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Abstract: The China-Nepal Highway is a vital land route in the Kush-Himalayan region.
The occurrence of mountain hazards in this area is a matter of serious concern. Thus, it is of
great importance to perform hazard assessments in a more accurate and real-time way. Based on
temporal and spatial sensor data, this study tries to use data-driven algorithms to predict landslide
susceptibility. Ten landslide instability factors were prepared, including elevation, slope angle,
slope aspect, plan curvature, vegetation index, built-up index, stream power, lithology, precipitation
intensity, and cumulative precipitation index. Four machine learning algorithms, namely decision
tree (DT), support vector machines (SVM), Back Propagation neural network (BPNN), and Long
Short Term Memory (LSTM) are implemented, and their final prediction accuracies are compared.
The experimental results showed that the prediction accuracies of BPNN, SVM, DT, and LSTM in
the test areas are 62.0%, 72.9%, 60.4%, and 81.2%, respectively. LSTM outperformed the other three
models due to its capability to learn time series with long temporal dependencies. It indicates that
the dynamic change course of geological and geographic parameters is an important indicator in
reflecting landslide susceptibility.

Keywords: landslide susceptibility; China-Nepal Highway; machine learning; LSTM; remote
sensing images

1. Introduction

The China-Nepal Highway is a vital land route connecting China and Nepal, which is also an
important part of the “One Belt and One Road” development strategy. It is located in the Hindu
Kush-Himalayan region—one of the most tectonically active regions of the world. Due to the fragile
ecological environment and highly-varying hydrothermal conditions, mountain hazards such as
landslides and mudslides take place frequently and have caused severe damage to infrastructure.
Thus, it is of great importance to perform the mountain hazard assessment in a more accurate and
real-time way. Taking landslide related hazards as the research object, a prediction model is established
to assess the susceptibility in this paper.

In the past, disaster information extraction and prediction were mainly based on artificial visual
interpretation. Apart from being time-consuming and strenuous, the traditional method also has
a limitation in that the measurement process lacks of accuracy and depends heavily on experts’
experience. With the development of the computer vision and pattern recognition technologies, it is
possible to make the hazard assessment automatic. Synthetic aperture radar (SAR) images have been
employed to monitor the surface movement of landslides [1]. Vahidnia et al. [2] applied geographic
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information systems (GIS) to produce a landslide susceptibility map in which the slope failures that
are most likely to happen are displayed. Owing to its high spatial resolution and stereo capability,
high-resolution remote sensing images have played an important role in improving the efficiency and
accuracy of hazard monitoring [3,4]. The other type of monitoring method is to embed different kinds
of sensors related to slope, rainfall, water table level, and other factors into the landslide and sense the
dynamic change of signals. Wireless sensor networks are therefore being used to achieve large-scale
data collection and transmission [5].

By employing different sensing and monitoring techniques [6-9], multidimensional and multiscale
temporal and spatial data can be collected. Based on the data, a variety kind of models and algorithms
have been employed in landslide susceptibility assessment. Statistical regression models are typical
methods to directly describe the spatial relationships between landslide occurrence and effecting
factors [10-12]. Nandi et al. evaluated the multivariate statistical relationship between landslides
and various instability factors including slope angle, proximity to stream, soil erodibility, and soil
type based on the logistic regression approach [10]. Due to the non-linear condition of hazard
prediction, conventional regressive models fail to accurately characterize the causality among variables
correctly. Data-driven approaches rely mainly on historical data and do not assume any form of
mechanism information, and they have already received much attention in hazard susceptibility
assessments, such as support vector machine (SVM), decision tree (DT), neural networks (NN) and
so on [13-22]. Liu et al. developed a hybrid BP neural network to assess the geological hazard
risk which adopted genetic algorithm (GA) and particle swarm optimization (PSO) to optimize the
network connection weights and thresholds [13]. Marjanovi¢ modeled the landslide susceptibility
assessment problem as a classification problem, and applied SVM to evaluate which category the
region belongs to—stable ground, or dormant and active landslides [4]. As expert experience is helpful
to improve prediction accuracy, adaptive neuro-fuzzy inference (ANFI) and Bayesian inference are also
widely used in susceptibility assessments [23-27]. Vahidnia employs a fuzzy inference system (FIS) to
model expert knowledge, and an artificial neural network (ANN) to assess landslide susceptibility by
identifying non-linear behavior and generalizing historical data to the entire region [2]. Chalkias used
an expert-based fuzzy weighting (EFW) approach to determine the susceptibility level of different
regions by weighted linear combination, in which precipitation, slope, and lithology were considered
to be the most important conditioning factors [27].

