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Abstract: Cables are the main load-bearing structural components of long-span bridges, such as
suspension bridges and cable-stayed bridges. When relative slip occurs among the wires in a cable,
the local bending stiffness of the cable will significantly decrease, and the cable enters a local interlayer
slip damage state. The decrease in the local bending stiffness caused by the local interlayer slip
damage to the cable is symmetric or approximately symmetric for multiple elements at both the fixed
end and the external load position. An eigenpair sensitivity identification method is introduced in
this study to identify the interlayer slip damage to the cable. First, an eigenparameter sensitivity
calculation formula is deduced. Second, the cable is discretized as a mass-spring-damping structural
system considering stiffness and damping, and the magnitude of the cable interlayer slip damage
is simulated based on the degree of stiffness reduction. The Tikhonov regularization method is
introduced to solve the damage identification equation of the inverse problem, and artificial white
noise is introduced to evaluate the robustness of the method to noise. Numerical examples of stayed
cables are investigated to illustrate the efficiency and accuracy of the method proposed in this study.

Keywords: damage identification; cable interlayer slip; eigenpair sensitivity method; discrete system;
Tikhonov regularization

1. Introduction

In recent decades, bridges with cable systems, such as cable-stayed bridges and suspension
bridges, have been increasingly used with the rapid development of sea-crossing bridges in the global
transportation field. The structure of a cable system bridge can experience relative slip damage between
the steel wires in cables when subjected to lateral external loads. Then, the local bending stiffness of the
cable is significantly reduced in the interlayer slippage state, which affects the mechanical performance
of the cable [1–3]. Cables are the main load-bearing structural components of long-span bridges,
and the physical properties of cables play a key role in structural health. As interlayer relative slip
between cable wires repeatedly occurs during bridge operation, the cable will inevitably experience
fretting wear during its life cycle, thereby reducing the service life of the cable. The most common
cable structure of a long-span bridge involves parallel steel-strand cables. The relative slip properties
of parallel steel-strand cables are equivalent to those modeled by the interlayer slip of a parallel
laminated beam.

The cable section shown in Figure 1 is a common parallel steel-strand cable from a long-span
cross-sea cable-stayed bridge in China. When the parallel cable is subjected to a lateral force, the layered
wires shown in red in Figure 1 experience deformation, and there is almost no relative movement
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among the wires in the layer. This feature is similar to that of a frictional laminated beam subjected to
a vertical external load. Therefore, ignoring the action of the outer rubber protective layer of the stay
cable, the illustrated parallel cable section can be considered equivalent to a multi-laminated beam
model. In this paper, the cable is equivalent to a frictional laminated beam with a uniform bending
moment of inertia.
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Yan et al. [4] compared the main cable test results and actual measured values for a long-span
suspension bridge in China and found that the cable wire interlayer slip caused secondary stress,
which affected the deflection of the cable. Campi and Monetto [5] studied the dynamic performance of
the interlayer slip of two-layer laminated beams and found that the interlayer slip damage reduced
the stiffness coefficient of the stacked beams. Monetto [6] further extended the study to the dynamic
properties to three-layer laminated beams and obtained a dynamic analytical solution for a laminated
beam affected by interlayer slip damage.

Many methods have been used to detect damage to laminated beams or other bridge structures.
Cao and Qiao [7] used the progressive wavelet transform method and successfully detected crack
damage in laminated beams. Rucevskis et al. [8] identified the damage to a laminated beam by
extracting mode shape information obtained from vibration experiments and observed the loss of local
stiffness in the structure. Zhang et al. [9] proposed an undamaged method of microdamage detection
based on a strain model method and effectively located the damage position by comparing the
strain-modal curves obtained from dynamic tests of the damaged structures. Wang et al. [10] proposed
a new damage detection method based on the conception of the inner product vector (IPV) and
theoretically analyzed the robustness to measurement noise of the proposed method. Zhou et al. [11]
proposed a new approach for detecting long-term structural damage using transmissibility combined
with hierarchical clustering and similarity analysis. This method can avoid setting a baseline
according to prior distance measure-based damage detection procedures and is more effective than the
Hausedorff distance-based and Euclidean distance-based damage detection procedures. However, few
studies have focused on effectively identifying cable interlayer slip damage.

