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Abstract: Dual-polarized sensitive arrays (DPSAs) with the space–time-polarization adaptive
processing (STPAP) technique, which employs the polarization domain as well as the space domain
and time domain to filter out interferences, can cancel a larger number of wideband interferences for
GNSS receivers. However, the traditional STPAP beamforming algorithm, which requires a separate
adaptive filter for each GNSS satellite, will make the process computationally intensive as there are
multiple GNSS satellites in the field of view (FOV). In order to overcome the shortcoming, a novel
STPAP beamforming algorithm based on the minimum variance distortionless response (MVDR)
criterion is proposed. Compared with the traditional STPAP beamforming algorithm, the proposed
STPAP beamforming algorithm can process multiple GNSS satellites at once using only one adaptive
filter, which will greatly reduce the computational complexity. Moreover, the proposed algorithm
will not lead to a sharp deterioration in the output carrier-to-noise density ratio (C/N0) performance
if the number of GNSS satellites processed in the same adaptive filter is proper. Furthermore,
to calculate weight vector iteratively, an adaptive algorithm based on the constrained least mean
square (CLMS) method is derived for the proposed STPAP beamforming algorithm. Simulation
results validate that the proposed algorithm is effective in mitigating interferences for GNSS receivers
in the joint space–time-polarization domain and meanwhile has lower computational complexity
when maintaining the output C/N0 performance close to that of the traditional STPAP algorithm.

Keywords: GNSS receiver; array antenna; dual-polarized sensitive array (DPSA); interference
mitigation; space–time-polarization adaptive processing (STPAP); beamforming

1. Introduction

GNSS has been widely applied in both military and civil fields because it can provide all-time,
all-weather, and high accuracy position, navigation, and timing service to global users. Although the
power of the GNSS signal is 20 dB lower than the ambient noise floor, GNSS receivers can withstand
a certain level of interference due to the direct sequence spread spectrum (DSSS) technique used
in GNSS [1–9]. However, GNSS receivers will be interfered when interferences are strong enough.
Antenna array processing technique provides an effective method to cancel interferences [10–12].
The concept is to apply weights on the signals received by different array elements to form nulls
towards the arriving directions of incoming interferences while steering the array response towards
the desired GNSS signals.

Antenna array with the space adaptive processing (SAP) technique performs well in cancelling
interferences and preserving GNSS signals [13–16], while it also has disadvantages. At first, the SAP
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can only filter out M− 1 interferences with an array antenna consisting of M elements. Nevertheless,
in the multipath interference environment, the number of interferences increases dramatically and thus
the performance of the SAP will be greatly deteriorated. Moreover, GNSS signals may be weakened
as well when their directions of arrival (DOAs) are close to those of interferences. To overcome
these shortcomings of the SAP, the space–time adaptive processing (STAP) technique was proposed
in [17–21]. In the STAP, the temporal filter is adopted by placing a finite impulse response (FIR) filter
behind each array element. Consequently, the STAP can cancel MK− 1 narrowband interferences or
M− 1 wideband interferences if array antenna with M elements that followed by K order FIR filter is
utilized. In addition, interferences incoming from directions close to those of the desired GNSS signals
can also be rejected without mitigating GNSS signals if their frequencies are not identical to those of
the desired GNSS signals.

Although the STAP has combined the space domain and time domain to cancel interferences, the
polarization domain is another field that can be utilized to distinguish and suppress interferences.
In [22–27], the space-polarization adaptive processing (SPAP) technique was introduced to filter out
interferences in the joint space-polarization domain while the time domain is ignored. Furthermore,
the STPAP technique was proposed in [28,29], which can mitigate interferences for GNSS receivers in
the joint space–time-polarization domain. Using DPSA with M elements that followed by K order FIR
filter, the STPAP can cancel up to 2MK− 1 narrowband interferences or 2M− 1 wideband interferences.
It indicates that the STPAP can cancel more interferences than the SAP, STAP, and SPAP with the same
size array antenna, which is of great significance for platforms that can only vacate small place for
equipping GNSS array antennas.

To implement the STPAP technique, several criterions to derive weight vector for DPSA have
been proposed in [29,30], which can be summarized as follows: (a) power minimization (PM) criterion.
The PM criterion is easily put into practice as it just keeps the reference channel undistorted and does
not need any prior knowledge, but its C/N0 performance is worse than the other three criterions.
(b) Minimum mean square error (MMSE) criterion. The MMSE criterion performs better than the
PM criterion, while it makes the process computationally intensive since each GNSS satellite in the
field of view (FOV) requires a separate adaptive filter. (c) Minimum mean square error averaged
over hemisphere (MMSE-AH) criterion. Compared with the MMSE criterion, the MMSE-AH criterion
achieves less computational complexity but withstands C/N0 performance degradation. Meanwhile,
the MMSE-AH criterion gives more complicated computation and only marginally better C/N0

