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Abstract: Spectrum sensing remains a challenge in the context of cognitive radio networks (CRNs).
Compared with traditional single-user sensing, cooperative spectrum sensing (CSS) exploits multiuser
diversity to overcome channel fading, shadowing, and hidden terminal problems, which can
effectively enhance the sensing performance and protect licensed users from harmful interference.
However, for a large number of sensing nodes that need high bandwidth of the control channel for
data transmitting, CSS increases cooperative overhead. To address this problem, we investigated
the soft decision fusion strategy under a limited bandwidth of the control channel and proposed a
simple quantization-based multibit data soft fusion rule for CSS for its simple structure and easily
implementation. Under the quantization-based sensing strategy, each cooperative secondary user
(SU) adopts an energy detector for local spectrum sensing. Each SU transmits quantized multibit
data that sends local sensing information, instead of forwarding local one-bit hard decision results or
original observation statistics, to the fusion center (FC). Furthermore, the closed-form expressions of
the quantization levels and the quantization thresholds are analytically derived. Simulation results
indicate that the detection performance of the proposed method approaches that of the conventional
soft fusion rule with less cooperative overhead and outperforms the hard decision rules. Extensive
simulations also show that multibit quantization fusion achieves a desirable tradeoff between the
sensing performance and the control channel overhead for CSS.

Keywords: cognitive radio; multibit cooperative spectrum sensing; quantization; hard fusion;
soft fusion

1. Introduction

Cognitive radio is a promising technology to solve the problem of spectrum resource scarcity
and improves the efficiency of spectrum utilization. In cognitive radio networks (CRNs), secondary
users (SUs) can opportunistically access the specific spectrum channel that is assigned to primary users
(PUs) for data transmission [1]. This process requires accurate and reliable spectrum sensing at SUs
before the SUs start to communicate. More precisely, spectrum sensing technology plays a key role in
identifying which portion of the licensed channels is available for SUs. Therefore, spectrum sensing
has been attracting significant interest in the context of CRNs in recent years.

In the spectrum sensing process, various transmission impairments of the sensing channels
(i.e., the wireless channels between the PUs and the SUs), such as severe fading, shadowing, and hidden
terminal problems, have a crucial impact on the system’s detection performance [2]. Thus, the detection
performance of local single-user sensing is limited and may not be reliable. In order to enhance the
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reliability and mitigate these effects, recent research progress shows that cooperative spectrum sensing
(CSS) is a promising technique that can combat the effect of transmission impairments [3–5]. In a CSS
system, local SUs report their sensing information to the fusion center (FC) in which a global test statistic
is constructed for a final decision. From a resource optimization perspective, joint design PHY-layer
spectrum sensing and MAC-layer resource scheduling was presented in [6]. Under this framework,
the sensing confidence level was introduced to characterize the presence of imperfect sensing. In [7],
the resource allocation scheme for cognitive femtocell users was investigated. To further improve
spectrum holes utilization efficiency [8], a high-order hidden bivariate Markov model-based spectrum
hole prediction method was proposed in [9]. Under CSS schemes, data fusion and final decision making
can be executed in two modes, namely, centralized CSS or decentralized CSS [10]. In the centralized
mode, there is an FC to collect sensing information from each local SU and makes a final decision
about whether the spectrum channel is available for SUs. On the other hand, in decentralized mode,
since the FC does not exist, SUs exchange their sensing information with other neighboring SUs and
the final decision is made by any one of the SUs. Due to the limited communication resource between
SUs and the FC, throughout this paper, we focus on the problem of CSS with multibit quantized data
fusion in the centralized mode.

There are two types of sensing results in the centralized CSS. (I) Soft decision: Each local
sensing node reports its original observed test statistics to the FC and then combines all the received
observations to determine whether the PU signal is present or absent. This scheme may require more
communication resources and energy consumption for a large number of sensing nodes. (II) Hard
decision: Each cooperative SU compares the test statistics with a predefined threshold and then
generates a one-bit binary decision data; for instance, Bit 1 represents the existence of a PU signal,
while Bit 0 represents the absence of a PU signal [11]. Each local one-bit decision result is reported
to the FC, and a final decision is made by specific fusion rules such as OR-logic, AND-logic, and
MAJORITY-logic [12]. Even though soft combining outperforms hard combining, sending whole test
statistics increases the bandwidth requirement of the control channel, which may be infeasible in
practice. The hard fusion rules require less reporting overhead at the cost of degrading the sensing
performance. Hence, in order to reduce the control channel overhead and achieve reliable sensing
performance simultaneously, each SU should quantize their local observations into multiple decision
regions [13,14].

