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Abstract: Authentication is a crucial security service for the wireless sensor networks (WSNs) in
versatile domains. The deployment of WSN devices in the untrusted open environment and the
resource-constrained nature make the on-chip authentication an open challenge. The strong physical
unclonable function (PUF) came in handy as light-weight authentication security primitive. In this
paper, we present the first ring oscillator (RO) based strong physical unclonable function (PUF) with
high resilience to both the electromagnetic (EM) side-channel attack and the support vector machine
(SVM) modelling attack. By employing an RO based PUF architecture with the current starved
inverter as the delay cell, the oscillation power is significantly reduced to minimize the emitted EM
signal, leading to greatly enhanced immunity to the EM side-channel analysis attack. In addition,
featuring superior reconfigurability due to the conspicuously simplified circuitries, the proposed
implementation is capable of withstanding the SVM modelling attack by generating and comparing
a large number of RO frequency pairs. The reported experimental results validate the prototype
of a 9-stage RO PUF fabricated using standard 65 nm complementary-metal-oxide-semiconductor
(CMOS) process. Operating at the supply voltage of 1.2 V and the frequency of 100 KHz, the
fabricated RO PUF occupies a compact silicon area of 250 µm2 and consumes a power as low as
5.16 µW per challenge-response pair (CRP). Furthermore, the uniqueness and the worst-case reliability
are measured to be 50.17% and 98.30% for the working temperature range of −40∼120 ◦C and the
supply voltage variation of ±2%, respectively. Thus, the proposed PUF is applicable for the low
power, low cost and secure WSN communications.

Keywords: wireless sensor network; strong physical unclonable function; ring oscillator;
electromagnetic side-channel attack; support vector machine modelling attack

1. Introduction

Wireless sensor networks (WSNs) are intensely ubiquitous and encompass a broad range of
new applications, such as AR/VR, Internet of Things (IoT), and vehicle network [1]. The smart
sensors are the tentacles that sense the environmental conditions and communicate the information
that is usually security and private critical. It is paramount to assure the integrity of the sensing
and protect the collected information from malicious attacks during the data transmission through
the untrusted communication channels. However, it is not feasible to implement the conventional
cryptography modules on the resource-constrained sensor nodes, including advanced encryption
standard (AES), elliptic curve cryptography (ECC) and so on. In light of this, the physical unclonable
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function (PUF) as a lightweight security primitive has raised more and more interests in the WSN
research community [2,3].

PUF, broadly categorized as “weak PUF” and “strong PUF”, is an emerging low-cost on-chip
secure primitive [2,4–7]. By converting the inherent uncontrollable and unpredictable variations of
the semiconductor manufacturing process to a random digital bit string, a PUF generates a “response”
upon a “challenge”, namely a challenge-response pair (CRP). Weak PUFs target the application of the
key generation [2,4], while strong PUFs are more suitable for the device authentication [8]. The weak
PUFs generally have very few CRPs. They can be essentially regarded as a special form of memory,
which are resilient to the invasive attacks [8]. The strong PUF, as a disorderd physical system, features
complex challenge-response behavior and large challenge-response space. It is almost impossible to
physically clone a strong PUF, whose CRPs behave exactly the same as the original one. As a result,
the strong PUF is more suitable for the wide range of device authentication applications than its
counterpart of weak PUF [9–11]. Among the strong PUF implementations, ring oscillator (RO) PUF is
superior due to the following reasons [12]: (1) the frequencies of the ROs in the PUF are irrelevant to the
delay introduced by the outputs’ routing; (2) the difference of the RO pairs’ frequencies can be further
increased by extending their oscillation time. However, the feature of public CRPs’ accessability for
strong PUFs renders them vulnerable to modeling attacks [8]. In addition, Merli’s work demonstrates
that the electromagnetic (EM) measurements are capable of disclosing both the frequency and the
location of each RO, which enables the prediction of the RO PUF’s CRPs [12].