The formation and occurrence of landslides is a complicated evolution process, which is caused
by the interaction of multiple instability factors. However, most of the methods consider only
the current value of the instability factors while ignoring the factors” evolution feature over time.
The recurrent neural network (RNN) can use internal memory units to process arbitrary sequences
of inputs, thus making RNNs capable of learning temporal sequence. As a special RNN architecture,
LSTM inherits RNNs’ good features of sequence learning, and is able to learn the time series with long
temporal dependency and automatically determine the optimal result by applying the gate control
mechanism. Thus, LSTM has recently attracted wide attention in time series predictions, natural
language generation, and so on 28-30]. Ma et al. present a novel LSTM NN to predict travel speed with
long time dependencies using microwave detector data. The numerical experiments demonstrate that
the LSTM NN outperforms Elman NN, TDNN, and NARX NN in terms of accuracy and stability [28].
Yu developed a transient stability assessment system based on the LSTM network, aiming at balancing
the trade-off between assessment accuracy and response time [29]. To our knowledge, Mezaal was
the first to use RNN in automatic landslide detection from high-resolution airborne laser scanning
data, with an accuracy of more than 80% [30]. In this paper, LSTM is applied to assess the dynamic
landslide susceptibility based on multidimensional and multiscale temporal and spatial data. The aim
of this research is the assessment of landslide susceptibility based on machine-learning algorithms
for the China-Nepal Highway in the Hindu Kush-Himalayan region, taking into consideration the
various instability factors and their evolution features.
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2. Methodology

2.1. Study Area

The China-Nepal Highway, marked as an orange bold line in Figure 1, is located in the central
part of the Hindu Kush Himalayan region (HKH). It runs east to west over 943 km from Lhasa, the
capital of Tibet, China, to Kathmandu, capital of the Federal Republic of Nepal. The highway stretches
through four large mountains, namely the Tolsan (elevation 4950) and Gatzola Mountain. (elevation
5220), Tonglashan (elevation 5324), Yaxunxiong (elevation 5627), and has an average altitude of more
than 4000 m. Due to the fact that the entire area is located in the slope layers and plateau terrain of the
Himalayas, the terrain, geology, hydrology, and climate along the highway are extremely complex.
Surrounded by high mountains, deep valleys, steep terrain, severe mountain fragmentation, strong
new structure movements, frequent earthquakes, and concentrated precipitation (annual rainfall of up
to 2500 mm), the highway is heavily affected by natural hazards such as landslides, fragmentation,
landslides, and mudslides.

(a) (b)
Figure 1. (a) map of the China-Nepal Highway; (b) Location map of the study area.

The study area is located in the Nyalam of Shigatse area, where geological disasters occur most
frequently. This part stretches 133 km from Mengla in the north to Friendship Bridge bordering
Nepal in the south, comprising longitudes 85°57'55”-86°10"7” and latitudes 27°58'20”-28°48'30".
The topology of the area undulates dramatically, with elevations ranging from 1770 m to 5123 m.

2.2. Instability Factors

The first problem to be addressed is the detection of instability factors which cause mountain
hazards of different types and degrees. With the development of space techniques and information
technologies, a great variety of temporal and spatial data become available, such as geological data,
geographic information, high-resolution remote sensing images, hydrological data, and so on. These
instability factors can fall into three categories: disaster-causing factors, disaster-pregnant environment
factors, and hazard-bearing body factors. A disaster-pregnant environment is characterized by
topography, lithology, and the formation of strata, as well as land use. Disaster-causing factors include
the precipitation and dynamic change of glacial lakes. The vulnerability degree of hazard-bearing
bodies and the dangerous degree of the above two factors together decides the severity of mountain
hazard. Since the instability factors are numerous, and most of them have obvious fuzziness and
uncertainty, it is difficult to extract key factors that can provide accurate and real-time hazard
susceptibility assessment from multi-source data.