Reporting quantized local log-likelihood ratio (LLR) decision values to the FC can enhance CSS
performance with less cooperative overhead [15,16]. In [16], an optimal quantizer using a Lloyd–Max
algorithm based on the local node’s LLR value was presented. However, this scheme requires prior
knowledge of the PU signal, which may not available in practice. In [17], from the throughput
maximum perspective, a multibit quantization scheme was introduced. Under this scheme, we require
the prior probability that a PU is active or passive to determine the quantization interval. A scheme of
cluster-based CSS with adaptive thresholds and multi-bit local decision was presented in [18]; in this
paper, a cluster decision was first made and then produced a global decision, but the method on
how to determine the cluster was not given. A softened two-bit fusion rule was proposed in [19,20]
to decrease the reporting channel overhead. According to this scheme, the complete observed test
statistics at each SU is mapped to four distinct portions, which are separated by two thresholds. If the
test statistics fall into one of these portions, then two bits of data is assigned to it. In [21], a linear
combining quantized data using uniform quantization was investigated. The number of quantization
bits and combining weight were jointly optimized to maximize the detection probability. In [22],
a tradeoff was investigated to illustrate the relationship between the reported quantization bits and
system throughput of CSS. The optimal parameters such as the number of quantization bits and the
global decision threshold were determined by maximizing the normalized throughput under a certain
probability of detection constraint. A quantization strategy adopting energy detector based on soft
fusion rule of CSS was investigated in [23]. The analytical expression of the quantization criterion
and the associated probability of a false alarm were presented. Although these papers mentioned
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above investigate quantized soft data combing, they are still not tractable enough to be used as a
cost function for parameter optimization. The computational complexity of such a scheme is high.
The closed-form expressions of the quantization thresholds are not given. Therefore, an efficient and
simple quantization-based multibit data fusion scheme is indispensable for CSS in CRNs.

In this paper, a simple quantization-based multibit data soft fusion rule for CSS is presented to
achieve a desirable tradeoff between sensing performance and control channel overhead. Under this
scheme, each local SU adopts an energy detector to estimate the energy of received signal during
a sensing interval. This energy value is compared with a pair of quantization thresholds and then
produces multibit data. The FC collects quantized multibit data from all SUs and performs inverse
quantization based on the received data of each SU. A global test statistic, namely, the sum of the
inverse quantization values, is constructed at the FC to decide whether a PU signal is present or absent.
The main contributions of this paper are concluded as follows.

(1) We propose a simple quantizer design scheme. From the global false alarm probability at the
FC perspective, we first determine the center quantization thresholds at each secondary user
according to Neyman–Pearson criteria. This scheme is different from the scheme proposed
in [17]. Meantime, we establish the “3σ” rule to design the quantization interval, and closed-form
expressions of the quantization levels and thresholds are derived. Compared to the suboptimal
linear-quantization multibit combining (SLMC) scheme in [24], which employs a numerical search
algorithm to find the optimal quantization interval, we provide a computationally affordable
method to determine quantization parameters.

(2) We also analyze the detection performance of CSS based on the soft fusion rule (equal gain
combining) and the hard decision rule, and investigate the tradeoff between control channel
overhead and sensing performance under the proposed scheme. Furthermore, the effects of the
number of cooperative SUs, the number of quantization bits, and the number of samples for local
sensing on detection performance are examined. Simulation results may be useful to determine
parameters to meet the required performance in a practical CSS system.

(3) Lastly, extensive numerical simulation experiments are performed to demonstrate the proposed
quantization fusion rule and compare it with soft fusion, hard decision, the SLMC [24]
scheme, and semi-soft [12] fusion rules. Overall, the proposed quantization scheme achieves a
desirable tradeoff between the sensing performance and the control channel overhead, with low
computational complexity.

The rest of the paper is organized as follows. The system model and detection problem is
formulated in Section 2. The proposed simple quantization-based multibit data fusion scheme as
the associated procedure of the algorithm is given in Section 3. Numerical simulation results under
different scenarios are presented in Section 4. Finally, the main conclusions are summarized in Section 5.