To address these security threats, this paper presents the first RO based strong PUF design to resist
the EM side-channel attack and the support vector machine (SVM) modelling attack. Compared with
the previous implementations, the proposed RO PUF features low power consumption, high area
efficiency and improved security performance with high entropy. Specifically, in order to minimize the
influence of the emitted EM signal, the RO’s delay cell consists of the current starved inverters, which
operate at the subthreshold region and significantly reduce the overall power consumption. In addition,
each RO used to generate the CRP includes one of the two current starved inverters in each inverter
stage, resulting in the exponential increment of the RO number in a given area. Furthermore, the
RO PUF architecture employs a linear feedback shift register (LFSR) counter to enhance the system’s
logical reconfigurability and thwart the SVM modelling attack. The rest of the paper is organized as
follows. Section 2 introduces the architecture and operation of proposed RO PUF. Experiments results
are presented and discussed in Section 3. Finally, the conclusion is drawn in Section 4.

2. Architecture and Operation of Proposed RO PUF

Figure 1 illustrates the architecture of the proposed 9-stage RO PUF. It basically consists of
one LFSR counter, one reconfigurable current starved RO and one bidirectional counter. The key
component is the reconfigurable current starved RO. Its oscillation frequency is determined by the
delay td of its current starved inverter stage. Here td is given as:

td =
C0Vdd

iD
(1)

where C0 is the load capacitance, iD is the average charging/discharging current and Vdd is the power
supply voltage. The key component in the proposed RO PUF is the MUX based current starved RO
with reconfigurability. The delay cell in the RO is the current starved inverter. As shown in Figure 2,
two additional bias transistors are added into the regular inverter to realize the current starved inverter.
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Figure 1. Architecture of the proposed ring oscillator (RO) PUF.
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Figure 2. Schematics of (a) regular inverter and (b) current starved inverter.

In the current starved inverter, the output capacitance is charged/discharged by the maximum
drain current ID of the pull-up/pull-down transistor initially, which is decreased during the transition.
Without considering the leakage and short-circuit current, the average current iD is equal to η ID, where
the fraction η is fixed for a given device. The current starved inverter can be made to work in the
sub-threshold region by biasing the voltages Vp and Vn. The maximum current ID is formulated by [13]:

ID = µCOX
W
L
(

κBT
q

)2(n− 1)e
q(VGS−Vt)

nκBT (1− e−
qVD
κBT ) (2)

n =
1 + (CS + Cit)

COX
(3)

where κB is the Boltzmann constant; CS, Cit and Cox are the capacitances associated with the
semiconductor, fast surface states and gate oxide, respectively. From (2), the current is controlled by
the VGS of each transistor. Therefore, the power and oscillation frequency of the RO can be tuned by
Vp and Vn. It should be noted that two multiplexors are placed in each inverter stage: one at the gate
outputs, the other one at the gate inputs. The multiplexors are realized with transmission gates to
reduce their delay and transistor count as shown in Figure 3. It is difficult to model the temperature
dependency of the multiplexors as the transistors can operate in several regions [14]. What is more
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feasible is to increase their transistors’ width to make their contribution to the timing variation of the
RO negligible relative to the inverters.

Out

A

B

S

S

S

Figure 3. Schematic of the MUX in the proposed physical unclonable function (PUF).

Each response bit of this PUF is produced by comparing two randomly selected ROs’ frequencies.
The operation of the proposed PUF is explained as follows. The LFSR counter is firstly fed with an
8-bit challenge C through Serial_In port by setting the signal Mode high. EN in the RO is set to low
to disable the oscillation. After C′ from the LFSR counter settles down, EN is set to high. Then a
rising edge of Rst is applied to reset the bidirectional counter, which can record the RO’s output
frequency. Suppose the RO selected by C is ROA. Its oscillation frequency fA is measured by the
bidirectional counter with Up/down equal to high for a specific time of t. Similarly, another challenge
C′ is generated by shifting C in the LFSR counter with Nclk (Nclk < 28) cycles. The frequency fB of
the new RO ROB is recorded by the bidirectional counter with Up/down set to low for the time of
t. Finally, the recorded value in the bidirectional counter represents the frequency difference of the
RO pair (i.e. ROA and ROB). The most significant bit (MSB) of the bidirectional counter is used as
the PUF’s output bit. In the proposed RO PUF, the heat generated by the oscillation of ROA is too
small and can be negligible due to the low power feature of the current starved inverter working in the
subthreshold region.