Eigenvalue sensitivity and eigenvector sensitivity have also been used in structural damage
detection based on modal parameters. Wu and Law [12] studied the damage to a frame structure by
decomposing the system matrices into static eigenvalues and eigenvectors. Qiu et al. [13] improved
the eigenvalue sensitivity analysis method by linearly substituting the undamaged structure mode
shapes with changed structure mode shapes and obtained high accuracy in damage location and
identification. Dilena and Morassi [14] identified isolated damage in a discrete mass-spring beam-like
system with changes in eigenvalues and eigenvectors in the structural system. The effective calculation
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of eigenparameter derivatives is important in detecting the effect of parameter variations on the
dynamic behavior of a structure. Like the finite element method, it is feasible to approximate the
dynamics of a continuous structure based on the dynamics of a discrete structural system. Qin et al. [15]
introduced the particle swarm optimization algorithm and combined high-order eigenvalue parameters
to update a bridge structure model. The results showed that the high-order vibration modes can be
used to accurately estimate and predict the structural response and structure health. Sensitivity analysis
is a reliable method of structural analysis. Cao et al. [16] even combined sensitivity analysis and the
Jacobian matrix to perform an iterative form-finding analysis for the main cable of a suspension bridge.

An eigenpair sensitivity method for a discrete structural system is introduced in this study to
identify the interlayer slip damage. In Section 2, we deduce the relationship between interlayer slip and
the dynamic vibration function of a laminated beam. A method for calculating the eigenpair derivatives
of the discrete system and the damage identification algorithm are developed in Section 3. Two
numerical examples are given in Section 4 to illustrate the efficiency and accuracy of the identification
method proposed in this study. Finally, conclusions are drawn in Section 5.

2. Interlayer Slip Damage in a Cable Structure

According to the interlayer slip properties of a frictional laminated beam [17], the interlayer slip
causes the laminated beam to be divided into many subsections in the cross-sectional direction, and
there is a dynamic frictional force at each contact face. To study the influence of the local interlayer slip
on the overall vibration of the laminated beam, it is assumed that the slip damage occurs uniformly in
the entire unit for a laminated beam of unit length. The slip state of the laminated beam is defined
according to the following situations. (1) When interlayer slippage first occurs, the laminated beam is
in the initial interlayer slip state, denoted as ∗

∣∣∣1−slip . (2) When interlayer slippage occurs j times, the

laminated beam is in the jth interlayer slip state, denoted as ∗
∣∣∣j−slip . (3) When all the contact layers

of the laminated beam have slipped, the laminated beam is said to be in the full slip state, denoted
as ∗

∣∣∣all−slip .
We assume that the cross-section of a laminated beam is divided into Ns subsections under the

action of interlayer slip, as shown in Figure 2, wherein the internal forces acting on the kth subsection
include the axial force Nk, bending moment Mk and shear force Vk. The upper and lower contact layers
of the segment are subjected to interlayer frictional forces acting in opposite directions, denoted as
fk, fk+1. Neglecting the influence of the rotational moment of inertia, the bending moment balance
equation for each subsection can be expressed as follows:

dM1 + V1dx− ( f1 + f2)
h1

2
dx = 0

dM2 + V2dx− ( f2 + f3)
h2

2
dx = 0

· · ·

dMk + Vkdx− ( fk + fk+1)
hk
2

dx = 0

· · ·

dMNs + VNs dx− ( fNs + fNs+1)
hNs

2
dx = 0

(1)

where hk is the high of the cross-section of each subsection.
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The superposition of all the fractional equations in Equation (1) can be written as follows.