Figure 2 illustrates the landslide susceptibility assessment framework based on multi-source data
integration and deep learning algorithms. Data sources related to mountain hazards include digital
elevation model (DEM), high-resolution remote sensing images (HR-RS), 1: 50,000 geologic maps
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(GM), and meteorological data (MD). Different features can be extracted from the aforementioned raw
data, as follows.
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Figure 2. Framework of integrated deep learning-based landslide susceptibility assessment.
2.2.1. Features Based on DEM

Slope angle: Slope degree is one of the most frequently-used factors in assessing landslide
susceptibility [13-18]. It has a great influence on slope stability and is directly related to the different
types of mountain hazards (Figure 3a).

Slope aspect: It is defined as the direction of terrain surface, such as north, northeast and so on.
Since hillsides orientated differently receive direct solar radiation and rainfall in different amounts,
which lead to different slope topography, humidity and plant cover, the slope aspect is also accepted
as a conditioning factor (Figure 3b).

Elevation: Previous records of the China-Nepal Highway hazards indicate that landslides in that
area generally occur at a middle elevation (Figure 3c). This is due to the fact that a mountain at high
altitudes usually has thin soil cover and a stable rocky structure, while area at low altitudes has gentle
slopes, neither of which is susceptible to landslides [13,14].

Plan curvature: Curvature is defined as the change rate of slope angle with surface plane. The
direction of drainage line is influenced by plan curvature types, and the river erosion is a key factor
that affects the slope stability (Figure 3d).
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Figure 3. Spatial factors in China-Nepal highway: (a) slope angle; (b) Slope aspect; (c) Elevation;
(d) Plan curvature.

2.2.2. Features Extracted from HR-RS

Remote sensing images are used to extract land cover and utilization information through
object-based classification methods. A series of preprocessing work is essential for image classification,
including the radiation correction, the geometric correction, the landform correction and the noise
reduction. The purpose of radiation correction is to eliminate the difference of spectral reflectivity and
spectral radiance between the sensor data and the real images. Geometric correction is the calibration
of geometric distortions such as offset, stretching, squeezing, and distortion of the image due to
factors such as the rotation or the curvature of the earth, and the temporal and spatial changes of the
remote sensing platform. Then different types of land covers are classified, including water, built-up,
vegetation, high-way, rock and so on. Cover area of water, vegetation and rock belong to instability
factors, while built-up and high-way effect the dangerous degree of landslides. We can obtain four
indicators from the classification results: vegetation index, built-up index, road index and stream
power index.

2.2.3. Features Based on GM

The development of geological hazards is influenced by strata’s lithology, geological structure
and rock-texture. Places with strong structural deformation are easy to form folds and faults, as well
as large-scale rock body rupture, which often become the solid source of landslides.

Lithology: The relationship between lithology and solid source is reflected in the weather
resistance and anti-erosion ability. Generally, soft layer has low strength and weak resistance to
weathering and provides more incompact solid matters. The complex geological structure and the
massive loose solid materials intensifies the landslide disaster’s occurring. Geology formations in the
study area mainly include limestone, dolomite, sandstone and shale.

2.2.4. Features Based on MD

Water is not only an important component of landslides, but also a triggering condition and
transport medium. Rainfall is an important predisposing factor in triggering landslides because
it reduces soil suction and increases the pore-water pressure in soils [31-33]. Experiments have
shown that the landslide occurrence is related both to the intensity and duration of a rainfall event.
Thus, two indexes are used to quantify the precipitation characteristics: cumulative precipitation
index (CPI) and precipitation intensity index (PII). CPI is calculated with the linear combination of
antecedent precipitation in a period, while PII represents the hourly rainfalls which contributes to the
landslide-triggering rainfall threshold.

Py = KP, + K?P, + ... + K'P, (1)
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P,0 was used to define the CPI, where P, is the daily rainfall for the i-th day before day 0, n is
the total number of days considered in the model (n = 10 in this work), K is the constant decay factor
representing the outflow of the regolith (0 < K < 1). Figure 4 shows the changing curve of PII and CPI
at an observation point during one year from 2016/01-2016/12
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Figure 4. PII and CPI curve of an observation point from 2016/01-2016/12.