It is noted that, with a different Nclk in the LFSR counter, the same input challenge can produce
different responses for the same PUF instance. As a result, this structure can be considered as a
logically reconfigurable PUF [15], In contrast to the controlled PUF (CPUF) [16], which adds simple
hash functions to a PUF to forbid the untrusted user to access the PUF directly, the proposed PUF allows
for changing the CRP behavior by varying Nclk, without the physical replacement and modification
of the underlying PUF. This logical reconfigurability makes the proposed PUF more resilient to SVM
based attack, which is a subclass of modeling attacks. Modeling attack assumes that the adversary can
create a model of the targeted PUF, given a number of CRPs [8]. The rest CRPs can be predicted with
the help of this model. To predict the CRPs with SVM, the attackers need to model the CRP generation
accurately. Without considering the reconfigurability, Nclk for the LFSR counter is assumed to be a
known constant. The oscillation frequency of each RO in the proposed PUF is reversely proportional
to the sum of the delay in each stage. The applied challenge C/C′ selects the top or bottom path.
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An additive delay model for the proposed PUF structure can be constructed as follows. The response
corresponding to the challenge C can be expressed as:

R =

{
1 if δ(n + 1) > δ′(n + 1)
−1 if δ(n + 1) < δ′(n + 1)

(4)

where δ(n + 1) and δ′(n + 1) are the signal delays from the NAND gate input to the output of the
RO’s last inverter stage (i.e., the (n + 1)-th) in Figure 1, upon the application of the challenge C and
the shadow challenge C′ after Nclk cycles, respectively. These two delays are then written as:

δ(i) =
1 + Ci

2
pi +

1− Ci
2

qi + δ(i− 1) (5)

δ′(i) =
1 + C′i

2
pi +

1− C′i
2

qi + δ′(i− 1) (6)

where pi and qi (i = 1, 2, · · · , n + 1) are the top and bottom inverter delays at the i-th inverter stage of
the RO, respectively, and Ci, C′i ∈ {−1, 1}. In contrast to the arbiter PUF whose two competing-signals
are generated at the same time (by the rising edge from the very beginning of the delay chain),
the proposed RO PUF generates the two competing-signals at different times (one is generated
when Challenge C is applied, the other one is generated when the shadow Challenge C′ is applied).
The frequency distance between two selected ROs is then calculated by subtraction with the help of the
following bi-directional counter. Let ∆(i) denote the difference between δ(i) and δ′(i). By subtracting
(5) from (6), we can have:

∆(i) =
pi − qi

2
(Ci − C′i) + ∆(i− 1) (7)

∆(i) =
pi − qi

2
(Ci − C′i) +

pi−1 − qi−1

2
(Ci−1 − C′i−1) · · ·+ ∆(0) (8)

where ∆(0) = 0. The final delay difference ∆(n + 1) can be represented as an inner product:

∆(n + 1) =< −→w ,−→x > (9)

where −→w = 1
2 ((p0 − q0), · · · , (pn+1 − qn+1)) and −→x = ((C0 − C′0), · · · , (Cn+1 − C′n+1)). In this way, a

separating hyperplane in the space of all feature vectors−→x can be determined by the SVM. However, if
Nclk is not fixed but randomly reconfigurable by the user, −→x becomes unpredictable. In order to secure
Nclk, Nclk can be encrypted and sent along with the challenge to the device when an authentication
is inquired.

