accuracy

MTS accuracy

CNN accuracy

MTS accuracy

(5)

CNN method

MTS accuracy

Ground accuracy

Ground accuracy Ground accuracy

Ground accuracy Ground accuracy

others static walk car

Figure 15. Graphs showing recognition of the in-car state.

Figures 12–15 show that the upper, middle and bottom bands are a real situation named ground
accuracy, the result of using CNN method, only named CNN accuracy, and the result of using the
improved method is called MTS accuracy, respectively. For the other states, it is easy to generate
noisy data in the walking state. The results are improved by approximately 21% on average in Figure
12. For each group of experiments and for the same value of ௧ܰ௢௧௔௟ , compared with the CNN
accuracy, the result of MTS accuracy was considerably improved from approximately 10.34% to at
least 31.11%. For the static state, owing to its apparent and unique features that are different from
those of other states, the effect of only using the CNN method is acceptable. When we employed the
proposed adaptive method, the obtained result is better by approximately 5.5% on average, but the
consequence of walking is increased by approximately 45.47% on average. In addition, the accuracy
of the in-car state also increases by approximately 26.23%.

Figure 16 shows a comparison of the results obtained using the CNN and proposed method. As
shown, all single states can be recognized more accurately when using the proposed method. In
particular, the walking and in-car state recognition is improved considerably.

Figure 15. Graphs showing recognition of the in-car state.

We collected BS for the stationary, others, walking, and in-car states separately. Each certain
state can output the current result every few seconds. When the generated states are almost the
same as those obtained for the real result, Nhit → Ntotal , and Rcor is closer to 1; this is the best result
obtained theoretically.

Figures 12–15 show that the upper, middle and bottom bands are a real situation named ground
accuracy, the result of using CNN method, only named CNN accuracy, and the result of using the
improved method is called MTS accuracy, respectively. For the other states, it is easy to generate noisy
data in the walking state. The results are improved by approximately 21% on average in Figure 12.
For each group of experiments and for the same value of Ntotal , compared with the CNN accuracy,
the result of MTS accuracy was considerably improved from approximately 10.34% to at least 31.11%.
For the static state, owing to its apparent and unique features that are different from those of other
states, the effect of only using the CNN method is acceptable. When we employed the proposed
adaptive method, the obtained result is better by approximately 5.5% on average, but the consequence
of walking is increased by approximately 45.47% on average. In addition, the accuracy of the in-car
state also increases by approximately 26.23%.

Figure 16 shows a comparison of the results obtained using the CNN and proposed method.
As shown, all single states can be recognized more accurately when using the proposed method.
In particular, the walking and in-car state recognition is improved considerably.

Sensors 2018, 18, 711 19 of 24

Sensors 2018, 18, x FOR PEER REVIEW 18 of 23

Figure 16. Comparison of the CNN and MTS accuracies.

3.4. Multistate-Event Experiment

In this study, we also performed a multistate-event experiment to evaluate the time delay when
switching to the correct positioning algorithm. Tables 8–12 list comparisons of the group tests
conducted using the CNN and proposed methods. The respective results for the tabulated indices
are displayed in the graphs in Figures 17–21.

On the basis of the single-behavior-state experiment, we thoroughly analyzed the multistate
events in the multi-event experiment. For a series of complex behavior states, we should detect a
change in a state and determine whether it is necessary to switch to the corresponding positioning
algorithm. Note that the time interval of the change in the state events should be as short as possible,
considering that the recognition accuracy of each state is reliable. In other words, in this situation, we
adopt ܴ௖௢௥ as the estimate of a state and use ݐௗ௘௟௔௬ to measure the sensitivity of switching between
different localization algorithms. Therefore, we gathered many state events, as summarized in Table
7 (units: s).

Table 7. Multistate-event experiment.

An Example of Locomotion

CaStOtWaStCaStWaOtStCaStWa

SE < :ܽܥ ܹܽ >ଵ∪< ܹܽ: ܽܥ >ଶ∪< :ܽܥ ܹܽ >ଷ∪< ܹܽ: ܽܥ >ସ∪< :ܽܥ ܹܽ >ହ

Basic SE

 < :ܽܥ ܹܽ >ଵ= ,ܽܥ) ଵ(ݐܵ ∪ ,ݐܵ) ଵ(ݐܱ ∪ ,ݐܱ) ܹܽ)ଵ < ܹܽ: ܽܥ >ଶ= (ܹܽ, ଶ(ݐܵ ∪ ,ݐܵ) > ଶ(ܽܥ ,ܽܥ ܹܽ >ଷ= ,ܽܥ) ଷ(ݐܵ ∪ ,ݐܵ) ܹܽ)ଷ < ܹܽ, ܽܥ >ସ= (ܹܽ, ସ(ݐܱ ∪ ,ݐܱ) ସ(ݐܵ ∪ ,ݐܵ) > ସ(ܽܥ ,ܽܥ ܹܽ >ହ= ,ܽܥ) ହ(ݐܵ ∪ ,ݐܵ) ܹܽ)ହ

0%

50%

100%

150%

a b c d e

walk

CNN accuracy

MTS accuracy

0%

50%

100%

a b c d e

car

CNN accuracy

MTS accuracy

80%

90%

100%

110%

a b c d e f

static

CNN accuracy

MTS accuracy

0%

50%

100%

a b c d e f

others

CNN accuracy

MTS accuracy

Figure 16. Comparison of the CNN and MTS accuracies.

3.4. Multistate-Event Experiment

In this study, we also performed a multistate-event experiment to evaluate the time delay
when switching to the correct positioning algorithm. Tables 8–12 list comparisons of the group
tests conducted using the CNN and proposed methods. The respective results for the tabulated indices
are displayed in the graphs in Figures 17–21.