performance than the PM criterion. However, the MMSE criterion and MMSE-AH criterion are
difficult to be carried out in practice as the desired GNSS signal is supposed to be accurately known,
due to which we will not take these two MMSE criterions into consideration in the following work.
(d) Minimum variance distortionless response constraining single satellite (MVDR-CSS) criterion.
In this method, the constraint vector is set to constrain only one GNSS satellite at once, in which
beam forms towards the desired GNSS satellite and thus the C/N0 performance is greatly improved.
Nonetheless, the MVDR-CSS criterion also cannot avoid complicated calculations when there are
multiple GNSS satellites in the FOV because each GNSS satellite needs a separate adaptive filter.
Besides, a very interesting and valuable study is introduced in [31], in which a beamforming algorithm
for multiple simultaneous desired signals is proposed. In this work, it emphasizes that different beams
should be weighted according to the expected range of signal strengths, which is very useful in practice
systems and is closely related to our current work. Since the signal strengths of GNSS signals are
almost equal, we can define the weights corresponding to the desired GNSS signals are the same when
compared with this work.

In this paper, we propose a novel STPAP beamforming algorithm based on MVDR criterion for
GNSS receivers, which can achieve a balance between the output C/N0 performance and computational
complexity. The contributions of our work are as follows: (a) A novel constraint vector for the STPAP
architecture, which only requires a single adaptive filter or few adaptive filters when multiple GNSS
satellites exist in the FOV, is proposed. For simplicity, since the proposed STPAP algorithm based on
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the MVDR criterion which constrains multiple satellites at once, we can call it MVDR-CMS criterion
in this paper. Consequently, it can reduce the computational complexity effectively compared with
the traditional STPAP algorithm based on the criteria in [30]; (b) The number of the desired GNSS
signals processed in a single adaptive filter is discussed, so it will not cause drastic output C/N0

performance degradation when obtaining a lower computational complexity. Especially, the output
C/N0 performance of the proposed STPAP algorithm based on the MVDR-CMS criterion is close to
that of the existing STPAP algorithm based on the MVDR-CSS criterion in [30] if the parameter J,
which denotes the number of GNSS satellites that processed by the same adaptive filter, is proper.
(c) An adaptive algorithm based on the CLMS method is derived to calculate the weight vector for the
proposed STPAP beamforming algorithm.

The paper is organized as follows. Section 2 presents the polarization concept and the STPAP
architecture. In Section 3, a novel STPAP beamforming algorithm based on the MVDR criterion is
proposed. Besides, an adaptive algorithm to calculate the weight vector is derived for the proposed
STPAP beamforming algorithm. In Section 4, simulations are carried out to validate the effectiveness of
the proposed algorithm. Moreover, the proposed STPAP beamforming algorithm is compared with the
existing STPAP algorithms based on the criterions in [29–31]. Finally, Section 5 concludes this paper.

2. Mathematical Model

2.1. Polarization Mode

As depicted in Figure 1, a transverse electric (TE) wave is incident from the direction (θ, ϕ) with
respective to the reference point O, where θ ∈ [0, π/2] represent the pitching angle and ϕ ∈ [0, 2π)

denote the azimuth angle. Moreover, TE wave refers to an electromagnetic wave in which the electric
field is perpendicular to the propagation direction. The pitching angle refers to the acute angle between
the direction of the incoming signal and the normal of the antenna. The azimuth angle refers to the
angle between the projection of the incoming signal on the antenna and the reference direction, which is

artificially specified. Define the transient electric field vector in plane Θ as
→
E(t) and it can be written as

→
E(t) = ξh(t)

→
Eh + ξv(t)

→
Ev, (1)

where (
→
Eh,

→
Ev) represents a pair of the orthonormal vector in the plane Θ, and ξh(t), ξv(t) respectively

denote the transient projection values along the
→
Eh and

→
Ev.

Figure 1. Transverse electric wave.

According to the orientation of the end point of the transient electric field vector, the TE wave can
be classified into linear polarization, circular polarization, and elliptical polarization (EP). Moreover,
linear polarization can be classified into horizontal polarization (HP) and vertical polarization (VP).
Circular polarization can be classified into right-handed circular polarization (RHCP) and left-handed
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circular polarization (LHCP). To describe the polarization mode of the TE wave, the polarization
parameter (γ, η) is adopted where γ ∈ [0, π/2] represents the amplitude ratio between the horizontal
component and the vertical component of the electric field and meanwhile η ∈ [0, 2π) denotes the
phase difference between the horizontal component and the vertical component of the electric field.
The polarization modes mentioned above can be defined by the polarized parameters in Table 1.

The polarization information of the TE wave can be distinguished by the electric vector sensor
(EVS). Complete EVS contains three concentric and mutually perpendicular dipoles, while the
dual-polarized EVS that consists of a pair of crossed dipoles is utilized most widely in practice.
Note that multiple dual-polarized EVSs arrayed in space can form the DPSA. The TE wave received by
the dual-polarized EVS can be given by

x(t) =

[
sx(t)
sz(t)

]
=

[
− sin ϕ cos θ cos ϕ

cos ϕ cos θ sin ϕ

][
cos γ

sin γejη

]
s(t), (2)

where sx(t) is the signal received by the dipole along the x axis, sz(t) is the signal received by the
dipole along the z axis, and s(t) denotes the envelope of the incident TE wave. One can find that the
received information is not only determined by the polarization of the TE wave, but also related to the
DOA of the incident signal.