3. Experimental Results and Discussions

The microphotograph of the fabricated chip using standard 65 nm CMOS process is shown
in Figure 4. The proposed PUF’s core area is only 5 × 50 µm2. The setup of the probe station for
the post-silicon test is shown in Figure 5, where Agilent oscilloscope with 1GS/s sampling rate is
used to measure the output frequencies of the current starved ROs and capture the responses of the
PUF. The LFSR counter and other control signals are generated by a Xilinx Virtex-II Pro FPGA board
externally. Figure 6 shows the distribution of RO’s oscillation frequency in one sample chip. There are
totally 28 = 256 ROs in each PUF instance. The average oscillation frequency is 101 KHz. The most
important figures of merits for the PUF, namely, the uniqueness, reliability, power and security are
presented and discussed in the following subsections.
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Figure 4. The microphotograph of the proposed RO PUF chip.
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Figure 5. The probe station for testing the sample chips.
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Figure 6. The distribution of RO’s oscillation frequency for one sample chip.
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3.1. Uniqueness

The uniqueness measures how different the CRPs produced by a PUF are from the other chips.
The average inter-die Hamming Distance (HD) of the PUF’s CRPs is generally used to calculate the
uniqueness. With the same input challenge C to two different chips, u and v, two n-bit responses Ru

and Rv can be generated. The average inter-die HD for m chips is expressed as [17]:

U =
2

m(m− 1)

m−1

∑
u=1

m

∑
v=u+1

HD(Ru, Rv)

n
× 100% (10)

Figure 7 shows the measured frequency distribution of the inter-die Hamming Distance (HD) for
10 PUF dies. The uniqueness measured from the proposed PUF’s inter-die HD is 50.17%, with the ideal
value equal to 50%. A Gaussian distribution with mean µ = 50.17% and standard deviation σ = 0.43%
can well fit this distribution as shown in Figure 7.

48 49 50 51 52
0

3

6

9

12

15
 Histogram
 Fitted Gaussian curve

C
ou

nt
s

Inter-die HD (%)
Figure 7. The measured inter-die HD distribution for the proposed RO PUF.

3.2. Reliability

The reliability represents how reproducible the CRPs generated by a PUF are, under variable
operating conditions, e.g., different temperature, supply voltage, ambient noises, etc. The intra-die
HD is a way to estimate the reliability. Given an input challenge C, each chip i produces an n-bit
reference response Ri under the normal operating condition. It is then measured k times with the same
set of challenges under varying operation environments. The produced responses are Ri,j(j=1,2,...,k).
The assessing of reliability for chip i can be written as [17]:

S = 1− BER = 1− 1
k

k

∑
j=1

HD(Ri, Ri,j)

n
× 100% (11)

where BER stands for the bit error rate. With 1000 CRPs produced by the PUF under various
temperatures and supply voltages, the reliability is measured. Figure 8a,b show the fabricated RO
PUF’s reliability with the temperature and voltage variations, respectively. The worst-case reliability
is observed to be 98.30% at −40 ◦C and 1.22 V. The proposed PUF is characterized with a high
temperature reliability over a long temperature range. This is because the delay cell we implemented
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in each RO is the current starved inverter. The oscillation frequency of the RO using the current starved
inverter is much less sensitive to the temperature variations [18].
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Figure 8. (a) The measured average reliability of the proposed RO PUF versus the temperature
variations; (b) the measured average reliability of the proposed RO PUF versus the voltage variations.

3.3. Power Consumption

In our proposed RO PUF, the RO’s frequency and the power consumption can be optimized by
tuning Vp and Vn of the current starved inverters. Figure 9 presents the measured average power
consumption versus the RO’s frequency. It is indicated that the minimum measurable oscillation
frequency is 100 KHz and the corresponding power consumption is only 5.16 µW. This low power
consumption feature is more suitable for the resource-constrained WSN devices working in the
distributed area.
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Figure 9. The measured average power consumption per challenge-response pair (CRP) of the proposed
PUF at different ROs frequencies.