2. The System Model and Problem Formulation

We consider a CSS system in CRNs, including a PU, M spatially distributed SUs, and an FC.
Specifically, each SU performs local spectrum sensing. Due to the control channel bandwidth and
energy supply limitations, the local sensing results from SUs have to be quantized before transmitting
them to the FC. Assume that the control channel is error-free, this is reasonable by using an efficient
channel coding mechanism to mitigate the noise and interference in the reporting phase. Let the null
hypothesis (H0) and the alternative hypothesis (H1) denote that a PU signal is absent and present,
respectively. Figure 1 shows the basic structure of a quantization-based CSS system.
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Figure 1. The structure of quantization-based cooperative spectrum sensing (CSS) system with M
secondary users (SUs) and a fusion center (FC).

According to the structure model given in Figure 1, the detection problem can be described as
follows. Whether a PU signal is present or not is decided by combining M independent, individual
local sensing nodes quantized data at the FC, and a global test statistic is constructed for making a
final decision on the presence/absence of the PU signal by a certain fusion rule under a global false
alarm probability constraint.

2.1. Local Spectrum Sensing

Spectrum sensing can be formulated as the following binary hypothesis testing problem [25]:

H0: xi(n) = wi(n)
H1: xi(n) = s(n) + wi(n)

(1)

where xi(n) denotes the i-th SU received signal sample at time instant n, s(n) is the primary signal with
a received power of σ2

s (the effect of fading can be absorbed in σ2
s ), wi(n) represents the i-th SU additive

white Gaussian noise (AWGN) at time instant n with zero mean and known variance σ2
i . Furthermore,

assume that the noise wi(n) and primary transmitted signal s(n) are independent of each other.
The energy detector is used for the local sensing due to its low complexity and needing no a priori

knowledge about the PU signal. The i-th SU received energy Ti over the N samples is given as

Ti =
1
N

N

∑
n=1
|xi(n)|2 (2)

when N is large enough, using the central limit theorem (CLT), the test statistics Ti follows an
asymptotically Gaussian distribution with mean and variance as [26]

Ti ∼
{

N(σ2
i , 2σ4

i /N ) H0

N((1 + γi)σ
2
i , 2(1 + γi)

2σ4
i /N ) H1

(3)

where N(µ, σ) is a normal distribution with mean u and variance σ, γi is the SNR, and γi = σ2
s /σ2

i ,
σ2

s is the variance of the PU signal.

2.2. Local Hard Decision Fusion

In the hard decision fusion, each SU after a specific sensing interval then makes a binary decision
independently about the presence or absence of a PU signal. Each i-th SU sends its one-bit decision di
to the FC via a common control channel, where

di =

{
1 H1

0 H0
(4)
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The FC combines local decision results from all cooperative SUs by a certain fusion rule for
making a final decision. The general form of the hard fusion rule can be expressed as

M

∑
i=1

di
H1
≷
H0

K (5)

In Equation (5), the fusion rule is OR-logic when K = 1, AND-logic when K = M, and
MAJORITY-logic when K > dM/2e. The global probability of detection Qd and global probability of
false alarm Qf for AND, OR, and K-out-of-M (KM) rules are given as follows:

QdAND =
M

∏
i=1

Pdi (6)

Q f AND =
M

∏
i=1

Pf i (7)

QdOR = 1−
M

∏
i=1

(1− Pdi) (8)

Q f OR = 1−
M

∏
i=1

(1− Pf i) (9)

QdKM =
M

∑
i=K

(
M
i

)
Pi

di(1− Pdi)
M−i (10)

Q f KM =
M

∑
i=K

(
M
i

)
Pi

f i(1− Pf i)
M−i. (11)

2.3. Soft Decision Fusion

In soft decision fusion, every cooperative sensing node sends its complete test statistics to the
FC. The statistics from all cooperative nodes are then constructed via a global test statistic by the
soft fusion rule. The soft fusion rule can be adopted as equal gain combining (EGC), maximal ratio
combining (MRC), and the optimal likelihood ratio test (LRT) [27]. In this paper, FC compares the sum
of all cooperative nodes test statistics with a predefined decision threshold. The global probability of
detection Qd and the probability of false alarm Qf using the EGC fusion rule at the FC is given as

Qd = Q(

λc −
M
∑

i=1
(1 + γi)σ

2
i√

2
N

M
∑

i=1
(1 + γi)σ

4
i )

) (12)

Q f = Q(

λc −
M
∑

i=1
σ2

i√
2
N

M
∑

i=1
σ4

i

) (13)

where M is the number of cooperative nodes, λc is the predefined decision threshold in FC, Q(x) is the
Q-function, and Q(x) is given as