Table 1. Polarized parameter.

Polarization Mode Amplitude Ratio (γ) Phase Difference (η)

HP 0 0,π
VP π/2 0,π

RHCP π/4 π/2
LHCP π/4 −π/2

EP [0,π/2] [−π,π)

2.2. STPAP Architechture

Consider a DPSA consisting of M pairs of crossed dipoles. A block diagram of the STPAP
architecture is shown in Figure 2. The signal received by each dipole is firstly down converted to
intermediate frequency in the radio frequency front end (RFFE) and then digitized by an analog to
digital converter (ADC). Assume that each dipole is followed by a tapped delay line (TDL) with K taps
and a delay of T0 seconds between taps, with which a block of K time domain samples are acquired
from each dipole. After that, the received signal is processed by the proposed STPAP beamforming
algorithm and then sent into the GNSS receiver for acquisition.

Let X(n) ∈ C2MK×1 denotes the received signal for the n-th block

X(n) = [X1(n); X2(n); · · · ; XK(n)] (3)

with

Xk(n) = [xh
1 (t− (k− 1)T0), xv

1 (t− (k− 1)T0), · · · , xh
M(t− (k− 1)T0), xh

M(t− (k− 1)T0)]
H

, (4)

where C represents the set of the complex numbers, H denotes the conjugate transpose, and xh
m(t),

xv
m(t) are the most recent time domain samples. In addition, xh

m(t− (k− 1)T0) and xv
m(t− (k− 1)T0)

(m = 1, 2, · · · , M, k = 1, 2, · · ·K) denote the time domain sample of the m-th horizontal dipole and the
m-th vertical dipole at the k-th tap, respectively.
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Figure 2. The STPAP architecture using the DPSA.

Define the weight vector W(n) ∈ C2MK×1 for the n-th block as

W(n) = [W1(n); W2(n); · · · ; WM(n)] (5)

with
Wk(n) = [wh

1 (k), wv
1(k), · · · , wh

M(k), wv
M(k)]

H
, (6)

where wh
m(k) denotes the weight value for the m-th horizontal dipole at the k-th tap and wv

m(k) denotes
the weight value for the m-th vertical dipole at the k-th tap.

With (3) and (5), the output for the n-th block is presented as

Y(n) = WH(n)X(n)

=
M
∑

m=1

K
∑

k=1
[wh

m(k)xh
m(t− (k− 1)T0)+wv

m(k)xv
m(t− (k− 1)T0)].

(7)

3. Proposed STPAP Beamforming Algorithm

3.1. Novel MVDR-Based Criterion

Assume that L desired GNSS signals are incident from angular direction (θl , ϕl) with polarized
parameter (γl , ηl)(l = 1, 2, · · · , L) and Q interferences are incident from angular direction (θq, ϕq)

with polarized parameter (γq, ηq)(q = 1, 2, · · · , Q). Using the DPSA for the STPAP, the received signal
model for the n-th block can be denoted as

X(n) =
L

∑
l=1

Al(θl , ϕl , γl , ηl)sl(n) +
Q

∑
q=1

Aq(θq, ϕq, γq, ηq)sq(n) + G(n), (8)

where sl(n) = [sl(t), · · · , sl(t− (K− 1)T0)]
H and sq(n) = [sq(t), · · · , sq(t− (K− 1)T0)]

H are
respectively the complex envelope of the l-th desired GNSS signal and the q-th interference for the
n-th block, Al(θl , ϕl , γl , ηl) and Aq(θq, ϕq, γq, ηq) respectively denote the joint space–time-polarization
steering vector of the l-th desired GNSS signal and q-th interference, and G(n) ∈ C2MK×1 represents
the additive white Gaussian noise vector for the n-th block.
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Due to the aforementioned STPAP architecture, the joint space–time-polarization steering vector
A(θ, ϕ, γ, η) ∈ C2MK×1 is given by

A(θ, ϕ, γ, η) = IK×K ⊗ as(θ, ϕ)⊗ ap(θ, ϕ, γ, η) (9)

with
as(θ, ϕ) =

[
1 e−j∆φ(θ,ϕ) e−j2∆φ(θ,ϕ) · · · e−j(M−1)∆φ(θ,ϕ)

]H
,

ap(θ, ϕ, γ, η) =

[
− sin ϕ cos γ + cos θ cos ϕ sin γejη

cos ϕ cos γ + cos θ sin ϕ sin γejη

]
,

(10)

where ⊗ denotes the Kronecker product and IK×K is the K-th order identity matrix. In addition,
as(θ, ϕ) and ap(θ, ϕ, γ, η) respectively represent the spatial steering vector and polarized steering
vector, ∆φ(θ, ϕ) denotes the phase difference between the adjacent elements, and j =

√
−1.