On the basis of the single-behavior-state experiment, we thoroughly analyzed the multistate
events in the multi-event experiment. For a series of complex behavior states, we should detect a
change in a state and determine whether it is necessary to switch to the corresponding positioning
algorithm. Note that the time interval of the change in the state events should be as short as possible,
considering that the recognition accuracy of each state is reliable. In other words, in this situation,
we adopt Rcor as the estimate of a state and use tdelay to measure the sensitivity of switching between
different localization algorithms. Therefore, we gathered many state events, as summarized in Table 7
(units: s).

Table 7. Multistate-event experiment.

An Example of Locomotion

Ca→St→Ot→Wa→St→Ca→St→Wa→Ot→St→Ca→St→Wa

SE 〈Ca : Wa〉1 ∪ 〈Wa : Ca〉2 ∪ 〈Ca : Wa〉3 ∪ 〈Wa : Ca〉4 ∪ 〈Ca : Wa〉5

Basic SE

〈Ca : Wa〉1 = (Ca, St)1 ∪ (St, Ot)1 ∪ (Ot, Wa)1
〈Wa : Ca〉2 = (Wa, St)2 ∪ (St, Ca)2
〈Ca, Wa〉3 = (Ca, St)3 ∪ (St, Wa)3

〈Wa, Ca〉4 = (Wa, Ot)4 ∪ (Ot, St)4 ∪ (St, Ca)4
〈Ca, Wa〉5 = (Ca, St)5 ∪ (St, Wa)5

Sensors 2018, 18, 711 20 of 24

Table 8. Basic SE of 〈Ca : Wa〉1.

Event Nodes Index
CNN Mthod Only MTS Method

texper treal tdelay texper treal tdelay

(Ca, St)1 1 31.5 29.5 2 30 29.5 0.5
(Ot, Wa)1 2 20 8.5 11.5 16.5 8.5 8

Sensors 2018, 18, x FOR PEER REVIEW 19 of 23

Table 8. Basic SE of < :ܽܥ ܹܽ >ଵ.

Event Nodes Index
CNN Mthod Only MTS Method ࢇ࡯) ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚ ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚, ,࢚ࡻ) ૚ 1 31.5 29.5 2 30 29.5 0.5(࢚ࡿ ૚ 2 20 8.5 11.5 16.5 8.5 8(ࢇࢃ

,ݐܱ) ܹܽ)1

Ground accuracy

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

others static walk car
,ܽܥ) 1(ݐܵ

Figure 17. Graphs of < :ܽܥ ܹܽ >ଵ.

Table 9. Basic SE of < ܹܽ: ܽܥ >ଶ.

Event Nodes Index
CNN Method Only MTS Method ࢇࢃ) ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚ ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚, ,࢚ࡿ) ૛ 3 32.5 30.5 2 32 30.5 1.5(࢚ࡿ ૛ 4 30.5 26.5 4 28 26.5 1.5(ࢇ࡯

,ݐܵ) ,ܹܽ)2(ܽܥ 2(ݐܵ

Ground accuracy

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

others static walk car

Figure 18. Graphs of < ܹܽ: ܽܥ >ଶ.

Table 10. Basic SE of < ,ܽܥ ܹܽ >ଷ.

Event Nodes Index
CNN Method Only MTS Method ࢇ࡯) ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚ ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚, ,࢚ࡿ) ૜ 5 39 36.5 2.5 38 36.5 1.5(࢚ࡿ ૜ 6 63.5 55 8.5 55 55 0(ࢇࢃ

,ܽܥ) ,ݐܵ) 3(ݐܵ ܹܽ)3

Ground accuracy

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

others static walk car
Figure 19. Graphs of < ,ܽܥ ܹܽ >ଷ.

Table 11. Basic SE of < ܹܽ, ܽܥ >ସ.

Event Nodes Index
CNN Method Only Proposed Method ࢇࢃ) ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚ ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚, ,࢚ࡿ) ૝ 7 24.5 22.5 2 23.5 22.5 1(࢚ࡻ ૝ 8 32 29 3 30.5 29 1.5(ࢇ࡯

Figure 17. Graphs of 〈Ca : Wa〉1.

Table 9. Basic SE of 〈Wa : Ca〉2.

Event Nodes Index
CNN Method Only MTS Method

texper treal tdelay texper treal tdelay

(Wa, St)2 3 32.5 30.5 2 32 30.5 1.5
(St, Ca)2 4 30.5 26.5 4 28 26.5 1.5

Sensors 2018, 18, x FOR PEER REVIEW 19 of 23

Table 8. Basic SE of < :ܽܥ ܹܽ >ଵ.

Event Nodes Index
CNN Mthod Only MTS Method ࢇ࡯) ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚ ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚, ,࢚ࡻ) ૚ 1 31.5 29.5 2 30 29.5 0.5(࢚ࡿ ૚ 2 20 8.5 11.5 16.5 8.5 8(ࢇࢃ

,ݐܱ) ܹܽ)1

Ground accuracy

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

others static walk car
,ܽܥ) 1(ݐܵ

Figure 17. Graphs of < :ܽܥ ܹܽ >ଵ.

Table 9. Basic SE of < ܹܽ: ܽܥ >ଶ.

Event Nodes Index
CNN Method Only MTS Method ࢇࢃ) ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚ ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚, ,࢚ࡿ) ૛ 3 32.5 30.5 2 32 30.5 1.5(࢚ࡿ ૛ 4 30.5 26.5 4 28 26.5 1.5(ࢇ࡯

,ݐܵ) ,ܹܽ)2(ܽܥ 2(ݐܵ

Ground accuracy

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

others static walk car

Figure 18. Graphs of < ܹܽ: ܽܥ >ଶ.