Ns

∑
k=1

dMk +
Ns

∑
k=1

Vkdx−
Ns

∑
k=1

( fk + fk+1)
hk
2

dx = 0 (2)

The bending moment of the kth subsection can be formulated as follows:

Mk = EIp
i

∣∣∣j−slipω′′ (x) (3)

where Ip
i

∣∣∣j−slip is the partial moment of inertia in the jth slip state and ω(x) is the vertical displacement
of the laminated beam.

The shearing force and axial force between subsections and the entire laminated beam satisfy the
following equations.

V =
Ns

∑
k=1

Vk, N =
Ns

∑
k=1

Nk (4)

Substituting Equations (3) and (4) into Equation (2), and continuing to differentiate twice with
respect to length x, we get:

Ns

∑
k=1

EIp
i

∣∣∣j−slip
∂4ω

∂x4 +
∂V
∂x
− ∂

∂x

(
Ns

∑
k=1

( fk + fk+1)
hk
2

)
= 0 (5)

Because the interlaminar friction is assumed to be Coulomb friction, the friction is also fixed
when the slip state is constant. Therefore, the final derivative of the frictional force on the left side of
Equation (5) is equal to zero.

The vibration equation of the entire laminated beam is written as follows:

∂V
∂x

+
∂

∂x

(
N

∂ω

∂x

)
+ p(x) = m

..
ω (6)

where p(x) is the uniformly distributed load on the laminated beam, the unit of p(x) is N/m. m is the
mass of the laminated beam of unit length, the unit of m is kg/m.

Equations (5) and (6) can be combined to obtain the vibration equation of the laminated beam in
the slip state by considering the damping C:

m
..
ω + Bs

∂4ω

∂x4 + C
.

ω− N
∂2ω

∂x2 = p(x) (7)
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where Bs =
Ns
∑

k=1
EIp

i

∣∣∣j−slip is the overall bending stiffness of the laminated beam in the slip state.

Equation (7) indicates that the vibration of the frictional laminated beam in the interlayer slip
state is consistent with the vibration of a Euler-Bernoulli beam, which is generally subjected to an axial
force. However, the stiffness of the slipped partial laminated beam changes in different slip states.
Therefore, the interlayer slip damage of the frictional laminated beam can be identified by the stiffness
variation of local elements. Thus, it is reasonable to treat the cable as a discrete mass-spring system for
slip damage identification.

3. Theory of Interlayer Slip Damage Identification

3.1. Mass-Spring Systems

A mass-spring-damper system consists of n masses mi (i = 1, 2, ..., n) that are consecutively
connected by linear elastic springs ki (i = 1, 2, ..., n) and dampers ci (i = 1, 2, ..., n), as shown in Figure 3.
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The matrix associated with the dynamic equation of a discrete structural system can be expressed
as follows:

M
..
u + C

.
u + Ku = F(t) (8)

where u,
.
u,

..
u are the displacement, velocity and acceleration response vectors of the discrete structure,

respectively; F(t) is the vector of applied forces; and M is a symmetrical matrix with mass values along
the diagonal. K and C are tri-diagonal positive semi-definite matrices that can be expressed as follows.

K =



k1 + k2 −k2 0 · · · 0 0
−k2 k2 + k3 −k3 · · · 0 0

0 −k3 k3 + k4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · kn−1 + kn −kn

0 0 0 · · · −kn kn



C =



c1 + c2 −c2 0 · · · 0 0
−c2 c2 + c3 −c3 · · · 0 0

0 −c3 c3 + c4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · cn−1 + cn −cn

0 0 0 · · · −cn cn


The state vector x =

{
u
.
u

}
can be introduced to reduce the order of Equation (8) as follows.

.
x = Ax + BF(t) (9)
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where A =

[
0n×n In×n

−M−1K −M−1C

]
B =

[
0n×1

M−1

]

3.2. The Eigenparameter Sensitivity Method

System features, such as eigenvalue and eigenvector parameters, can represent the dynamics
characteristic of the system. Changes in the variables associated with system dynamics can cause
changes in the system characteristic parameters. In this case, the eigenparameter sensitivity method is
introduced to identify the interlayer slip damage.