Q(x) = 1
/√

2π
∫ +∞

x
e−t2/2dt (14)
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Figure 2 shows the global probability of detection versus the global probability of false alarm of
the hard OR and AND fusion rules and the soft (EGC) fusion rule. The detection performances of these
rules were evaluated. Ten thousand independent Monte Carlo simulation trials verified the theoretical
results. Assume that all nodes have an SNR of −12 dB, the number of cooperative SUs M is 6, and the
samples N is 400. We observed that the soft fusion rule achieved a higher detection probability than
either of the hard fusion rules, and that the detection probability of the hard OR rule outperformed
AND rule. Meanwhile, the theoretical results are well matched with the simulation results.
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3. Proposed Multibit Quantization in Each SU

3.1. q-Bit Quantizer

In this work, the computed local test statistics Ti has to be quantized before it is sent to the FC.
The FC combines these quantized versions of Ti using the EGC fusion rule to make the final decision.
Generally, each SU adopts a q-bit quantizer, the test statistics Ti is compared with a set of quantization
thresholds

{
λi,k
}2q

k=0 with λi,0 = 0, λi,2q = +∞. Let
{

Ei,k
}2q

k=1 and ∆i denote the quantization levels
and quantization interval at each SU. The quantization rule is given as

qi = ψi(Ti) = di, i f λi,k−1 ≤ Ti < λi,k i = 1, 2, . . . , M, k = 1, . . . , 2q (15)

In Equation (15), ψi(•) represents the quantization process at SU i, and di ∈ {0, 1}q denotes
a binary codeword. λi,k−1 and λi,k denote the (k − 1)-th and k-th quantization boundaries at SU i,
respectively. Figure 3 shows the proposed q-bit quantizer.
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3.2. Multibit Combining and Decision Making

Under the multibit cooperative detection scheme, the quantization interval and thresholds should
be determined firstly. Since the probability density function (PDF) of the energy test statistics Ti is
available for each sensing node, we designed a “3σ” rule to determine the quantization interval ∆i,
which can be calculated as

Zi,1 =

{
0 i f Si,0 ≤ 0, Si,1 ≤ 0
min(Si,0, Si,1) else

(16)

Zi,N = Xi (17)

∆i =
Zi,N − Zi,1

2q (18)

where
Si,0 = σ2

i − 3×
√

2σ4
i /N (19)

Si,1 = σ2
i (1 + γi)− 3×

√
2(1 + γi)

2σ4
i /N (20)

Xi = σ2
i (1 + γi) + 3×

√
2(1 + γi)

2σ4
i /N (21)

After ∆i is determined, the quantization energy levels
{

Ei,k
}2q

k=1 and thresholds
{

λi,k
}2q

k=0 can be
given by

Ei,k =

 λ
i, 2q

2
− ( 2q

2 − k + 1
2 )∆i 1 ≤ k ≤ 2q

2

λ
i, 2q

2
+ (k− 2q

2 − 1 + 1
2 )∆i

2q

2 < k ≤ 2q (22)

λi,k =

 λ
i, 2q

2
− ( 2q

2 − k)∆i 1 ≤ k < 2q

2

λ
i, 2q

2
+ (k− 2q

2 )∆i
2q

2 < k ≤ 2q − 1
(23)

In Equations (22) and (23), λi,2q/2 is the center threshold of quantization as λi,2q/2 = λc/M, the
calculation of λc is based on Equation (13) according to Neyman–Pearson criterion for a given Q f = α.

The FC collects all cooperative SUs quantized data, and the global test statistic Tc is constructed
as the sum of the received quantized data. That is,

Tc =
M

∑
i=1

ψ−1
i (qi) (24)

where ψ−1
i (•) represents the inverse of the quantization process at SU i, ψ−1

i (qi) represents the

quantization levels
{

Ei,k
}2q

k=1 at SU i, which is determined by Equation (22), and Tc is compared with a
predefined global decision threshold, λc, which is determined according to Equation (13) to decide
whether a PU is present or absent, i.e.,

Tc
H1
≷
H0

λc (25)

The detection performance of the CSS with multibit quantized data is measured by the
global detection probability Qd = Pr(Tc ≥ λc|H1) and the global false alarm probability
Q f = Pr(Tc ≥ λc|H0).

The procedure of the proposed quantization-based multibit data soft fusion scheme consists of
three main steps: a sensing request, energy detection, and decision making. When FC broadcasts a
spectrum sensing request, the FC obtains the estimation of noise power σ2

i of each SU, then computes
the center quantization threshold and reports it to each SU. After all SUs receive the threshold, each SU
performs energy detection and produces multibit data that is transmitted to the FC through the
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control channel. The FC computes the sum of the inverse quantization vale for final decision making.
The procedure of the proposed scheme is summarized in Algorithm 1.