2.3. LSTM

Both SVM and NN belong to the static model, which neglect the dynamic evolution characteristics
of mountains and landslide displacement and limit the improvement of prediction accuracy. Unlike
the traditional neural network such as BPNN and ANN, RNN adopts recursive connection to construct
its internal nodes, so that the state of the previous moment can influence the latter moment, thus
realizing the state feedback of the network. However, when the information or time interval between
the nodes becomes very long, "It is difficult for RNN to capture long-term time associations, which is
called the “vanishing gradient problem”. To solve this problem, LSTM is then proposed by adding a
memory block in each unit of hidden layers, which comprises three types of gate functions—input
gate, forget gate, and output gate. LSTM uses the memory mechanism to control the transmission of
information at different times, which greatly improves the ability of RNN to process long-sequence
data. The LSTM model structure diagram is shown in Figure 5.
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Figure 5. LSTM model structure diagram.

Input gates:
ir = o(Wyixt + Wyihe 1 + Weicr 1 + b;) 2
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Forget gates:

ft = c(Wypxe + Wyghy 1 + Weper 1+ by) ®)
Cell units:

Ct = ftct—l + ittanh(wxcxt + Wichi 1 + bc) (4)
Output gates:

0t = O'(onxt + Wiohi—1 + Weoct + bo)

hy = ostanh(c;) ©®)

where iy, fi, ¢, 0; represents the state vector of the input gate, forget gate, cell unit and output gate
at time step ¢, respectively. x; denotes the input of LSTM network at time ¢, W is the weight matrix
between each layer, I represents the hidden state vector and b is the offset value corresponding to
each gate. ¢ is a sigmoid activation function mapping real numbers to [0,1], while tanh is a hyperbolic
tangent function mapping real numbers to [—1,1].

3. Results

3.1. Four Prediction Models

A total of 3800 data points collected from the monitoring site during the period from January 2015
to December 2016 were used in this experiment, which is shown in Figure 6. Data collected between
January 2015 and June 2016 were used as a training data set, and the remaining data were used as a
test data set. Data preprocessing is performed before the entire data set is split. In order to reduce the
influence of the landslide evaluation factor data type, value range, and dimension inconsistency on the
prediction model, the original data is normalized to [0,1] closed interval. For each of the attribute values
in the evaluation factor, the attribute values are normalized, and the normalization method uniformly
uses the range standardization. The sensitivity index was divided into stable, low susceptibility,
moderate susceptibility, medium susceptibility and high susceptibility, and very high susceptibility.
Thus, the landslide susceptibility assessment is transformed into a classification problem.

Figure 6. Sample points of test area.

Four common classification algorithms are used in the paper to compare with the LSTM model,
decision tree (DT), support vector machines (SVM), and Back Propagation neural network (BPNN).
The DT and BPNN prediction are performed using Matlab R2013b. LSTM and SVM are implemented
in Python using the open source deep learning framework Keras package (which uses TensorFlow as a
backend) and the Scikit-learn package, respectively. The parameters of these models are as follows.
Table 1 shows the optimal parameters of the four models.
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Table 1. Optimal parameters of different models.

Model Parameter Value Description
BPNN Number of hidden layer neurons 21
Activation function Sigmoid function
SVM c 0.15 Penalty coefficient
g 0.75 Parameter of RBF
Kernel function Radial basis functions
DT criterion Gini Criterion for feature selection
max_depth 30 Maximum depth of the tree
min_samples_leaf 50 Minimum sample number of the leaf node
LST™M input sequence length 8
Loss function Categorical cross-entropy

For BPNN, the most widely-used three-layer network consists of an input layer with 10 neurons,
one hidden layer with 21 neurons, and one output layer with 1 neuron; it was built as a network
structure. The number of hidden layer neurons is determined according to the empirical equation
Np = 2N; + 1, where N}, represents the number of hidden layer neurons and Nj is the number of input
layer neurons. Since the initialization weights and thresholds of the BP network have a great influence
on the training speed and effect, this paper adopts genetic algorithm to optimize these parameters.

For SVM, the kernel function is the most important factor determining the model prediction effect.
The K-fold Cross Validation (K-CV) method is applied to search the optimal parameters (K = 20 in the
paper). The original data is divided into K groups, of which each subset data is used as a test set and
the remaining K-1 subset data is used as a training set. By using the K-CV method, the classification
accuracies under different combination of ¢ and g are obtained. The combination of ¢ and g with the
highest classification of accuracy is selected as the best parameter.