The eigenvalues are assumed to be distinct [18], and the characteristic equation of matrix A
corresponding to the jth order eigenpair

{
λj, φj

}
is as follows.

Aφj = λjφj (10)

It is assumed that when the structure is damaged, a certain physical parameter α changes, and the
amount of change is ∆α. By differentiating Equation (10) with respect to parameter α, the following
equation can be obtained.

∂A
∂α

φj + A
∂φj

∂α
= λj

∂φj

∂α
+

∂λj

∂α
φj (11)

Based on the normalization condition, for proportionally damped systems

φj
HW

∂φj

∂α
= 0 (12)

where W is a weighting matrix, which can be taken as a unit matrix.
The detailed proof for Equation (12) can be found in Reference [18].
Combining Equation (11) and (12) yields the following relation.

[
A− λjI −φj
φj

HW 0

]
∂φj

∂α
∂λj

∂α

 =

−
∂A
∂α

φj

0

 (13)

The first-order eigenpair derivatives can be obtained from Equation (13).
∂φj

∂α
∂λj

∂α

 =

[
A− λjI −φj
φj

HW 0

]−1
−

∂A
∂α

φj

0

 (14)

3.3. The Identification Problem

When a structure is in a damaged working state, there is a difference between the measured
response and the predicted response of the structure. The damage identification problem of the
structure can be regarded as a mathematical problem that involves optimizing or minimizing the
objective function of the measured structural response and the predicted response.

The eigenpair sensitivity of a discrete structural system can be determined based on forward
analysis. Therefore, the damage identification problem based on the eigenpair sensitivity method can
be transformed into an inverse optimization problem with modal test data. The degree of damage
to the system is obtained by adjusting the structural parameters, such that the predicted structural
response is closer to the measured response. In other words, the damage identification problem for a
discrete structural system is equivalent to finding a suitable physical damage parameter α that yields
calculated values that are close to the measured values.
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The penalty function method is generally used for modal sensitivity with a truncated Taylor series
expansion in terms of the unknown parameters. This expansion is often limited to the first two terms,
to produce the linear approximation. The updated parameter value is obtained by minimizing the
penalty function; it is an iterative process [19]. According to the penalty function method, the damage
identification equation can be expressed as follows:

S∆α = ∆E (15)

where ∆α is the variation in the damage parameter of the structure and S is the two-dimensional
sensitivity matrix.

S =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂φ1

∂α1

∂φ1

∂α2
· · · ∂φ1

∂αm
∂λ1

∂α1

∂λ1

∂α2
· · · ∂λ1

∂αm

· · · · · · · · · · · ·
∂φn

∂α1

∂φn

∂α2
· · · ∂φn

∂αm
∂λn

∂α1

∂λn

∂α2
· · · ∂λn

∂αm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(16)

where the subscript m of α denotes the total number of the damaged parameter α in the structure. m is
equal to the element number of the structure. The subscript n of φ and λ denotes the order number of
the eigenpair.

∆E is the error vector for the measured data and can be obtained by the following equation.

∆E =



φ1

λ1
...

φn

λn


−



φ1

λ1
...

φn

λn


=



∆φ1

∆λ1
...

∆φn

∆λn


(17)

φn denotes the simulated experimental measured data; φn denotes the calculated data.
Thus, the damage identification problem involves solving Equation (15) to find ∆α. In the least

squares method, the solution of Equation (15) can be expressed as follows.

∆α =
[
STS

]−1
ST∆E (18)

Because the eigenpair sensitivity matrix S has a very large matrix condition number, Equation (18)
is an ill-conditioned problem. The Tikhonov regularization method is introduced here to obtain a more
accurate solution [20]. In the Tikhonov regularization method, Equation (18) can be transformed in the
following form by introducing a regularization parameter γ that can eliminate the singularity of the
ill-conditioned matrix.