Algorithm 1. Proposed Quantization-Based Multibit Data Fusion Scheme

Sensing request:
1: The FC broadcasts a spectrum sensing request, and each SU reports its noise
power σ2

i to the FC for computing the center threshold of quantization λi,2q/2 = λc/M according to (13).
Energy detection:
2: The i-th SU computes its energy Ti and quantizes data qi according to Equations (2) and (15), respectively.
3: Each SU reports its quantized data qi to the FC.
Decision making:
4: The FC computes each SU inverse quantization value

{
Ei,k
}2q

k=1 according to Equation (22) corresponding to
the data obtained in Step 3.
5: The FC softly combines the data

{
Ei,k
}2q

k=1 and constructs the global test statistic Tc according to
Equation (24).
6: Final decision making: if Tc ≥ λc, the FC decides if a PU signal is present; otherwise, the FC decides that the
PU signal is absent.

The computational complexity of our proposed algorithm is low. Since the quantization
parameters are obtained based on closed-form analytical expressions, it is tractable enough to be
used. For identically distributed SU observation statistics, the computational complexity increases
linearly in 2q − 1. For non-identically distributed observation statistics, the complexity increases
linearly in M× (2q − 1).

4. Simulation Results and Valuations

In this section, simulation results are presented to evaluate the performance of a
quantization-based multibit data fusion CSS scheme. Without loss of generality, we assume that
the PU signal s(n) is also a Gaussian random process with mean zero and variance σ2

s as the SNR, and
noise variance σ2

i = σ2 = 1 for all cooperative SUs. We also consider, as references, the SLMC [24]
scheme and the semi-soft fusion rule [12] for ideal control channel environment. The decision statistics
of SLMC are given as

TSLMC =
M

∑
i=1

ui (26)

In the SLMC fusion rule, ui ∈ {0, 1, . . . , 2q − 1}, the decision threshold λu at FC is selected in
{0, 1, . . . , M(2q − 1)}, which is a positive integer.

4.1. Detection Performance

Firstly, we evaluate the detection performance of the proposed quantization-based soft fusion
rule. We set parameters such that M = 6 total cooperative SUs, each SU received samples is N = 400 at
a certain sensing interval, and the SNR is −12 dB for all SUs.

Figure 4 presents the ROC curves of the proposed multibit quantization detector with the hard
OR and AND fusion rules, the soft fusion (EGC) rule, the SLMC fusion scheme, and the semi-soft
fusion scheme. The detection probability of the 3-bit quantization-based soft fusion rule outperforms
the SLMC fusion rule, the semi-soft fusion rule, and the hard fusion rules. Meanwhile, compared to the
soft (EGC) fusion rule, the performance loss of the proposed scheme is negligible. To further evaluate
the effect number of quantization bits on detection performance, the results in terms of the probability
of detection for different quantization bits are given in Figure 5. We also found that the performance
gain saturates when quantization bits are greater than 4. In particular, the detection performance of 4-,
5- or 6-bit quantization-based soft fusion rules is comparable to the soft fusion (EGC) rule without
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quantization. However, in practice, the number of quantization bits selected depends on the tradeoff
between the available resource and the system’s required performance. For instance, the 2-bit and 3-bit
quantization detector achieves a probability of detection of about 0.7 and 0.8 with less cooperative
overhead, respectively, when the probability of false alarm is fixed at 0.1.
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We also verify the performance of the proposed quantization-based multibit soft fusion scheme
with different values of quantization bits q and different values for global probability of false alarm α,
where we opt q = 2, 4, 6, and α = 0.1, 0.01, 0.001. From Figure 6, it can be observed that 4-bit and 6-bit
quantization-based soft fusion rules achieve comparable detection performance for each value of α,
but outperform those achieved by 2-bit quantization-based soft fusion. Furthermore, for a given SNR
that is less than −8 dB, the probability of detection is improved by increasing the probability of false
alarm and the number of quantization bits.
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4.2. Detection Probability versus the Number of Samples