The traditional MVDR criterion is designed to minimize the array output power subject to
the constraint that keeping the array gain towards the desired GNSS satellites undistorted and its
expression is given by

Minimize
W(n)

WH(n)R(n)W(n)

s.t. WH(n)C = 1 n = 1, 2, · · ·N,
(11)

where C ∈ C2MK×1 represents the constraint vector and R(n) ∈ C2MK×2MK is the covariance matrix.
In practice, it is infeasible to acquire the theoretical covariance matrix and thus it can be replaced with

the sample covariance matrix R̃(n) = 1
N

N
∑

n=1
X(n)XH(n), in which N is the number of blocks.

In this paper, a novel constraint vector C ∈ C2MK×J for the STPAP, which keeps the array gain
towards J desired GNSS satellites in the FOV undistorted at once while minimizing the array output
power, is proposed. We can give the expression of C as

C =



ch,1,1 ch,1,2 · · · ch,1,J

cv,1,1 cv,1,2 · · · cv,1,J
...

...
...

...
ch,M,1 ch,M,2 · · · ch,M,J
cv,M,1 cv,M,2 · · · cv,M,J

0 0 · · · 0
...

...
...

...
0 0 · · · 0


(12)

with
ch,m,l = as,m(θl , ϕl)ap,h(θl , ϕl , γ = π/4, η = π/2)

= (− sin ϕl cos π
4 + cos θl cos ϕl sin π

4 ej π
2 )e−j(m−1)∆φ(θl ,ϕl),

(13)

cv,m,l = as,m(θl , ϕl)ap,v(θl , ϕl , γ = π/4, η = π/2)
= (cos ϕl cos π

4 + cos θl sin ϕl sin π
4 ej π

2 )e−j(m−1)∆φ(θl ,ϕl),
(14)

where as,m(θl , ϕl) denotes the m-th component of the spatial steering vector corresponding to the l-th
GNSS signal. In addition, ap,h(θl , ϕl , γ = π/4, η = π/2) and ap,v(θl , ϕl , γ = π/4, η = π/2) represents
the horizontal and vertical component of the polarized steering vector corresponding to the l-th GNSS
signal, respectively. Note that the DOAs of the desired GNSS signals, (θl , ϕl), are assumed to be known
as a priori through the existing GNSS DOA estimation methods proposed in [32–35], such as the
inertial navigation device assisting method. Moreover, the polarized parameters for all desired GNSS
signals are (γ, η) = (π/4, π/2) as the polarization modes of all GNSS signals are RHCP.
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Furthermore, the parameter J is worth discussing because it determines the number of adaptive
filters that used in the proposed STPAP beamforming algorithm when multiple GNSS satellites exist in
the FOV. When J = L, only one adaptive filter is required for all the desired GNSS satellites in the FOV;
When 2 ≤ J ≤ L− 1, at least two but no more than L− 1 adaptive filters is needed to deal with all the
desired GNSS satellites in the FOV; When J = 1, the proposed MVDR-CMS criterion degenerates into
the MVDR-CSS criterion in [22]. Therefore, the parameter J is defined as 2 ≤ J ≤ L in the proposed
MVDR-CMS criterion. Obviously, the computational complexity of the proposed criterion is lower
than that of the MVDR-CSS criterion in [22].

With the novel constraint vector in (12), the expression in (11) can be rewritten as

Minimize
Wall(n)

WH
all(n)R̃(n)Wall(n)

s.t. WH
all(n)C =

⇀
1 J n = 1, 2, · · ·N,

(15)

where Wall(n) ∈ C2MK×1 denotes the weight vector for the J GNSS satellites in the FOV and
⇀
1 J a 1× J

vector containing all ones. Moreover, the weight vector Wall(n) are found from the solution to (14)

and it can be presented as Wall(n) = R̃
−1

(n)C[CHR̃
−1

(n)C]
⇀
1

H

J . It is noticed that the weight vector
Wall(n) can be applied to the J desired GNSS satellites in the FOV at once, which can greatly reduce
the computational complexity, especially as the parameter J increases.

For comparison, the aforementioned MVDR-CSS criterion in [22] for the STPAP when using the
DPSA is presented as

Minimize
Wl(n)

WH
l (n)R̃(n)Wl(n)

s.t. WH
l (n)

_
C l = 1 n = 1, 2, · · ·N

(16)

with
_
C l =

[
ch,1,l cv,1,l · · · ch,M,l cv,M,l 0 · · · 0

]H
, (17)

where Wl(n) ∈ C2MK×1 represents the weight vector for the l-th GNSS signal and its expression can be

written as Wl(n) = R̃
−1

(n)
_
C l [

_
C

H

l R̃
−1

(n)
_
C l ]. Besides,

_
C l ∈ C2MK×1 denotes the constraint vector for

the l-th GNSS signal, which indicates that L adaptive filters are required if there are L GNSS satellites
in the FOV and thus it will definitely increase the burden of computation. Thus, it is easily found that
the performance of the proposed MVDR-CMS criterion is better than that of the MVDR-CSS criterion
in terms of the computational complexity. It is noticed that the theoretical analysis is based on the
joint space–time-polarization architecture, while it can also be applied to the space architecture and
space–time architecture when the polarization discriminator is removed.