∆α =
[
STS + γI

]−1
ST∆E (19)

The Tikhonov regularization parameter γ is also called the non-negative damping coefficient. The
solution to Equation (19) is equivalent to minimizing the function J(∆α, γ):

argmin J(∆α, γ) = argmin
∆α,γ
‖S∆α− ∆E‖2 + γ‖Γ∆α‖2 (20)

where Γ is the Tikhonov choice matrix, which is equivalent to the unit matrix I.
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Then, the minimized value of function J(∆α, γ) can be calculated by determining the residual
norm ‖S∆α− ∆E‖, the regularization parameter γ and solution norm ‖∆α‖. When the parameter γ

approaches zero, the solution approaches that obtained from the least squares method. The optimal
Tikhonov regularization parameter γ can be obtained using the L-curve method [21].

The interlayer slip damage parameter α is determined by iterative calculations. The updated
parameter α(i+1)th of the ith iteration can be calculated as follows.

α(i+1)th = αith + ∆αith (21)

The calculation converges when the following criterion is met:

‖α(i+1)th − αith‖
‖αith‖

≤ Tol (22)

where Tol is the tolerance of damage identification.
The main calculation steps in the interlayer slip damage identification algorithm are as follows.

(1) Calculate the eigenpair sensitivity matrix of the structural system using Equation (14).
(2) Calculate the error vector ∆E based on Equation (17).
(3) Calculate the variation in the damage parameter ∆α using the Tikhonov regularization method.
(4) Update the parameter α(i+1)th of the ith iteration with Equation (21).
(5) Perform iterative calculations until the conditional convergence criterion is satisfied for

iteration termination.

3.4. Robustness of Artificial Measurement Noise

To assess the robustness of the damage identification algorithm in this paper, noise perturbation
is performed by adding artificial measurement noise to the data [22]:

φnoise,ij = φij + Ep · Nnoise · σ
(
φij
)

(23)

where φnoise,ij and φij are the mode shape components of the jth mode with i degrees of freedom with
noise and without noise, respectively; Ep is the noise level (in percent); Nnoise is a standard normal
distribution with zero mean and unit standard deviation; and σ

(
φij
)

is the standard deviation of the
calculated acceleration response.

4. Numerical Examples

4.1. Example 1: A Mass-Spring-Damper System with 7 DOFs

To verify the validity of the eigenpair sensitivity damage identification method for discrete
structural systems, a mass-spring-damper system with 7 degrees of freedom (DOFs) was studied,
as shown in Figure 4. The parameters of the system are assumed as mi = 10 kg, ki = 3× 105 N/m,
ci = 0.5 Ns/m, (i = 1, 2, . . . , 7). The physical quantity of structural damage is represented by the
changes in the stiffness parameter and the damping parameter, and the remaining parameters
are unchanged.
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Case 1: Singular damage to a structure

Assuming that the fourth element of the system is damaged, the stiffness k4 is reduced by 30%,
or the damping c4 increases by 20%. The results of stiffness and damping damage identification are
plotted in Figures 5 and 6, and the changes in the stiffness and damping results over a series of cyclic
iterations are shown in Figures 7 and 8.
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Table 1 shows that the eigenpair sensitivity method can accurately locate the position of a
damaged element in the structure for the singular damage case with a 5% artificial measurement noise
disturbance. Additionally, the damage parameter can be obtained with high precision.

Table 1. Error comparison of the damage identification results with and without noise.

Degree
of
the Noise Disturbance

Stiffness Damping

Result Relative Error
(%) Result Relative Error

(%)

0% −30.00 0.00 19.97 0.15
5% −27.51 8.33 17.28 13.60

Case 2: Multiple instances of small damage to a structure

In this case, we assume that two elements are damaged at the same time and that the degree
of damage is small. The stiffness of the third and fifth elements, k3 and k5, are reduced by 3% and
5%, and the damping values of the third and fourth elements, c3 and c4, are increased by 5% and 7%,
respectively. The proposed method is used to identify the multiple small instances of damage, and
the results are shown in Figures 9 and 10. The identification errors of the damaged elements with the
5% level of measurement noise disturbance are less than 0.58%. The stiffness and damping damage
identification results of the undamaged elements are determined to have identification errors of less
than 0.65% and 0.50%, respectively, at the 5% level of measurement noise disturbance. However, the
method can effectively eliminate the undamaged elements by comparing the corresponding values to
those of damaged elements. The identification results for each iteration are presented in Figures 11
and 12. Both the stiffness and damping parameters are accurately identified after approximately 17
iterations using the proposed method. In small degree of multiple damage case, the proposed method
can identify the damage parameter successfully no matter the two damaged elements are consecutive
or inconsecutive.
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Case 3: Multiple instances of large damage to a structure