Table 10. Basic SE of < ,ܽܥ ܹܽ >ଷ.

Event Nodes Index
CNN Method Only MTS Method ࢇ࡯) ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚ ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚, ,࢚ࡿ) ૜ 5 39 36.5 2.5 38 36.5 1.5(࢚ࡿ ૜ 6 63.5 55 8.5 55 55 0(ࢇࢃ

,ܽܥ) ,ݐܵ) 3(ݐܵ ܹܽ)3

Ground accuracy

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

others static walk car
Figure 19. Graphs of < ,ܽܥ ܹܽ >ଷ.

Table 11. Basic SE of < ܹܽ, ܽܥ >ସ.

Event Nodes Index
CNN Method Only Proposed Method ࢇࢃ) ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚ ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚, ,࢚ࡿ) ૝ 7 24.5 22.5 2 23.5 22.5 1(࢚ࡻ ૝ 8 32 29 3 30.5 29 1.5(ࢇ࡯

Figure 18. Graphs of 〈Wa : Ca〉2.

Table 10. Basic SE of 〈Ca, Wa〉3.

Event Nodes Index
CNN Method Only MTS Method

texper treal tdelay texper treal tdelay

(Ca, St)3 5 39 36.5 2.5 38 36.5 1.5
(St, Wa)3 6 63.5 55 8.5 55 55 0

Sensors 2018, 18, x FOR PEER REVIEW 19 of 23

Table 8. Basic SE of < :ܽܥ ܹܽ >ଵ.

Event Nodes Index
CNN Mthod Only MTS Method ࢇ࡯) ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚ ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚, ,࢚ࡻ) ૚ 1 31.5 29.5 2 30 29.5 0.5(࢚ࡿ ૚ 2 20 8.5 11.5 16.5 8.5 8(ࢇࢃ

,ݐܱ) ܹܽ)1

Ground accuracy

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

others static walk car
,ܽܥ) 1(ݐܵ

Figure 17. Graphs of < :ܽܥ ܹܽ >ଵ.

Table 9. Basic SE of < ܹܽ: ܽܥ >ଶ.

Event Nodes Index
CNN Method Only MTS Method ࢇࢃ) ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚ ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚, ,࢚ࡿ) ૛ 3 32.5 30.5 2 32 30.5 1.5(࢚ࡿ ૛ 4 30.5 26.5 4 28 26.5 1.5(ࢇ࡯

,ݐܵ) ,ܹܽ)2(ܽܥ 2(ݐܵ

Ground accuracy

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

others static walk car

Figure 18. Graphs of < ܹܽ: ܽܥ >ଶ.

Table 10. Basic SE of < ,ܽܥ ܹܽ >ଷ.

Event Nodes Index
CNN Method Only MTS Method ࢇ࡯) ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚ ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚, ,࢚ࡿ) ૜ 5 39 36.5 2.5 38 36.5 1.5(࢚ࡿ ૜ 6 63.5 55 8.5 55 55 0(ࢇࢃ

,ܽܥ) ,ݐܵ) 3(ݐܵ ܹܽ)3

Ground accuracy

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

others static walk car
Figure 19. Graphs of < ,ܽܥ ܹܽ >ଷ.

Table 11. Basic SE of < ܹܽ, ܽܥ >ସ.

Event Nodes Index
CNN Method Only Proposed Method ࢇࢃ) ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚ ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚, ,࢚ࡿ) ૝ 7 24.5 22.5 2 23.5 22.5 1(࢚ࡻ ૝ 8 32 29 3 30.5 29 1.5(ࢇ࡯

Figure 19. Graphs of 〈Ca, Wa〉3.

Table 11. Basic SE of 〈Wa, Ca〉4.

Event Nodes Index
CNN Method Only Proposed Method

texper treal tdelay texper treal tdelay

(Wa, Ot)4 7 24.5 22.5 2 23.5 22.5 1
(St, Ca)4 8 32 29 3 30.5 29 1.5

Sensors 2018, 18, 711 21 of 24
Sensors 2018, 18, x FOR PEER REVIEW 20 of 23

(ܹܽ, ,ݐܵ) 4(ݐܱ 4(ܽܥ

Ground accuracy

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

others static walk car

Figure 20. Graphs of < ܹܽ, ܽܥ >ସ.

Table 12. Basic SE of < ,ܽܥ ܹܽ >ହ.

Event Nodes Index
CNN Method Only Proposed Method ࢇ࡯) ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚ ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚, ,࢚ࡿ) ૞ 9 41.5 37.5 4 37.5 37.5 0(࢚ࡿ ૞ 10 50 48 2 48.5 48 0.5(ࢇࢃ

,ܽܥ) ,ݐܵ) 5(ݐܵ ܹܽ)5

Ground accuracy

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

others static walk car

Figure 21. Graphs of < ,ܽܥ ܹܽ >ହ.