3.2. Adaptive Algorithm for Calculating the Weight Vector

The direct inverse matrix (DMI) method or constraint least mean square (CLMS) method can
be usually adopted as adaptive algorithms to implement the proposed MVDR-CMS criterion for the
STPAP. The DMI method is sample in form but it is very computationally intensive due to the inversion
of matrix. In comparison, the CLMS method has a lower computational complexity, which is feasible
to calculate the weight vector Wall iteratively in this paper. Therefore, the iterative expression to
acquire the weight vector for the proposed STPAP beamforming algorithm will be described in the
following work.

With (15), the iterative function based on the steepest descent method can be presented as

Wall(i + 1) = Wall(i)− µ∇WallF(Wall), (18)



Sensors 2018, 18, 4506 8 of 19

where i represents the iteration number, µ denotes a fixed step factor, and ∇WallF(Wall) represents the
gradient function. Moreover, function F(Wall) is the combination of the cost function and constraint
function in (15) and it can be given by

F =
1
2

WH
allR̃Wall + Bλ(WH

allC−
⇀
1 J)

H
, (19)

where Bλ is the Lagrange multiplier and the coefficient 1/2 is adjoined to simplify calculation. Note
that the Lagrange multiplier Bλ for the proposed MVDR-CMS criterion is not a constant but a 1× J
vector, which varies with iteration.

Taking the gradient of (19) with respective to Wall, the gradient function ∇WallF(Wall) can be
presented as

∇WallF(Wall) = R̃Wall + CBH
λ . (20)

Substituting (19) into (18), the iterative function can be rewritten as

Wall(i + 1) = Wall(i)− µR̃(i)Wall(i)− µCBH
λ (i), (21)

where Wall(i + 1) must satisfy the constraint function in (15) and thus

WH
all(i + 1)C =

⇀
1 J . (22)

Then, substituting (21) into (22), we can obtain the Lagrange multiplier Bλ(i) as

Bλ(i) =
1
µ
[WH

all(i)C(C
HC)

−1
− µWH

all(i)R̃(i)C(CHC)
−1
−

⇀
1

H

J (C
HC)

−1
]. (23)

Using (23), (21) can be expressed as

Wall(i + 1) = Wall(i)− uR̃(i)Wall(i)− C[WH
all(i)C(C

HC)
−1
−

uWH
all(i)R̃(i)C(CHC)

−1
−

⇀
1

H

J (C
HC)

−1
]H

= Wall(i)− uR̃(i)Wall(i)− C(CHC)
−1

CHWall(i)+

uC(CHC)
−1

CHR̃(i)Wall(i) + C(CHC)
−1⇀

1
H

J
= T[Wall(i)− uR̃(i)Wall(i)] + V

(24)

with
T = I− C(CHC)

−1
CH

,

V = C(CHC)
−1⇀

1
H

J

(25)

where I ∈ C2MK×2MK denotes the identity matrix. Note that the matrix T and V do not change
with iteration.

Furthermore, the error signal can be given by

e(i) = d(i)− y(i) (26)

with
y(i) = WH

all(i)X(i), (27)

where e(i) represents the i-th iterative error, y(i) denotes the i-th iterative output data, X(i) ∈ C2MK×1

represents the i-th input time domain sample block, and d(i) is the reference signal. d(i) denotes the
reference signal, which is the one corresponding to the signals after the first ADC in Figure 2.
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According to the above description, the flow chart of the proposed algorithm can be depicted
as Figure 3. Note that it is necessary to regularly check whether ephemeris is updated. When the
ephemeris is updated, the GNSS satellites in the FOV should be regrouped and meanwhile T and V
should also be recalculated.

Figure 3. Flow chart of the proposed algorithm.

4. Simulation Results

In this section, the effectiveness of the proposed STPAP beamforming algorithm based on the
MVDR-CMS criterion is validated firstly. Then, the output C/N0 and computational complexity
performance of the proposed STPAP algorithm based on the MVDR-CMS criterion are compared with
those of the PM criterion in [29] and the MVDR-CSS criterion in [30], respectively. To observe the array
pattern in the whole frequency band clearly, the linear uniform DPSA is used preferentially. Thus, an
eight-element linear uniform DPSA with half wavelength spacing is utilized and each dipole of the
DPSA is followed by a TDL with eight taps. The desired GNSS signal is BeiDou-2 (BD2) signal at B3
band whose carrier frequency is 1268.52 MHz and mainlobe bandwidth is 20.46 MHz. The analog
intermediate frequency is 46.52 MHz. Moreover, the sampling frequency and the number of samples
are set as 62 MHz and 62,000, respectively. The received digital signal is firstly generated and then a
quadrature down-conversion mixer is adopted to acquire baseband I/Q signals. After that, a low-pass
filter is used to remove the noise that is out of the mainlobe. Finally, the proposed STPAP beamforming
algorithm can be applied to process the signal.

Three scenarios have been designed and the simulation parameters are presented in Table 2.
Note that 20 Monte-Carlo simulations, in which the locations of interferences vary from one to the
next as shown in Table 2, are carried out to get averages of the results in scenarios 2 and 3.