It is assumed that large damage to the second, third and fifth elements occurs, with the degrees
of stiffness k2 and k3 and damping c3 and c5 perturbed by −20%, −30%, +20% and +30%. The
identification results are shown in Figures 13 and 14. The stiffness and damping identification errors of
the damaged elements with a 5% level of measurement noise disturbance are less than 0.26% and 1.28%.
The stiffness and damping damage identification results of the undamaged elements are determined
to have identification errors of less than 2.87% and 0.68%, respectively, at the 5% level of measurement
noise disturbance. Figures 15 and 16 are the identification results for each iteration in case 3. A
comparison with the iteration figures in the previous case indicates that the proposed method can
identify large instances of damage faster than small instances of damage. In large degree of multiple
damage case, the proposed method can also identify the damage parameter successfully no matter
the two damaged elements are consecutive or inconsecutive. However, if the two damaged elements
are consecutive, the identification errors of the undamaged elements are bigger, and higher-order
eigenparameters will be needed in the calculation process.
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Case 4: Robustness to measurement noise

It is assumed that four instances of damage occur to the second, third, fourth and fifth elements
with parameters k2, c3, k4 and c5 perturbed by −10%, +20%, −30% and +40%, respectively. There are
four different artificial measurement noise disturbance levels. The identification results are shown
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in Figure 17. The results indicate that the eigenpair sensitivity method can accurately identify the
parameter damage degree when there is no measurement noise. As the artificial measurement noise
level gradually increases, the error of the parameter damage recognition result also gradually increases.
When the noise level of 15% is reached, the errors of the parameter damage identification results are
within 3%. Thus, the proposed method is robust to noise disturbances in high-damage cases.
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The damping of the laminated beam is assumed to be Rayleigh damping. Referring to the test
results of cable damping characteristics in the relevant literature [23–27], the first two modes of the
modal damping ratio are set to 0.003.

The reduction in the local bending stiffness of the cable caused by interlayer slip damage appears
symmetric or asymmetric in multiple elements located at both the fixed end and external load position.
Four different cases are studied in this example, including symmetrical damage in the first slip state,
symmetrical damage in all slip states, asymmetrical damage in the second slip state and asymmetrical
damage in all slip states. The robustness to measurement noise disturbance is also studied in case 9.

Case 5: Symmetrical damage in the first slip state (short cable)

We assume that a small external load is applied in the middle of the laminated beam and that
four elements located at both the fixed end and the middle span enter the first interlayer slip damage
state. The identification results of interlayer slip damage are shown in Figure 19, and the results for
each iteration are shown in Figure 20. In the case of a 5% level of measurement noise, the stiffness
values for the interlayer slip damage elements are −5.18%, −5.02%, −5.11% and −5.01%. Additionally,
the stiffness damage identification errors of non-slip elements are within 1%. Therefore, the damage
identification results of the proposed method can accurately determine the position and extent of the
slip damage in the case of a small applied load.
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Case 6: Symmetrical damage in all slip states (short cable)