For DT, the purpose of parameter optimization is to prevent the structure of the tree from being
too large, resulting in over-fitting problems. Info entropy and gini index are the most commonly-used
impurity functions to split the nodes. max_depth and min_samples_leaf act as a constraint to determine
the termination of the decision tree construction, thereby controlling the size of the tree.

For LSTM, the length of the input sequence determines the number of the historical data points in
the recursive connection. By the grid search method, the input sequence length is set to 8 in this paper.

3.2. Experiment Result

As mentioned above, this paper establishes the landslide hazard prediction as a classification
problem, and the sample points can be divided into six categories according to different landslide
susceptibility levels, i.e., stable, low susceptibility, moderate susceptibility, medium susceptibility and
high susceptibility, and very high susceptibility. In the experiment, stable is denoted as label 1, while
very high susceptibility is denoted as label 6. Through expert experience and manual judgment, the
number of sample points of each susceptibility level is shown in Table 2, where 1612 of 3800 points are
in a stable condition, 934 of 3800 points are in a low susceptibility condition, 549 of 3800 points are
in a moderate susceptibility condition, 259 of 3800 points are in a medium susceptibility condition,
234 of 3800 points are in a high susceptibility condition, and 212 of 3800 points are in a very high
susceptibility condition.

Table 2 and Figure 7 illustrate the prediction results of different classification models. In Table 2,
take the first row as an example; it shows that by applying BPNN model, 1015 points are correctly
classified into label 1 (stable), which means the accuracy is 62.97%. For the sample points in label
1, BPNN, SVM, DT, LSTM models achieved accuracies of 62.97%, 76.36%, 64.21%, and 82.20%,
respectively. Figure 7 shows the confusion matrixes of the four models. It is a visual display tool
for evaluating the quality of a classification model, wherein each column of the matrix represents
the sample label predicted by the model, while each row of the matrix represents the true label of
the sample.
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Table 2. Classification results of different models.
Models Label 1 Label 2 Label 3 Label 4 Label 5 Label 6
BPNN 1015 434 115 31 13 4
Label 1 SVM 1231 351 2 10 10 8
(1612) DT 1035 285 142 84 41 25
LSTM 1325 251 36 0 0 0
BPNN 154 597 90 56 30 7
Label 2 SVM 204 691 16 5 13 5
(934) DT 179 526 94 94 25 16
LSTM 56 801 40 19 13 5
BPNN 67 96 312 51 19 4
Label 3 SVM 12 133 384 15 5 0
(549) DT 32 40 322 82 50 23
LSTM 12 83 423 23 8 0
BPNN 3 20 49 170 15 2
Label 4 SVM 0 5 54 179 21 0
(259) DT 16 11 31 159 23 19
LSTM 0 4 34 198 23 0
BPNN 0 19 21 35 131 28
Label 5 SVM 0 3 38 53 140 0
(234) DT 10 19 20 29 132 24
LSTM 0 1 18 23 172 20
BPNN 1 7 19 20 33 132
Label 6 SVM 0 0 0 4 64 144
(212) DT 19 18 17 16 20 122
LSTM 0 0 0 14 32 166

Figure 7. Multi-class confusion matrix of the four models for landslide hazard prediction.

(c) DT

(d) LSTM



Sensors 2018, 18, 4436 10 of 13

In actual situations, prediction results of the landslide susceptibility level within a certain margin
of error are acceptable. For example, if the actual area is in a stable condition and by prediction models
it is classified as being in a low susceptibility category, then the prediction results can be considered as
acceptable. Thus, in the paper, the prediction error level (PEL) is defined as an indicator to measure
the prediction effect of different models.

o Z}zrmn;i((l:kk%)) Vj
Z?:l N;

PEL; = (6)

where PEL; represents the kth prediction error level, Nj is the points number in label | of the prediction
results, N; is the points number in label 7 of the actual sample.

In Table 3, O-level represents the prediction accuracy of different labels, while 1-level means the
prediction error is only one interval, for example, the actual condition is low susceptibility while the
predicted condition is stable or moderate susceptibility. In practice, the prediction results with 0-level
or 1-level error are acceptable and can be used to make preventative and control measures. In Figure 8,
we can see that almost 90% of the prediction errors of LSTM are 0-level or 1-level.

Table 3. PEL results of different models.