In general, increasing the samples of the received signal improves the spectrum sensing detector’s
performance. Unfortunately, increasing the sensing interval will increase delay in spectrum sensing
and lead to a loss in opportunities for spectrum access. Figure 7 shows the detection probability versus
the SNR under various numbers of samples for the proposed 2-bit quantization fusion rule. Figure 7
shows that the detection probability is improved when the number of samples increases from 40 to 80
and from 80 to 120. It is also clear that this is true for the soft (EGC) fusion rule. For instance, given
SNR = −6 dB, M = 4, and Qf = 0.05, if the required detection probability is 0.8, we can select an N of at
least 80.
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Figure 8a,b illustrate the detection probability with the number of samples varying from 0 to 400
for an SNR of −8 dB and from 0 to 15,000 for an SNR of −16 dB, respectively. Simulation results in
Figure 8 shows that the 5-bit quantization-based soft fusion rule achieves a performance comparable to
the soft (EGC) fusion rule with various numbers of samples. For a fixed N, increasing quantization bits
q of each cooperative SU can enhance the probability of detection. We also found that the performance
gain of the proposed fusion rule is relatively higher between quantization bits q = 2 and 3 than the
quantization bits q = 3 and 5, respectively. For example, if the required detection probability is more
than 0.9, based on Figure 8, we can determine the required number of samples to meet the desired
detection probability under SNR = −8 and −16 dB, respectively. In order to meet the detection
probability Qd = 0.9, for −8 dB, the proposed quantization fusion rule requires the number of samples
to be approximately 230, 200, and 150 with quantization bits q = 2, 3, and 5, respectively. Similarly,
for −16 dB, quantization bits q = 2, 3, and 5 require the number of samples to be about 7600, 6000, and
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5200, respectively. Therefore, at low SNR conditions, more bits and a large number of samples are
required to further improve detection performance.Sensors 2018, 18, x FOR PEER REVIEW  11 of 14 
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4.3. Detection Probability versus the Number of Cooperative SUs

To further evaluate the detection performance of the proposed fusion rule, Figure 9 shows the
probability of detection versus the SNR for various M with 3-bit quantization. It is shown that the
detection probability increases by increasing the number of cooperative SUs. It is also clear that,
when SNR is greater than −10 dB, the probability of the detection gain is high between M = 2, M = 4,
and M = 6 cases of the proposed fusion rule. However, the detection probability gain is relatively low
between the M = 8 and M = 10 cases of the proposed fusion rule. For instance, if we require a detection
probability Qd of 0.8 at an SNR of −6 dB, the required number of cooperative SUs is no less than 8 for
3-bit quantization.
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Figure 10 shows the detection probability in terms of the number of cooperative SUs varying
from 2 to 10, where q = 2, 3, and 5, and SNR = −12 dB. It is shown that the detection performance is
improved by increasing the number of quantization bits and cooperative SUs. Under certain q and
SNR values, we can use the obtained curve to determine the number of cooperative SUs for a required
sensing performance. For instance, to meet the required detection probability Qd = 0.9 at SNR = −12 dB,
the required cooperative SUs M is 14, 13, and 12 in cases of the proposed quantization fusion rule
where quantization bits q = 2, 3, and 5, respectively. The results presented in Figure 10 also show that
the performance gain between 2-bit, 3-bit, and 5-bit cases of the proposed quantization-based multibit
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data soft fusion rule can be negligible when the number of cooperative SUs is more than 14. It is also
clear that we can increase the number of cooperative SUs M or quantization bits q to meet the required
detection probability.Sensors 2018, 18, x FOR PEER REVIEW  12 of 14 
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The sensing performance with a different number of cooperative SUs, M, is shown in Figure 11 for
quantization bits q = 2, 4, and 6. When the number of cooperative SUs is relatively high, the performance
gain improves slightly by increasing the quantization bits q. Hence, diversity information among
different cooperative SUs further improves detection performance.
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5. Conclusions

In this paper, we propose a simple quantization-based multibit data fusion scheme for CSS in
CRNs. Compared with the hard decision rule (which reports one-bit data to the FC) and the soft
fusion rule (which reports observed original statistics to the FC), under our scheme, each SU only
reports q-bits quantized data to the FC. From the perspective of global false alarm probability at the
FC, we determined the center quantization threshold according to the Neyman–Pearson criterion.
Meantime, we establish the “3σ” rule to design the quantization interval. The closed-form expressions
of quantization levels and quantization thresholds were derived. We also investigated the impact of
the number of quantization bits, the SNR, the number of samples, and the number of cooperative
SUs on the sensing performance. Extensive numerical simulation results were used to evaluate
the proposed quantization fusion rule in comparison with hard decision, soft fusion, SLMC fusion,
and semi-soft fusion rules. Simulation results demonstrated that the proposed fusion rule achieved
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better performance with low computational complexity, and a desirable tradeoff between the detection
performance and the control channel’s communication overhead. In our future work, spectrum
sensing data falsification, also known as byzantine attack [28], will be involved in the proposed
quantization-based multibit data fusion scheme.