In this case, we assume that a large external load is applied in the middle of the laminated
beam. Four elements located at both the fixed end and the middle span are become the full interlayer
slip damage state, and the four elements next to these elements are in the j-th interlayer slip state.
The identification results of the interlayer slip damage are shown in Figure 21, and the results for
each iteration are shown in Figure 22. In the case of a 5% level of measurement noise, the stiffness
changes of the eight interlayer slip damage elements are −51.45%, −20.86%, −23.48%, −50.37%,
−50.69%, −25.24%, −25.01% and −50.49%. Additionally, the stiffness damage identification errors of
the non-slip elements are less than 2%. This level is lower than the stiffness damage value of the first
slip state, and such elements can be easily identified as non-slip elements. This result shows that the
proposed method can effectively locate the slip damage elements and accurately identify the interlayer
slip damage in complicated conditions involving all interlayer slip damage states.
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Case 7: Asymmetrical damage in the second slip state (short cable)

In this case, we assume that a small external load is applied to the 1/4 span of a laminated
beam and that four elements located at both fixed end and the 1/4 span reach 2nd interlayer slip
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damage state. The identification results of the interlayer slip damage are shown in Figure 23, and the
results for each iteration are shown in Figure 24. In the case of a 5% level of measurement noise, the
stiffness changes in the interlayer slip damage elements are −8.85%, −10.05%, −7.78% and −8.84%.
Additionally, the stiffness damage identification errors of the non-slip elements are less than 3%.
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Case 8: Asymmetrical damage in all slip states (short cable)

In this case, we assume that a large external load is applied to the 3/4 span of a laminated
beam. Extensive interlayer slip damage occurs in eight elements located at both the fixed end and the
applied load position. Figure 25 shows the identification results in the asymmetrical damage state,
and Figure 26 shows the results of each iteration. In the case of a 5% level of measurement noise,
the stiffness changes of the eight interlayer slip damage elements are −38.52%, −22.28%, −20.01%,
−40.04%, −50.23%, −25.81%, −24.58 and −49.55%. The stiffness damage identification errors of
non-slip elements are less than 3%, and these elements can be easily identified as non-slip elements
because the stiffness damage value of the first slip state is not reached.
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Case 9: Robustness to measurement noise disturbances

By comparing the results in cases 5 through 8, we can conclude that the eigenpair sensitivity
method is most sensitive to the asymmetrical damage in the second slip state. In other words, interlayer
slip damage identification is most sensitive to a measurement noise disturbance when the applied
external load is small and asymmetrically applied to a laminated beam. Therefore, case 7 is chosen to
study the robustness of the method to noise disturbances. Four different measurement noise levels are
studied, and the results are shown in Figure 27.

The proposed method can accurately identify the interlayer slip damage in the case of no
measurement noise disturbance. The error of the identification results increases with increasing
noise level. The identification errors of interlayer slip damage are within ±2%, even when the noise
level reaches 15%. Thus, the proposed method of interlayer slip damage identification is robust to
noise disturbances.
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4.3. Example 3: A Laminated Beam Model of PWS-91 Parallel Cable Length of 30 Meters (Long Cable)

It can be seen in example 2, above, that for the 5 m short cable, the proposed method can
accurately identify the stiffness loss caused by the slip damage and has good robustness to the artificial
measurement noise. The numerical example 3 increases the length of the structure shown in Figure 18 to
30 meters, and the physical parameters and structural section properties are consistent with example 2.
The 30 meters of cable in numerical example 3 are divided into 100 elements and 101 nodes, and only
the case where the external load is applied at the mid-span position of the structure is calculated here.
The identification results are shown as follows:

Case 10: Symmetrical damage in the first slip state (long cable)

We assume that a small external load is applied at the middle of the laminated beam and that four
elements located at both the fixed end and the middle span enter the first interlayer slip damage state.
The identification results of interlayer slip damage are shown in Figure 28, and the results of each
iteration are shown in Figure 29. In the case of a 5% level of measurement noise, the stiffness values
for the interlayer slip damage elements are −4.45%, −2.95%, −3.01% and −3.26%. Additionally, the
maximum stiffness damage identification error of non-slip elements is −1.29% in the No.94 element.
However, in the case of without noise disturbance, the identification results in all elements are basically
the same.
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Case 11: Symmetrical damage in all slip states (long cable)