We collected a series of states, as shown in Tables 8–12. The upper, middle, and bottom ribbons
in Figures 17–21 represent a real situation, the result of using the CNN method only, and the result
of using the improved method, respectively. From these, we need to recognize when the trilateral
Bluetooth positioning method for the in-car state will be changed and when the PDR positioning
algorithm for walking will be switched. These states are aimed at users in locomotion. If there is no
movement indoors, the positioning method does not need to be changed. For example, if the state
changes from St to Ot, the user position will not be changed. Thus, the time delay for recognition
between St and Ot is inconsequential. Although the delay time for recognition between Wa and Ca is
significant, we do not need to consider it because in an actual situation, when people are in a car
(walking), they cannot change their state to walking (in-car) instantly. That is, after staying in the car,
they must be in some other states including the stationary and other states. Thus, we only considered
the time delay of some states such as (ܽܥ, (ݐܵ ,ݐܱ) , ܹܽ) ,ܽܥ) , (ݐܱ ,ݐܱ) , (ܽܥ ,ݐܵ) , ܹܽ) ,ݐܵ) , (ܽܥ , (ܹܽ, ,ܹܽ) and ,(ݐܱ ,ݐܱ) but not (ݐܵ ,ݐܵ) and (ݐܵ —As indicated in Table 7, we separated Ca—St .(ݐܱ
Ot—Wa—St—Ca—St—Wa—Ot—St—Ca—St—Wa into five state events: < :ܽܥ ܹܽ >ଵ, < ܹܽ: ܽܥ >ଶ, < ,ܽܥ ܹܽ >ଷ, < ܹܽ, ܽܥ >ସ, and < ,ܽܥ ܹܽ >ହ, each of which is composed of some basic state events.
For instance, < :ܽܥ ܹܽ >ଵ can be expressed as (ܽܥ, ଵ(ݐܵ ∪ ,ݐܵ) ଵ(ݐܱ ∪ ,ݐܱ) ܹܽ)ଵ . However,
according to the abovementioned statement, we only focused on (ܽܥ, ଵ(ݐܵ ∪ ,ݐܵ) ଵ(ݐܱ ∪ ,ݐܱ) ܹܽ)ଵ
and not (ܵݐ, ଵ(ݐܱ . These states play an important role in determining the accuracy of switching
between different algorithms. As indicated in Tables 3–6, the recognition result obtained using only
the CNN method is inferior to that obtained using the proposed method.

The time delay can be increased by 0.5–8.5 s. For switching between ܽܥ and ܵݐ, the time delays
were reduced by 1.5, 2.5, 1, 1.5, and 1.5 s, in order of the five state events, corresponding to decreases
of 75%, 62.5%, 40%, 50%, and 100%, respectively. For ܱݐ and ܹܽ, compared with the CNN method,
the time delay was reduced by approximately 40.2175% on average, whereas it can be reduced by
approximately 66.67% on average for switching between ܹܽ and ܵݐ . The graphs show that a
considerable amount of noisy data was removed and fixed, and the time delay was apparently
shortened. Similarly, Figure 22 shows a comparison of the CNN and MTS accuracies with regards to
the time delay. For (ܵݐ, ܹܽ)ଷ ,(ܵݐ, ܹܽ)ହ, and (ܵݐ, ସ, the results are improved considerably by(ܽܥ
approximately 1.5 s and by at least 7 s at maximum compared to the CNN method. As there is an
obvious distinction between the stationary and in-car (walking) states, we can easily differentiate

Figure 20. Graphs of 〈Wa, Ca〉4.

Table 12. Basic SE of 〈Ca, Wa〉5.

Event Nodes Index
CNN Method Only Proposed Method

texper treal tdelay texper treal tdelay

(Ca, St)5 9 41.5 37.5 4 37.5 37.5 0
(St, Wa)5 10 50 48 2 48.5 48 0.5

Sensors 2018, 18, x FOR PEER REVIEW 20 of 23

(ܹܽ, ,ݐܵ) 4(ݐܱ 4(ܽܥ

Ground accuracy

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

others static walk car

Figure 20. Graphs of < ܹܽ, ܽܥ >ସ.

Table 12. Basic SE of < ,ܽܥ ܹܽ >ହ.

Event Nodes Index
CNN Method Only Proposed Method ࢇ࡯) ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚ ࢟ࢇ࢒ࢋࢊ࢚ ࢒ࢇࢋ࢚࢘ ࢘ࢋ࢖࢞ࢋ࢚, ,࢚ࡿ) ૞ 9 41.5 37.5 4 37.5 37.5 0(࢚ࡿ ૞ 10 50 48 2 48.5 48 0.5(ࢇࢃ

,ܽܥ) ,ݐܵ) 5(ݐܵ ܹܽ)5

Ground accuracy

CNN accuracy

MTS accuracy

Ground accuracy

CNN accuracy

MTS accuracy

others static walk car

Figure 21. Graphs of < ,ܽܥ ܹܽ >ହ.

We collected a series of states, as shown in Tables 8–12. The upper, middle, and bottom ribbons
in Figures 17–21 represent a real situation, the result of using the CNN method only, and the result
of using the improved method, respectively. From these, we need to recognize when the trilateral
Bluetooth positioning method for the in-car state will be changed and when the PDR positioning
algorithm for walking will be switched. These states are aimed at users in locomotion. If there is no
movement indoors, the positioning method does not need to be changed. For example, if the state
changes from St to Ot, the user position will not be changed. Thus, the time delay for recognition
between St and Ot is inconsequential. Although the delay time for recognition between Wa and Ca is
significant, we do not need to consider it because in an actual situation, when people are in a car
(walking), they cannot change their state to walking (in-car) instantly. That is, after staying in the car,
they must be in some other states including the stationary and other states. Thus, we only considered
the time delay of some states such as (ܽܥ, (ݐܵ ,ݐܱ) , ܹܽ) ,ܽܥ) , (ݐܱ ,ݐܱ) , (ܽܥ ,ݐܵ) , ܹܽ) ,ݐܵ) , (ܽܥ , (ܹܽ, ,ܹܽ) and ,(ݐܱ ,ݐܱ) but not (ݐܵ ,ݐܵ) and (ݐܵ —As indicated in Table 7, we separated Ca—St .(ݐܱ
Ot—Wa—St—Ca—St—Wa—Ot—St—Ca—St—Wa into five state events: < :ܽܥ ܹܽ >ଵ, < ܹܽ: ܽܥ >ଶ, < ,ܽܥ ܹܽ >ଷ, < ܹܽ, ܽܥ >ସ, and < ,ܽܥ ܹܽ >ହ, each of which is composed of some basic state events.
For instance, < :ܽܥ ܹܽ >ଵ can be expressed as (ܽܥ, ଵ(ݐܵ ∪ ,ݐܵ) ଵ(ݐܱ ∪ ,ݐܱ) ܹܽ)ଵ . However,
according to the abovementioned statement, we only focused on (ܽܥ, ଵ(ݐܵ ∪ ,ݐܵ) ଵ(ݐܱ ∪ ,ݐܱ) ܹܽ)ଵ
and not (ܵݐ, ଵ(ݐܱ . These states play an important role in determining the accuracy of switching
between different algorithms. As indicated in Tables 3–6, the recognition result obtained using only
the CNN method is inferior to that obtained using the proposed method.