(a) Scenario 1: Without loss of generality, two desired BD2 signals and one wideband interference
with EP are involved in this scenario. To validate the effectiveness of the proposed STPAP algorithm,
we can observe whether null forms towards the interference or beams form towards the two desired
GNSS signals in the joint space–time-polarization domain. Moreover, the BD2 software receiver is also
utilized to validate that the desired GNSS signals can be acquired.

(b) Scenario 2: Twelve desired BD2 signals and four wideband interferences are generated.
The output C/N0 performance of the proposed STPAP algorithm is compared with those of the
existing STPAP algorithms based on the criterions in [29–31].



Sensors 2018, 18, 4506 10 of 19

(c) Scenario 3: To verify that the proposed algorithm can be also valid when the polarization
discrimination is removed, all the twelve desired BD2 signals and four wideband interferences are
assumed to be RHCP. Moreover, the output C/N0 performance of the proposed STPAP algorithm is
also compared with those of the existing STPAP algorithms based on the criterions in [29–31].

Table 2. Simulation parameters

Scenario Incident Signal SNR/INR Spatial Parameter
Polarized Parameter

Amplitude
Ratio

Phase
Difference

1
BD2 B3 (PRN 1) −20 dB 0 π/4 π/2
BD2 B3 (PRN 2) −20 dB −π/6 π/4 π/2
Wideband interference (EP) 40 dB π/3 π/6 π/3

2

BD2 B3 (PRN 1) −20 dB π/36 π/4 π/2
BD2 B3 (PRN 2) −20 dB π/12 π/4 π/2
BD2 B3 (PRN 3) −20 dB π/4 π/4 π/2
BD2 B3 (PRN 4) −20 dB 5π/12 π/4 π/2
BD2 B3 (PRN 5) −20 dB 4π/9 π/4 π/2
BD2 B3 (PRN 6) −20 dB 17π/36 π/4 π/2
BD2 B3 (PRN 7) −20 dB −π/36 π/4 π/2
BD2 B3 (PRN 8) −20 dB −π/12 π/4 π/2
BD2 B3 (PRN 9) −20 dB −π/4 π/4 π/2
BD2 B3 (PRN 10) −20 dB −5π/12 π/4 π/2
BD2 B3 (PRN 11) −20 dB −4π/9 π/4 π/2
BD2 B3 (PRN 12) −20 dB −17π/36 π/4 π/2
Wideband interference (HP) 40 dB [−5π/36, −7π/36] 0 π

Wideband interference (VP) 40 dB [11π/36, 13π/36] π/2 π

Wideband interference (LHCP) 40 dB [5π/36, 7π/36] π/4 −π/2
Wideband interference (RHCP) 40 dB [−11π/36, −13π/36] π/4 π/2

3

BD2 B3 (PRN 1) −20 dB π/36 π/4 π/2
BD2 B3 (PRN 2) −20 dB π/12 π/4 π/2
BD2 B3 (PRN 3) −20 dB π/4 π/4 π/2
BD2 B3 (PRN 4) −20 dB 5π/12 π/4 π/2
BD2 B3 (PRN 5) −20 dB 4π/9 π/4 π/2
BD2 B3 (PRN 6) −20 dB 17π/36 π/4 π/2
BD2 B3 (PRN 7) −20 dB −π/36 π/4 π/2
BD2 B3 (PRN 8) −20 dB −π/12 π/4 π/2
BD2 B3 (PRN 9) −20 dB −π/4 π/4 π/2
BD2 B3 (PRN 10) −20 dB −5π/12 π/4 π/2
BD2 B3 (PRN 11) −20 dB −4π/9 π/4 π/2
BD2 B3 (PRN 12) −20 dB −17π/36 π/4 π/2
Wideband interference (RHCP) 40 dB [−5π/36, −7π/36] π/4 π/2
Wideband interference (RHCP) 40 dB [11π/36, 13π/36] π/4 π/2
Wideband interference (RHCP) 40 dB [5π/36, 7π/36] π/4 π/2
Wideband interference (RHCP) 40 dB [−11π/36, −13π/36] π/4 π/2

4.1. Effectiveness Validation of the Proposed STPAP Beamforming Algorithm

4.1.1. Array Pattern in the Joint Space–Time-Polarization Domain

In this scenario, the effectiveness of the proposed STPAP beamforming algorithm is validated
through observing the array pattern in the joint space–time-polarization domain. It is noticed that the
array pattern corresponding to the STPAP algorithm are related to the spatial, temporal and polarized
parameters and thus it is a four-dimensional data in this simulation, which means that it is difficult to
depict the data in only one figure. As a result, if nulls in one domain are supposed to be observed,
we have to fix parameters in another two domains. Since the data of the space domain and time
domain in the simulation is one-dimensional, the array pattern in the space domain and time domain
can be observed together if the polarized parameter has been fixed. Meanwhile, array pattern in the
polarization domain can be observed if the spatial and temporal parameters are fixed. In addition,
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we can choose 5.115 MHz as the fixed temporal parameter, which also applies to the next scenario, as all
interferences and desired BD2 signals are wideband. Note that the normalized frequency, which refers
to the ratio between the actual frequency and the maximum frequency, is adopted in this simulation for
simplicity. Specifically, the maximum frequency is set as 20.46 MHz that is identical to the frequency
band of the BD2 signal in the simulation.