In this case, we assume that a large external load is applied at the middle of the laminated beam.
Four elements located at both the fixed end and the middle span are become the full interlayer slip
damage state with 17% stiffness reduction, and the four elements next to these elements are in the
j-th interlayer slip state with 8% stiffness reduction. The identification results of the interlayer slip
damage are shown in Figure 30, and the results for all iteration are shown in Figure 31. In the case of
a 5% level of measurement noise, the stiffness changes of the eight interlayer slip damage elements
are −16.57%, −8.38%, −7.71%, −17.14%, −17.14%, −8.06%, −8.62% and −16.83%. Additionally, the
maximum stiffness damage identification error of the non-slip elements is 3.64% in No.95 element.
This level is lower than the stiffness damage value of the first slip state, and such elements can be
easily identified as non-slip elements.
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To verify the feasibility of the proposed method when the cable length and the element length
change, Table 2 lists the damage identification results under three different conditions, including cable
lengths of 5 m and 30 m, and element lengths of 0.1 m and 0.3 m.

Table 2. Maximum identification results of structural and element length variation.

Cable
Length

(m)

Number
of

Element

Element
Length

(m)

Iteration
Number

Minimum
Eigenpair

Order Used

Without Noise
Disturbance

5% Noise
Disturbance

Red. (%) Res. (%) Red. (%) Res. (%)

5 50 0.1 21 5 49.9 0.1 20.9 4.1
30 100 0.3 25 7 16.9 0.1 3.6 3.6
30 300 0.1 30 10 50.4 0.4 3.9 3.9

Notes: (1) ”Red.” denotes Reduction, “Res.” denotes Relative error; (2) The data in the table are the damage
identification results of the symmetrical all slip state in the case of without or with 5% noise disturbance.

Table 2 shows that for short or long cables, the proposed eigenparameter sensitivity method
can accurately identify the stiffness damage caused by interlayer slip. Even in the 5% artificial
measurement noise disturbance conditions, the damage identification result is smaller than the true
value of the damage degree. However, it can be seen from Table 2 that as the element number of the
long cable increases, the number of iterations and the minimum eigenpair order also increase. This
means that if the damage location range is changed from 0.3 m to 0.1 m (that is, the element number
changes from 100 to 300), the proposed method will significantly increase the computational cost while
ensuring the accuracy of damage identification. However, the previous research results indicate that at
least the first ten-order eigenparameter data can be successfully acquired using acceleration sensors
or computer vision techniques in engineering applications or structural experiments. In addition,
these eigenparameter data can be applied to subsequent analysis such as damage identification and
model updating of structures effectively [28–33]. Moreover, with the maturity and popularity of new
technologies such as computer vision measurement technology, the collection of cable eigenparameter
data will be increasingly accurate and low cost. So it is practical for the proposed method to be applied
to structural experiments and real engineering projects.

5. Conclusions

The relative slip between wires in a cable is equivalent to the interlayer slip of a laminated beam.
In this study, a laminated beam is simulated as a discrete structural system, and an eigenparameter
sensitivity method is used to identify the damage caused by the interlayer slip. The results of different
examples show that the proposed method can simultaneously and accurately identify the damage



Sensors 2018, 18, 4456 22 of 23

variations in the stiffness and damping parameters of the structure. For complex cases of multiple
instances of damage caused by the slip between cables, the proposed method can effectively identify
the slip damage elements and quantify the interlayer slip damage. Additionally, the method is robust
to measurement noise disturbances. The accuracy of the identification results can be improved with
more modal data in the eigenparameter sensitivity matrix when large-scale elements are identified.
However, more iterations and calculations will be required. In this paper, currently, theoretical methods
and numerical examples have been studied and verified. Subsequent research will further analyze the
application of this method with more experimental data or engineering measured data.

6. Future Work

The continuation of this research will include the following:

(1) Improve the experimental design of Numerical example 2 and verify the reliability of the proposed
method with experimental measured data;

(2) Research on parameter identification and model updating based on experimental measured data
to explore noise robustness in the real-life measurements;

(3) Further study the influence of other affective factors of long-span cable structure on the damage
identification of interlayer cable slip.
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