The time delay can be increased by 0.5–8.5 s. For switching between ܽܥ and ܵݐ, the time delays
were reduced by 1.5, 2.5, 1, 1.5, and 1.5 s, in order of the five state events, corresponding to decreases
of 75%, 62.5%, 40%, 50%, and 100%, respectively. For ܱݐ and ܹܽ, compared with the CNN method,
the time delay was reduced by approximately 40.2175% on average, whereas it can be reduced by
approximately 66.67% on average for switching between ܹܽ and ܵݐ . The graphs show that a
considerable amount of noisy data was removed and fixed, and the time delay was apparently
shortened. Similarly, Figure 22 shows a comparison of the CNN and MTS accuracies with regards to
the time delay. For (ܵݐ, ܹܽ)ଷ ,(ܵݐ, ܹܽ)ହ, and (ܵݐ, ସ, the results are improved considerably by(ܽܥ
approximately 1.5 s and by at least 7 s at maximum compared to the CNN method. As there is an
obvious distinction between the stationary and in-car (walking) states, we can easily differentiate

Figure 21. Graphs of 〈Ca, Wa〉5.

We collected a series of states, as shown in Tables 8–12. The upper, middle, and bottom ribbons
in Figures 17–21 represent a real situation, the result of using the CNN method only, and the result
of using the improved method, respectively. From these, we need to recognize when the trilateral
Bluetooth positioning method for the in-car state will be changed and when the PDR positioning
algorithm for walking will be switched. These states are aimed at users in locomotion. If there
is no movement indoors, the positioning method does not need to be changed. For example,
if the state changes from St to Ot, the user position will not be changed. Thus, the time delay
for recognition between St and Ot is inconsequential. Although the delay time for recognition
between Wa and Ca is significant, we do not need to consider it because in an actual situation,
when people are in a car (walking), they cannot change their state to walking (in-car) instantly. That is,
after staying in the car, they must be in some other states including the stationary and other states.
Thus, we only considered the time delay of some states such as (Ca, St), (Ot, Wa), (Ca, Ot), (Ot, Ca),
(St, Wa), (St, Ca), (Wa, Ot), and (Wa, St) but not (Ot, St) and (St, Ot). As indicated in Table 7, we
separated Ca—St—Ot—Wa—St—Ca—St—Wa—Ot—St—Ca—St—Wa into five state events: 〈Ca : Wa〉1,
〈Wa : Ca〉2, 〈Ca, Wa〉3, 〈Wa, Ca〉4, and 〈Ca, Wa〉5, each of which is composed of some basic state events.
For instance, 〈Ca : Wa〉1 can be expressed as (Ca, St)1 ∪ (St, Ot)1 ∪ (Ot, Wa)1. However, according to
the abovementioned statement, we only focused on (Ca, St)1 ∪ (St, Ot)1 ∪ (Ot, Wa)1 and not (St, Ot)1.
These states play an important role in determining the accuracy of switching between different
algorithms. As indicated in Tables 3–6, the recognition result obtained using only the CNN method is
inferior to that obtained using the proposed method.

The time delay can be increased by 0.5–8.5 s. For switching between Ca and St, the time delays
were reduced by 1.5, 2.5, 1, 1.5, and 1.5 s, in order of the five state events, corresponding to decreases
of 75%, 62.5%, 40%, 50%, and 100%, respectively. For Ot and Wa, compared with the CNN method,
the time delay was reduced by approximately 40.2175% on average, whereas it can be reduced
by approximately 66.67% on average for switching between Wa and St. The graphs show that a
considerable amount of noisy data was removed and fixed, and the time delay was apparently

Sensors 2018, 18, 711 22 of 24

shortened. Similarly, Figure 22 shows a comparison of the CNN and MTS accuracies with regards
to the time delay. For (St, Wa)3, (St, Wa)5, and (St, Ca)4, the results are improved considerably by
approximately 1.5 s and by at least 7 s at maximum compared to the CNN method. As there is an
obvious distinction between the stationary and in-car (walking) states, we can easily differentiate
between them on the basis of the velocity of the user’s movement and by using step estimation and the
step length from the embedded sensors. In addition, the improvement in the time delay for (Ca, St)1,
(St, Ca)2, and (Ca, St)5 also has better effects. Although the time delay of some events was shortened
by a few seconds, for the entire behavior movement, a large amount of the total time delay can be
saved, which can improve the robustness of the algorithm. In our experiment, the time delay was
reduced by approximately 24 s over the entire movement with multiple states, even though for each
basic state event, the time delay time was optimized by approximately 0.5–8.5 s.