Acknowledgments: This work was supported by the Guangdong Province Dongguan Social Science and
Technology Development Project of China (No. 2016108101020).

Author Contributions: Yuanhua Fu proposed the idea of this work, designed the algorithm, and prepared the
manuscript. Fan Yang performed numerical simulation and analyzed the simulation results. Zhiming He led the
research project and supervised the activities.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ejaz, W.; Hattab, G.; Attia, T. Joint quantization and confidence-based generalized combining scheme for
cooperative spectrum sensing. IEEE Syst. J. 2016, 1–12. [CrossRef]

2. Zhang, W.; Guo, Y.; Liu, H.; Chen, Y.; Wang, Z.; Mitola, J. Distributed Consensus-based Weight Design for
Cooperative Spectrum Sensing. IEEE Trans. Parallel Distrib. Syst. 2014, 26, 54–64. [CrossRef]

3. Akyildiz, I.F.; Lo, B.F.; Balakrishnan, R. Cooperative spectrum sensing in cognitive radio networks: A survey.
Phys. Commun. 2011, 4, 40–62. [CrossRef]

4. Taricco, G. Optimization of linear cooperative spectrum sensing for cognitive radio networks. IEEE J. Sel.
Top. Signal Process. 2011, 5, 77–86. [CrossRef]

5. Paula, A.; Panazio, C. Cooperative spectrum sensing under unreliable reporting channels. Wirel. Netw. 2014,
20, 1399–1407. [CrossRef]

6. Ding, G.; Wu, Q.; Wang, J. Sensing confidence level-based joint spectrum and power allocation in cognitive
radio networks. Wirel. Pers. Commun. 2013, 72, 283–298. [CrossRef]

7. Zhang, H.; Jiang, C.; Mao, X.; Chen, H.-H. Interference-limited resource optimization in cognitive femtocells
with fairness and imperfect spectrum sensing. IEEE Trans. Veh. Technol. 2016, 65, 1761–1771. [CrossRef]

8. Zhao, Y.; Pradhan, J.; Wang, G.; Huang, J. Experimental approach: Two-stage spectrum sensing using GNU
radio and USRP to detect primary user’s signal. In Proceedings of the 2016 Annual ACM Symposiumon
Applied Computing (SAC), Pisa, Italy, 4–8 April 2016; pp. 2165–2170.

9. Zhao, Y.; Hong, Z.; Wang, G.; Huang, J. High-order hidden bivariate Markov model: A novel approach on
spectrum prediction. In Proceedings of the 2016 International Conference on Computer Communication and
Networks (ICCCN), Waikoloa, HI, USA, 1–4 August 2016; pp. 27–31.

10. Letaief, K.B.; Zhang, W. Cooperative communications for cognitive radio networks. Proc. IEEE 2009, 97,
878–893. [CrossRef]

11. Chaudhari, S. Cooperative Sensing with Imperfect Reporting Channels: Hard Decisions or Soft Decisions?
IEEE Trans. Signal Process. 2012, 60, 18–28. [CrossRef]

12. Verma, P.; Singh, B. On the decision fusion for cooperative spectrum sensing in cognitive radio networks.
Wirel. Netw. 2017, 23, 2253–2262. [CrossRef]

13. Yilmaz, H.B.; Tugcu, T. Novel quantization-based spectrum sensing scheme under imperfect reporting
channel and false reports. Int. J. Commun. Syst. 2014, 27, 1459–1475. [CrossRef]

14. Hwang, I.; Lee, J.W. Cooperative spectrum sensing with quantization combining over imperfect feedback
channels. IEEE Trans. Signal Process. 2016, 65, 721–732. [CrossRef]

15. Lee, C.C.; Chao, J.J. Optimum Local Decision Space Partitioning for Distributed Detection. IEEE Trans.
Signal Process. 1989, 25, 536–544. [CrossRef]

16. Nhan, T.N.; Koo, I. Log-Likelihood Ratio Optimal Quantizer for Cooperative Spectrum Sensing in Cognitive
Radio. IEEE Commun. Lett. 2011, 15, 317–319.