0-Level 1-Level 2-Level 3-Level 4-Level 5-Level
(Excellent) (Good) (Moderate) (Poor) (Bad) (Very Bad)
BPNN 62.03% 25.92% 8.42% 2.97% 0.53% 0.13%
SVM 72.87% 23.97% 1.87% 0.69% 0.40% 0.21%
DT 60.42% 21.24% 10.10% 4.85% 2.24% 1.16%
LSTM 81.18% 15.40% 2.92% 0.37% 0.13% 0

PEL results

LSTM I 0-level
1-level
SVM I H 2-level
M 3-level
BPNN - m 4-level
M 5-level
o .
0% 20% 40% 60% 80% 100%

Figure 8. PEL results of the four models.

4. Discussion

The overall prediction accuracies of BPNN, SVM, DT, and LSTM are 62.0%, 72.9%, 60.4% and
81.2%, respectively. As the performance of a data-driven model is greatly affected by the sample
size, there are differences in prediction accuracies among different labels. From Table 2, we can also
conclude that high susceptibility is the most difficult condition to predict, since it only has an accuracy
of 73.5% by LSTM, while the stable condition has an accuracy of 82.2%. In general, LSTM and SVM
outperform BPNN and DT in each category in terms of stability of accuracy across different folds of
the tested dataset. This is due to the fact that SVM is a structural learning method, which makes it
advantageous in solving high dimensional models of small-sample sets. Meanwhile, the historical



Sensors 2018, 18, 4436 11 of 13

information from the previous steps contained in the hidden layer of LSTM makes it the most accurate
among the four models.

The confusion matrixes in Figure 6 show that there is a certain classification error between label
1 and label 2 for BPNN, SVM, and DT, which means that it is hard for them to distinguish the low
susceptibility from the stable condition. Although SVM has a relatively good accuracy, it does not
perform well in classifying the neighboring two categories. From this perspective, LSTM is better than
SVM since the boundary between the diagonal section and other section in the confusion matrix is
obvious. From Figure 8 we can see that the prediction error at level 2 or below of all these four models
accounts for more than 90%, which means the four models can predict the landslide susceptibility
well within an acceptable error range. The LSTM model has the lowest probability of large prediction
errors (3-level or above), while the DT model has the highest probability, which is 0.5% and 8.24%,
respectively. We can also conclude that the performance of SVM model is very close to the performance
of LSTM, when considering the probability of small prediction errors (1-level or below), which are
96.84% and 96.58%, respectively.

According to the prediction results, the very high susceptibility dataset has either of the following
characteristics: (1) elevation higher than 4000 m, lithology with shales, slope angle from 40° to 55°, and
vegetation index lower than 10 (2) elevation from 2000 m to 2800 m, slope angle from 20° to 35°, plan
curvature higher than 200 and CPI higher than 30. This result is in accordance with the actual situation.

5. Conclusions

The China-Nepal Highway is an important part of the Belt and Road development strategy.
Due to the harsh natural environment along the road, the frequency and intensity of local mountain
disasters are increasing, and the casualties and economic losses are increasing accordingly. Therefore,
this paper takes the China-Nepal Highway as the research object and conducts risk assessments for
mountain disasters. With the development of information and sensing technology in recent years,
more and more sensor data and remote sensing data are collected, and a great variety of temporal and
spatial data has become available, such as geological data, geographic information, high-resolution
remote sensing images, hydrological data, and so on. The influence of various factors on risk has the
characteristic of ambiguity, and hierarchies exist between the various degrees of influence. Classical
mathematical models are ill-suited to express these complex relationships. At the same time, previous
studies only used the static data and characteristics of the study area to characterize the intensity of
landslides and debris flow disasters, and these factors have dynamic evolution characteristics.

To solve this problem, a novel and dynamic model that can remember historical data using
so-called “memory blocks” is proposed to solve the problem of the hysteresis effects of triggering
factors and landslide susceptibility. The other three classic classification models, BPNN, SVM, and DT,
are also applied for comparisons with the LSTM model in landslide susceptibility assessments. The
results of this study showed that the SVM model (72.87%) had better accuracy than the BPNN (62.03%)
and DT model (60.42%). The LSTM model (81.18%) outperformed SVM in prediction accuracy, and
they have the similar performance when considering about the probability of small prediction errors
(1-level or below).
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