Sensors 2018, 18, x FOR PEER REVIEW 21 of 23

between them on the basis of the velocity of the user’s movement and by using step estimation and
the step length from the embedded sensors. In addition, the improvement in the time delay for (ܽܥ, ,ݐܵ) ,ଵ(ݐܵ ,ܽܥ) ଶ, and(ܽܥ ହ also has better effects. Although the time delay of some events was(ݐܵ
shortened by a few seconds, for the entire behavior movement, a large amount of the total time delay
can be saved, which can improve the robustness of the algorithm. In our experiment, the time delay
was reduced by approximately 24 s over the entire movement with multiple states, even though for
each basic state event, the time delay time was optimized by approximately 0.5–8.5 s.

Figure 22. Comparison of the CNN and MTS accuracies with regards to the time delay.

4. Conclusions

This paper presented an adaptive method for a switching indoor positioning algorithm based
on multilayer time sequences. The method focused on filtering noisy data and shortening the time
delay on different scales. To filter noisy data, we adopted three continuous time plots by using the
maximum vote rule to fix the data. In addition, we employed a state chain to reduce the time delay
and filter noisy data. These two factors make full use of the features of each state to obtain a better
result. The in-car and walking states show obvious distinctions in the velocity and step estimation.
The velocity of a car is higher than that in the stationary state, whose velocity is close to 0. If a user is
in the other state, his/her location will not be changed, and the step estimate cannot be carried out

According to the experiments conducted, the proposed method, combining the CNN method
and multilayer time sequences, outperformed the CNN method. The accuracies of the states were
improved by 21%, 5.5%, 45.47%, and 26.23% which correspond to “other”, stationary, walking and
in-car states. For the stationary state, which is already recognized well using only the CNN method,
the result obtained using the proposed method was improved by 5.5%. In addition, the time delay is
reduced by approximately 24 s in the entire movement with multiple different states, even though
for each basic state event, the time delay time was optimized by approximately 0.5–8.5 s. Although
the proposed method considerably improved the results, we still cannot avoid the existence of noisy
data and remove the time delay completely. Thus, more research is required to improve using
previous related methods as a basis.

Acknowledgments: We are grateful to the anonymous reviewers. This work was funded jointly by the Interior
GIS System for Intelligent Positioning of the National Key Research Project (2016YFB0502203), Parking-Oriented
High-Availability High-Precision Indoor Positioning Method of the Hubei Province Natural Science Foundation,
Bluetooth Ultrasound Integrated Indoor Parking Detection and Location Technology of the Open Fund of the
State Laboratory of Information Engineering in Surveying (17I01), and Mapping and Remote Sensing, Wuhan
University LIESMARS Special Research Funding.

Author Contributions: Z.G. and W.G conceived and designed the experiments; Z.G. performed the experiments,
and wrote the paper; Z.G., W.G. and C.L. analyzed the data; X.Z. and C.L. contributed analysis tools and made
charts; T.G. and W.G. collected data, made charts, and performed analysis. T.G. and C.L. did literature retrieval.

Conflicts of Interest: The authors declare no conflict of interest.

0 2 4 6 8 10 12 14
1

3

5

7

9

time delay (s)

in
de

x

Comparison of time delay

MTS accuracy CNN accuracy

Figure 22. Comparison of the CNN and MTS accuracies with regards to the time delay.

4. Conclusions

This paper presented an adaptive method for a switching indoor positioning algorithm based
on multilayer time sequences. The method focused on filtering noisy data and shortening the time
delay on different scales. To filter noisy data, we adopted three continuous time plots by using the
maximum vote rule to fix the data. In addition, we employed a state chain to reduce the time delay
and filter noisy data. These two factors make full use of the features of each state to obtain a better
result. The in-car and walking states show obvious distinctions in the velocity and step estimation.
The velocity of a car is higher than that in the stationary state, whose velocity is close to 0. If a user is
in the other state, his/her location will not be changed, and the step estimate cannot be carried out

According to the experiments conducted, the proposed method, combining the CNN method
and multilayer time sequences, outperformed the CNN method. The accuracies of the states were
improved by 21%, 5.5%, 45.47%, and 26.23% which correspond to “other”, stationary, walking and
in-car states. For the stationary state, which is already recognized well using only the CNN method,
the result obtained using the proposed method was improved by 5.5%. In addition, the time delay is
reduced by approximately 24 s in the entire movement with multiple different states, even though for
each basic state event, the time delay time was optimized by approximately 0.5–8.5 s. Although the
proposed method considerably improved the results, we still cannot avoid the existence of noisy data
and remove the time delay completely. Thus, more research is required to improve using previous
related methods as a basis.

Sensors 2018, 18, 711 23 of 24

Acknowledgments: We are grateful to the anonymous reviewers. This work was funded jointly by the Interior
GIS System for Intelligent Positioning of the National Key Research Project (2016YFB0502203), Parking-Oriented
High-Availability High-Precision Indoor Positioning Method of the Hubei Province Natural Science Foundation,
Bluetooth Ultrasound Integrated Indoor Parking Detection and Location Technology of the Open Fund of the
State Laboratory of Information Engineering in Surveying (17I01), and Mapping and Remote Sensing, Wuhan
University LIESMARS Special Research Funding.