17. Wu, H.; Yao, F.; Chen, Y.; Liu, Y.; Liang, T. Multibit-Quantization-Based Collaborative Spectrum Sensing
Scheme for Cognitive Sensor Networks. IEEE Access. 2017, 5, 25207–25216. [CrossRef]

18. Van, H.V.; Koo, I. A novel cluster-based cooperative spectrum sensing with double adaptive energy
thresholds and multi-bit local decision in cognitive radio. KSII Trans. Internet Inf. Syst. 2009, 3, 461–474.
[CrossRef]

http://dx.doi.org/10.1109/JSYST.2016.2615019
http://dx.doi.org/10.1109/TPDS.2014.2307951
http://dx.doi.org/10.1016/j.phycom.2010.12.003
http://dx.doi.org/10.1109/JSTSP.2010.2055537
http://dx.doi.org/10.1007/s11276-013-0683-9
http://dx.doi.org/10.1007/s11277-013-1013-3
http://dx.doi.org/10.1109/TVT.2015.2405538
http://dx.doi.org/10.1109/JPROC.2009.2015716
http://dx.doi.org/10.1109/TSP.2011.2170978
http://dx.doi.org/10.1007/s11276-016-1285-0
http://dx.doi.org/10.1002/dac.2408
http://dx.doi.org/10.1109/TSP.2016.2626251
http://dx.doi.org/10.1109/7.32086
http://dx.doi.org/10.1109/ACCESS.2017.2767101
http://dx.doi.org/10.3837/tiis.2009.05.003


Sensors 2018, 18, 473 14 of 14

19. Ma, J.; Zhao, G.; Li, Y. Soft combination and detection for cooperative spectrum sensing in cognitive radio
networks. In Proceedings of the IEEE Global Telecommunications Conference, Washington, DC, USA,
26–30 November 2007; pp. 3139–3143.

20. Ma, J.; Zhao, G.; Li, Y. Soft combination and detection for cooperative spectrum sensing in cognitive radio
networks. IEEE Trans. Wirel. Commun. 2008, 7, 4502–4507.

21. Abdi, Y.; Ristaniemi, T. Joint local quantization and linear cooperation in spectrum sensing for cognitive
radio networks. IEEE Trans. Signal Process. 2014, 62, 4349–4362. [CrossRef]

22. Nguyen-Thanh, N.; Ciblat, P.; Maleki, S.; Nguyen, V.-T. How Many Bits Should Be Reported In Quantized
Cooperative Spectrum Sensing? IEEE Wirel. Commun. Lett. 2015, 4, 465–468. [CrossRef]

23. Tani, Y.; Saba, T. Quantization scheme for energy detector of soft decision cooperative spectrum sensing in
cognitive radio. In Proceedings of the IEEE GLOBECOM Workshops, Miami, FL, USA, 6–10 December 2010;
pp. 69–73.

24. Bastami, B.A.; Saberinia, E. A Practical Multibit Data Combining Strategy for Cooperative Spectrum Sensing.
IEEE Trans. Veh. Technol. 2013, 62, 384–389. [CrossRef]

25. Ejaz, W.; Hasan, N.U.; Kim, H.S. Distributed cooperative spectrum sensing in cognitive radio for ad hoc
networks. Comput. Commun. 2013, 36, 1341–1349. [CrossRef]

26. Liang, Y.C.; Zeng, Y. Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans. Wirel. Commun.
2008, 7, 1326–1337. [CrossRef]

27. Yucek, T.; Arslan, H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun.
Surv. Tutor. 2009, 11, 116–130. [CrossRef]

28. Zhang, L.; Ding, G.; Wu, Q.; Zou, Y.; Han, Z.; Wang, J. Byzantine attack and defense in cognitive radio
networks: A Survey. IEEE Commun. Surv. Tutor. 2015, 17, 1342–1363. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSP.2014.2330803
http://dx.doi.org/10.1109/LWC.2015.2437879
http://dx.doi.org/10.1109/TVT.2012.2217160
http://dx.doi.org/10.1016/j.comcom.2013.05.002
http://dx.doi.org/10.1109/TWC.2008.060869
http://dx.doi.org/10.1109/SURV.2009.090109
http://dx.doi.org/10.1109/COMST.2015.2422735
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The System Model and Problem Formulation 
	Local Spectrum Sensing 
	Local Hard Decision Fusion 
	Soft Decision Fusion 

	Proposed Multibit Quantization in Each SU 
	q-Bit Quantizer 
	Multibit Combining and Decision Making 

	Simulation Results and Valuations 
	Detection Performance 
	Detection Probability versus the Number of Samples 
	Detection Probability versus the Number of Cooperative SUs 

	Conclusions 
	References