3.4. Security Analysis

3.4.1. SVM Attack

With the above-mentioned reconfigurability in Section 2, the proposed PUF is able to thwart the
SVM modelling attack. In order to have a fair comparison with SVM attack on the 64-stage arbiter [11],
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we have extensively simulated a 64-stage proposed PUF using the UMC 65 nm CMOS technology to
generate the enough training and testing CRPs. Figure 10 shows the prediction results for the proposed
64-bit RO PUF with and without reconfigurability using the tool SVMlight [19]. The reconfigurability
is disabled by fixing the value of Nclk in the LFSR counter. The prediction accuracy is higher than
90% with only 1000 training CRPs for the RO PUF without reconfigurability. This is because, if the
reconfigurable parameter Nclk is fixed, the relation of C and C′ is fixed. The model for the proposed
PUF is similar to the arbiter PUF [11], which is very vulnerable to the SVM attack. However, when the
reconfigurability is enabled by setting Nclk as a random number, our proposed PUF is proved to be
more resilient to the SVM modeling attack, as the SVM predication accuracy for our proposed PUF
response only fluctuates around 50% even with a large training set size of ten thousand CRPs.

10 100 1k 10k
30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Number of training data

 With reconfigurability
 Without reconfigurability

Figure 10. The prediction accuracy by support vector machine (SVM) for the proposed PUF with and
without reconfigurability.

3.4.2. EM Side-Channel Attack

EM side-channel attack has been successfully adopted to break the RO PUFs [12]. The analysis
is based on the study and comparison of the detectable EM emanations’ frequency spectrum for the
active RO. According to Friis transmission equation [20]:

Pr = GtGr(
λ

4πR
)2Pt (12)

where Gt and Gr are the antenna gains of the transmitting and receiving antennas, respectively, λ is
the wavelength, R is the distance from the detector probe to the device, Pr is detectable magnitude of
the EM radiation and Pt is the device’s working power consumption. Our proposed hybrid RO PUF
has lower power consumption over the classic RO PUF. Since Pr is proportional to Pt, it will have a
lower magnitude of EM radiation.

To validate our proposed PUF’s resilience against EM side-channel attack, FLS 106 IC scanner
is used to capture the EM radiation close to the fabricated chip’s surface. Figure 11a,b illustrate the
measured spectrum of the regular RO and the proposed RO fabricated in the same chip, respectively.
It is noticed that an EM radiation of 100.38 dBµV at 278 MHz is detected for the regular RO, however,
the EM radiation magnitude of the proposed RO is too small to be distinguished from the noise floor.
Additionally, as the proposed RO PUF only occupies a tiny silicon area with an interleaving structure,
it is quite challenging to pinpoint it on the chip, which further elevated the proposed RO’s security
performance [21].
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Figure 11. (a) The measured EM radiation for the regular RO; (b) the measured EM radiation for the
proposed RO.

4. Conclusions

In this paper, we present a compact RO PUF with high resilience to both the EM side-channel
attack and the SVM modelling attack. By utilizing the current starved inverters as the RO’s delay cell,
both the oscillation power and the emitted EM signal are minimized, leading to significantly enhanced
immunity to the EM based side-channel attack. Additionally, the prototype of the proposed PUF
fabricated using 65 nm CMOS process only consumes a low power of 5.16 µW per CRP at 1.2 V, under
an oscillation frequency of 100 KHz. In addition, the measured CRPs exhibits a superior uniqueness of
50.17% and a BER of 1.7% with the operation temperature varied from −40 ◦C to 120 ◦C. Furthermore,
with the external challenge randomized by the incorporated LFSR counter, the reconfigurable CRPs are
capable of providing substantial resilience to the prediction attack by SVM. The proposed PUF shows
great promise to a wide range of light-weight WSN security applications with limited battery capacity.
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