Author Contributions: Z.G. and W.G conceived and designed the experiments; Z.G. performed the experiments,
and wrote the paper; Z.G., W.G. and C.L. analyzed the data; X.Z. and C.L. contributed analysis tools and made
charts; T.G. and W.G. collected data, made charts, and performed analysis. T.G. and C.L. did literature retrieval.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xu, R.; Chen, W.; Xu, Y.; Ji, S.; Liu, J. Improved GNSS-based indoor positioning algorithm for mobile devices.
GPS Solut. 2017, 11, 1–13. [CrossRef]

2. Retscher, G.; Tatschi, T. Indoor Positioning Using Wi-Fi Lateration—Comparison of Two Common Range
Conversion Models with Two Novel Differential Approaches. In Proceedings of the 2016 Fourth International
Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS), Shanghai,
China, 2–4 November 2016.

3. Zou, H.; Jiang, H.; Luo, Y.; Zhu, J.; Lu, X.; Xie, L. BlueDetect: An iBeacon-enabled scheme for accurate
and energy-efficient indoor-outdoor detection and seamless location-based service. Sensors 2016, 16, 268.
[CrossRef] [PubMed]

4. Vahidnia, M.H.; Malek, M.R.; Mohammadi, N.; Alesheikh, A.A. A hierarchical signal-space partitioning
technique for indoor positioning with WLAN to support location-awareness in mobile map services. Wirel.
Pers. Commun. 2013, 69, 689–719. [CrossRef]

5. Bahl, P.; Padmanabhan, V.N. RADAR: An In-Building RF-based User Location and Tracking System.
In Proceedings of the IEEE INFOCOM 2000 Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies, Tel Aviv, Israel, 26–30 March 2000.

6. Chen, X.; Zou, S. Improved Wi-Fi indoor positioning based on particle swarm optimization. IEEE Sens. J.
2017, 17, 7143–7148. [CrossRef]

7. Caso, G.; De Nardis, L. Virtual and oriented WiFi fingerprinting indoor positioning based on multi-wall
multi-floor propagation models. Mobile Netw. Appl. 2016, 22, 825–833. [CrossRef]

8. Chen, Y.; Xue, Y. A Deep Learning Approach to Human Activity Recognition Based on Single Accelerometer.
In Proceedings of the IEEE International Conference on Systems, Kowloon, China, 9–12 October 2015;
pp. 1488–1492.

9. Ma, Z.; Poslad, S.; Bigham, J.; Zhang, X.; Men, L. A BLE RSSI Ranking based Indoor Positioning System for
Generic Smartphones. In Proceedings of the Wireless Telecommunications Symposium, Chicago, IL, USA,
26–28 April 2017; pp. 1–8.

10. Retscher, G. Fusion of location fingerprinting and trilateration based on the example of differential Wi-Fi
positioning. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, IV-2/W4, 377–384. [CrossRef]

11. Zhou, C.; Yuan, J.; Liu, H.; Qiu, J. Bluetooth indoor positioning based on RSSI and Kalman filter. Wirel. Pers.
Commun. 2017, 96, 4115–4130. [CrossRef]

12. Lee, M.S.; Ju, H.; Park, C.G. Map assisted PDR/Wi-Fi fusion for indoor positioning using smartphone. Int. J.
Control Autom. Syst. 2017, 15, 627–639. [CrossRef]

13. iBeacon for Developers. Available online: https://developer.apple.com/ibeacon/ (accessed on
22 October 2015).

14. Ravi, D.; Wong, C.; Lo, B.; Yang, G.-Z. Deep Learning for Human Activity Recognition: A Resource Efficient
Implementation on Low-Power Devices. In Proceedings of the IEEE 13th International Conference on
Wearable and Implantable Body Sensor Networks, San Francisco, CA, USA, 14–17 June 2016; pp. 71–76.

15. Vieira, M.A.; Vieira, M.; Louro, P.; Mateus, L.; Vieira, P. Indoor positioning system using a WDM device
based on a-SiC: H technology. J. Lumin. 2016, 191, 135–138. [CrossRef]

16. De Blasio, G.; Quesada-Arencibia, A.; Garcia, C.R.; Molina-Gil, J.M.; Caballero-Gil, C. Study on an indoor
positioning system for harsh environments based on Wi-Fi and Bluetooth Low Energy. Sensors 2017, 17, 1299.
[CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10291-017-0647-0
http://dx.doi.org/10.3390/s16020268
http://www.ncbi.nlm.nih.gov/pubmed/26907295
http://dx.doi.org/10.1007/s11277-012-0607-5
http://dx.doi.org/10.1109/JSEN.2017.2749762
http://dx.doi.org/10.1007/s11036-016-0749-x
http://dx.doi.org/10.5194/isprs-annals-IV-2-W4-377-2017
http://dx.doi.org/10.1007/s11277-017-4371-4
http://dx.doi.org/10.1007/s12555-015-0342-2
https://developer.apple.com/ibeacon/
http://dx.doi.org/10.1016/j.jlumin.2016.10.005
http://dx.doi.org/10.3390/s17061299
http://www.ncbi.nlm.nih.gov/pubmed/28587285

Sensors 2018, 18, 711 24 of 24

17. Altun, K.; Barshan, B.; Tunel, O. Comparative study on classifying human activities with miniature inertial
and magnetic sensors. Pattern Recognit. 2010, 43, 3605–3620. [CrossRef]

18. Pratama, A.R.; Hidayat, R. Smartphone-based Pedestrian Dead Reckoning as an Indoor Positioning System.
In Proceedings of the International Conference on System Engineering and Technology, Bandung, Indonesia,
11–12 September 2012; pp. 1–6.

19. Groves, P.D.; Martin, H.; Voutsis, K.; Walter, D.; Wang, L. Context Detection, Categorization and Connectivity
for Advanced Adaptive Integrated Navigation. In Proceedings of the International Technical Meeting of the
Satellite Division of the Institute of Navigation, Nashville, TN, USA, 16–20 September 2013; pp. 1039–1056.