Using the proposed STPAP beamforming algorithm, as depicted in Figure 4a, a null forms at
the incident direction of π/3 in the whole frequency band when the polarized parameter is set as
that of the interference. Moreover, as shown in Figure 4b, when the spatial parameter and temporal
parameters are fixed as those of the interference, a null forms in the polarization domain at (π/6, π/3),
which is exactly the polarized parameter of the interference. According to the results in Figure 4,
one can obtain that the proposed STPAP beamforming algorithm can successfully form nulls towards
the interference in the joint space–time-polarization domain.
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Figure 4. Array patterns when parameters are fixed as that of the interference using the proposed
STPAP beamforming algorithm. (a) Null forms in the space domain and time domain towards the
interference. (b) Null forms in the polarization domain towards the interference.

Furthermore, we can also observe whether beams form towards the two desired BD2 signals
using the proposed STPAP beamforming algorithm. As depicted in Figure 5a, beams form in the
space domain and time domain when the polarized parameter is set as that of the desired BD2 signal.
Similarly, beams form in the polarization domain when the spatial parameter and temporal parameters
are respectively fixed as those of the two desired BD2 signals, as shown in Figure 5b,c. The results
obviously indicate that the desired BD2 signals are well preserved when the interference is cancelled
in the joint space–time-polarization domain with the proposed STPAP beamforming algorithm.
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Figure 5. Array patterns when parameters are respectively fixed as those of the two desired BD2
signals using the proposed STPAP beamforming algorithm. (a) Beam forms in the space domain and
time domain towards the two BD2 signals. (b) Beam forms in the polarization domain towards the
BD2 signal of PRN 1. (c) Beam forms in the polarization domain towards the BD2 signal of PRN 2.

4.1.2. Signal Acquisition in the BD2 Software Receiver

As mentioned above, the input signal received by the DPSA is firstly down converted into
baseband, whose time domain samples and single-sided amplitude spectrum are shown in Figure 6.
As the interferences are generated by the DSSS technique in the simulation, they have the same
single-sided amplitude spectrum forms with the BD2 signal.
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Using the proposed adaptive algorithm in Section 3.2 for the proposed STPAP beamforming
algorithm and meanwhile setting the step-size µ as 5 × 10−7, the iterative error signals are shown in
Figure 7, from which it can be seen that the error values tend to stabilize as the number of iterations
increase. After that, the time domain samples and single-sided amplitude spectrum corresponding to
the output baseband signal can be depicted in Figure 8.

Furthermore, the output baseband signal is sent into the BD2 software receiver. Assume that ς

denotes Doppler frequency and τ represents chips. The acquisition results are depicted in Figure 9,
in which the two desired BD2 navigation satellites have been acquired successfully.



Sensors 2018, 18, 4506 13 of 19

Figure 7. Iterative error signals changing with the iterative times.

Figure 8. Time domain samples and single-sided amplitude spectrum of the output baseband signal
using the proposed STPAP beamforming algorithm. (a) Time domain samples. (b) Single-sided
amplitude spectrum.

Figure 9. Acquisition results corresponding to the desired BD2 satellites using the proposed STPAP
beamforming algorithm: (a) PRN 1; (b) PRN 2.

According to the simulation results in Section 4.1, we can find that the proposed STPAP
beamforming algorithm is effective in canceling interferences and forming beams towards the desired
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BD2 satellites in the joint space–time-polarization domain. Moreover, the received signal processed by
the proposed algorithm can be acquired by the BD2 software receiver.

4.2. Output C/N0 Performance when Interferences with Different Polarization Modes

In this scenario, the output C/N0 performance of the proposed STPAP algorithm is compared
with those of the STPAP algorithms based on the criterions in [29–31] when there are multiple GNSS
satellites in the FOV. Without loss of generality, we can compare the output C/N0 performance of
these four algorithms when one beam covers two, three, and four BD2 satellites, respectively when
there are respectively one, two, three, and four interferences. As shown in Figure 10, the results can be
summarized as follows: (a) the output C/N0 performance of the STPAP algorithm in [30] is always the
best one, while the output C/N0 performance of the STPAP algorithm in [29] is worse than the other
three criteria; (c) the output C/N0 performance of the proposed STPAP algorithm is a little better than
the existing STPAP algorithm in [31]. Meanwhile, it is close to that of the existing STPAP algorithm
in [30] when one beam covers two or three satellites. It indicates that the parameter J in (12) is better to
be set as 2 or 3 to prevent the output C/N0 performance from degrading dramatically.

Figure 10. Output C/N0 performance comparison between the proposed STPAP algorithm
and the STPAP algorithms based on the criterions in [29–31] when there are interferences with
different polarization modes: (a) one interference; (b) two interferences; (c) three interferences;
(d) four interferences.
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4.3. Output C/N0 Performance When Interferences with the Same Polarization Mode

In Section 4.2, a lot of space has been allocated to polarization discrimination. To emphasize the
performance of the proposed algorithm, all the 12 satellite signals and four wideband interferences
are assumed to have the same polarization mode, which is RHCP. Analogously, the output C/N0

performance of the proposed STPAP algorithm based on the MVDR-CMS criterion is compared with
those of the STPAP algorithms based on the criterions in [29–31] when there are multiple GNSS
satellites in the FOV. As depicted in Figure 11, the results are identical to those in Section 4.2.