20. Vaizman, Y.; Ellis, K.; Lanckriet, G. Recognizing detailed human context in the wild from smartphones and
smartwatches. IEEE Pervasive Comput. 2017, 16, 62–74. [CrossRef]

21. Gao, H.; Groves, P.D. Context Determination for Adaptive Navigation using Multiple Sensors on a
Smartphone. In Proceedings of the 29th International Technical Meeting of The Satellite Division of the
Institute of Navigation (ION GNSS+ 2016), Portland, OR, USA, 12–16 September 2016; pp. 742–756.

22. Li, H.; Wei, D.; Lai, Q.; Zu, Y.; Yuan, H. Smartphone-based integrated PDR/GPS/Bluetooth pedestrian
location. Adv. Space Res. 2017, 59, 877–887. [CrossRef]

23. Parviainen, J.; Bojja, J.; Collin, J.; Leppänen, J.; Eronen, A. Adaptive activity and environment recognition for
mobile phones. Sensors 2014, 14, 20753–20778. [CrossRef] [PubMed]

24. Pei, L.; Liu, J.; Guinness, R.; Chen, Y.; Kuusniemei, H.; Chen, R. Using LS-SVM based motion recognition for
smartphone indoor wireless positioning. Sensors 2012, 12, 6155–6175. [CrossRef] [PubMed]

25. Kavanagh, J.J.; Menz, H.B. Accelerometry: A technique for quantifying movement patterns during walking.
Gait Posture 2008, 28, 1–15. [CrossRef] [PubMed]

26. Xu, Y.; Shen, Z.; Zhang, X.; Gao, Y.; Deng, S.; Wang, Y.; Fan, Y.; Chang, E.I. Learning multi-level features for
sensor-based human action recognition. Pervasive Mob. Comput. 2017, 40, 324–338. [CrossRef]

27. Gu, T.; Wang, L.; Chen, H.; Tao, X.; Lu, J. Recognizing multiuser activities using wireless body sensor
networks. IEEE Trans. Mob. Comput. 2011, 10, 1618–1631. [CrossRef]

28. Zwirello, L.; Schipper, T.; Harter, M.; Zwick, T. UWB localization system for indoor applications: Concept,
realization and analysis. J. Elect. Comput. Eng. 2012, 2012, 849638. [CrossRef]

29. Ortiz, J.L.R. Smartphone-Based Human Activity Recognition; Springer International Publishing: Cham,
Switzerland, 2015.

30. Micucci, D.; Mobilio, M.; Napoletano, P. UniMiB SHAR: A dataset for human activity recognition using
acceleration data from smartphones. Appl. Sci. 2017, 7, 1101. [CrossRef]

31. Lee, S.-M.; Yoon, S.M.; Cho, H. Human Activity Recognition from Accelerometer Data Using Convolutional
Neural Network. In Proceedings of the IEEE International Conference on Big Data and Smart Computing,
Jeju, South Korea, 13–16 February 2017; pp. 131–134.

32. Gjoreski, H.; Bizjak, J.; Gjoreski, M.; Gams, M. Comparing Deep and Classical Machine Learning Methods
for Human Activity Recognition using Wrist Accelerometer. In Proceedings of the IJCAI 2016 Workshop on
Deep Learning for Artificial Intelligence, New York, NY, USA, 10 July 2016.

33. Susi, M.; Borio, D.; Lachapelle, G. Accelerometer Signal Features and Classification Algorithms for
Positioning Applications. In Proceedings of the International Technical Meeting of the Institute of Navigation,
San Diego, CA, USA, 24–26 January 2011.

34. Kraemer, I.; Eissfeller, B. A-GNSS: A Different Approach. Available online: http://www.insidegnss.com/
node/1636 (accessed on 28 October 2017).

35. Frank, K.; Vera Nadales, M.J.; Robertson, P.; Angermann, M. Reliable Real-Time Recognition of Motion
Related Human Activities Using MEMS Inertial Sensors. In Proceedings of the 23rd International Technical
Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2010), Portland, OR, USA, 21–24
September 2010; pp. 2919–2932.

36. Elhoushi, M.; Georgy, J.; Noureldin, A.; Korenberg, M.J. Motion mode recognition for indoor pedestrian
navigation using portable devices. IEEE Trans. Instrum. Meas. 2015, 65, 208–221. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.patcog.2010.04.019
http://dx.doi.org/10.1109/MPRV.2017.3971131
http://dx.doi.org/10.1016/j.asr.2016.09.010
http://dx.doi.org/10.3390/s141120753
http://www.ncbi.nlm.nih.gov/pubmed/25372620
http://dx.doi.org/10.3390/s120506155
http://www.ncbi.nlm.nih.gov/pubmed/22778635
http://dx.doi.org/10.1016/j.gaitpost.2007.10.010
http://www.ncbi.nlm.nih.gov/pubmed/18178436
http://dx.doi.org/10.1016/j.pmcj.2017.07.001
http://dx.doi.org/10.1109/TMC.2011.43
http://dx.doi.org/10.1155/2012/849638
http://dx.doi.org/10.3390/app7101101
http://www.insidegnss.com/node/1636
http://www.insidegnss.com/node/1636
http://dx.doi.org/10.1109/TIM.2015.2477159
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Definition
	State Codes
	State Event

	MTS Process Based on Behavior Context
	Priority Strategy
	Noise Filtering with Fine Granularity
	Optimization Based on a State Chain

	Experiments and Discussion
	Data Collection
	Assessment Factors
	Single-Behavior-State Experiment
	Multistate-Event Experiment

	Conclusions
	References