Figure 11. Output C/N0 performance comparison between the proposed STPAP algorithm
and the STPAP algorithms based on the criterions in [29–31] when there are interferences with
the same polarization mode: (a) one interference; (b) two interferences; (c) three interferences;
(d) four interferences.

4.4. Computational Complexity Performance

In this simulation, we will focus on the computational complexity performance of the proposed
STPAP algorithm and the existing STPAP algorithm based on the criterions in [30,31] since they have
the similar processing flow. As for the existing STPAP algorithm based on the PM criterion in [29],
its processing flow is different form the MVDR-based criterion because it is unnecessary to estimate
DOAs of the desired GNSS signals, due to which it has the lowest computational complexity and thus
it is meaningless considering this algorithm in this section.
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The number of addition and multiplication can be adopted to measure the computational
complexity. Using the proposed adaptive iterative algorithm described in Section 3.2 to implement
the proposed STPAP algorithm and the existing STPAP algorithm based on the criterions in [30,31],
the number of addition and multiplication that consumed in each iteration can be shown in Table 3.
It is noticed that J GNSS satellites can be processed at once with only one adaptive filter using the
proposed STPAP algorithm and the existing STPAP algorithm based on the criterion in [31], while
J adaptive filters are required using the existing STPAP algorithm in [30]. Thus, it should be taken
into consideration when calculating the computational complexity. Moreover, when the desired GNSS
satellites change, the metrics T and V in (24) are required to be recalculated. Since the update frequency
of the desired GNSS satellites is not so fast with regard to the iterative convergence progress, we can
assume that the desired GNSS satellites will not change during an iterative period as shown in Figure 3,
due to which the calculation amount of T and V can be ignored for simplicity. Moreover, one can
obtain that the computational complexity of the proposed STPAP algorithm is almost equal to that of
the existing STPAP algorithm based on the criterion in [31] with the assumption that the calculation
amount of T and V can be ignored.

Table 3. Computational complexity.

Criterion Addition Number Multiplication Number

Proposed STPAP algorithm 8M2K2 12M2K2 + 2MK
The existing algorithm in [30] 8M2K2 J 12M2K2 J + 2MKJ
The existing algorithm in [31] 8M2K2 12M2K2 + 2MK

As depicted in Figures 12 and 13, it can be seen that the number of addition and multiplication
that used in the proposed STPAP algorithm and the existing STPAP algorithm in [31] are always less
than that of the existing STPAP algorithm based on the criterion in [30] when there are different tap
number and element number. The results indicate that the proposed STPAP beamforming algorithm
has a lower computational complexity than the traditional STPAP algorithm based on the MVDR-CSS
criterion in [30].

Figure 12. Computational complexity of the proposed STPAP beamforming algorithm and the STPAP
algorithms based on the criterions in [30,31] when J = 2: (a) addition number; (b) multiplication number.
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Figure 13. Computational complexity of the proposed STPAP beamforming algorithm and the STPAP
algorithms based on the criterions in [30,31] when J = 3: (a) addition number; (b) multiplication number.

From the results in the simulation, we can make a conclusion that the proposed STPAP
beamforming algorithm based on the MVDR-CMS criterion can effectively reduce the computational
complexity and meanwhile keep the output C/N0 performance close to that of the traditional STPAP
algorithm based on the MVDR-CSS criterion in [30] when the parameter J is fixed as 2 or 3. Moreover,
although the computational complexity of the existing STPAP algorithm in [31] is almost equal to that
of the proposed STPAP beamforming algorithm, its output C/N0 performance is not better than that
of the proposed STPAP beamforming algorithm.

5. Conclusions

A novel STPAP beamforming algorithm based on the MVDR-CMS criterion, which can achieve a
balance between the output C/N0 performance and computational complexity, has been proposed
in this paper. With the assumption that the DOAs of the desired GNSS satellites are known a priori
through existing DOA estimation methods, the proposed STPAP algorithm based on the MVDR-CMS
criterion is designed to process multiple GNSS satellites with a single adaptive filter, which is beneficial
to reduce computational complexity compared with the traditional STPAP algorithm based on the
MVDR-CSS criterion in [30]. Meanwhile, the output C/N0 performance of the proposed STPAP
algorithm based on the MVDR-CMS criterion is close to that of the MVDR-CSS criterion when
the parameter J that denotes the number of GNSS satellites processed in one adaptive filter is
proper. Concretely speaking, J is better to be set as two or three, which means that an adaptive
filter preferably processes two or three GNSS satellites at once. Besides, an adaptive algorithm
based on the CLMS method is derived to calculate weight vector iteratively for the proposed STPAP
beamforming algorithm, which can avoid the calculation of matrix inversion. In addition, the proposed
STPAP algorithm can be still effective when the polarization discriminator is removed.
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