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Abstract: In the single-beacon underwater tracking system, vehicles rely on slant range measurements
from an acoustic beacon to bound errors accumulated by dead reckoning. Ranges are usually
obtained based on a presumed known effective sound velocity (ESV). Since the ESV is difficult
to determine accurately, traditional methods suffer from large positioning error. By treating the
unknown ESV as a state variable, a novel single-beacon tracking model (the so called “5-sv” model)
and an extended Kalman filter (EKF)-based solution method have been discussed to solve the
problem of ESV estimation. However, due to the uncertainty of underwater acoustic propagation,
the probabilistic characteristics of the ESV uncertainty and acoustic measurement noise are unknown
and varying both with time and location. EKF, which runs with presupposed noise parameters,
cannot describe the practical noise specifications. To overcome the divergence issue of EKF-based
single-beacon tracking methods, this paper proposes an adaptive Kalman filter-based single-beacon
tracking algorithm which employs the “5-sv” model as the baseline model. Through numerical
examples using simulated and field data, both the filter and smoother results show that while
implementing the proposed algorithm, the tracking accuracy can be significantly improved, and the
estimated noise parameter agrees well with its true value.

Keywords: single-beacon underwater tracking; adaptive Kalman filter; extended Kalman filter;
effective sound velocity

1. Introduction

Autonomous underwater vehicles (AUVs) have been used for a variety of offshore commercial
and scientific applications [1–6]. For these applications, accurate tracking of AUVs is essential to ensure
the accuracy of the gathered data [7]. Many underwater tracking approaches have been implemented
and tested; however, traditional underwater tracking techniques, such as dead reckoning, suffer from
unbounded tracking errors. The widely used acoustic approaches, such as long-base line (LBL) system,
are restricted by the costly setting up since the location of each deployed beacon in the array must be
precisely surveyed before conducting navigation operations. Therefore, tracking AUVs using a single
beacon would provide dramatic time and cost savings for underwater vehicle operations, which has
been proposed and studied in [7–15].

In the single-beacon underwater tracking system, AUVs rely on range measurements from an
acoustic beacon with known position to bound errors accumulated by dead reckoning. Early researches
on single-beacon tracking can be traced back to Larsen, in which the positioning and velocity error of
AUV were treated as state variables, and the extended Kalman filter (EKF) was applied to estimate the
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vehicle position over time [16]. For positioning an AUV based on time of arrival (TOA) measurements
from a single beacon, Casey et al. established a single-beacon tracking model with unknown ocean
current using EKF as the state estimator [17]. Later, Fallon developed an AUV- USV (unmanned
Surface Vehicle) cooperative tracking model using EKF to update the AUV position [18]. Considering
the packet loss problem in underwater communication, Walls proposed a robust origin state method for
range-based cooperative tracking based upon a single-beacon tracking scheme, and used the extended
information filter (EIF) as the state estimator [19].

In the single-beacon underwater tracking methods mentioned above, the slant range was
commonly adopted as the primary measurement, which was obtained from the measured acoustic
transit time in conjunction with a presumed effective sound velocity (ESV) for the acoustic propagation
between the beacon and the receiver. A known constant ESV was routinely assumed in [8–11,16–19].
Since the ESV, in practice, is location dependent, and is very difficult to determine accurately,
these methods suffer from large ESV measurement error and consequently has large positioning
error. By treating the unknown ESV as a state variable and the transit time as a measurement, Zhu et al.
proposed a novel single-beacon localization model (namely the “5-sv” model), and used the EKF
as the state estimator [20–22]. It was shown that by properly tuning the process and measurement
noise parameters, the EKF based on the “5-sv” model could estimate the unknown ESV well, and the
tracking performance of the “5-sv” model significantly outperform the traditional model.

By augmenting the unknown ESV as a state variable, the “5-sv” model not only introduced
an additional parameter related to the ESV uncertainty needed to be tuned, but also increases the
nonlinearity of the measurement model. It had been shown that the EKF performance depended
largely on the initial setting of the ESV uncertainty parameter which would stay invariant during the
whole estimation process [20]. Furthermore, while implementing the “5-sv” model, the parameters of
the process noise covariance matrix and the measurement noise covariance matrix were difficult to
tune, and these were usually predetermined based on experience or data post-processing. However,
the huge variation of underwater environment leads to a rapid change in the probabilistic properties
of the acoustic measurement noise. The problem of EKF estimates degradation occurs frequently while
implementing the “5-sv” model due to the violation of known noise statistics assumptions.

To overcome the divergence issue of EKF-based single-beacon tracking methods, this paper
will propose an adaptive Kalman filter (AKF)-based single-beacon underwater tracking algorithm.
Although the AKF has been intensively investigated to reduce the influence of process noise covariance
matrix and measurement noise covariance matrix errors in fields like integrated navigation, economic
projection, and chemistry, to the best knowledge of the authors, little literature has been published
implementing AKF for single-beacon underwater tracking, especially based on the model with
unknown ESV [23–25]. Through simulation and field data, the estimation results between using
the proposed adaptive algorithm and the traditional EKF will be compared. In addition to the
real-time filter tracking, this paper also implements the Rauch-Tung-Striebel (RTS) smoother for
post-processing [26,27]. Both simulation and field data will be used to study the possible improvement
of the proposed adaptive single-beacon underwater tracking algorithm.

2. The “5-sv” Single-Beacon Tracking Model

A review of the “5-sv” single-beacon underwater tracking model, which is served as the baseline
model employed in this paper, is offered here as a refresher. This review is also for acquainting the
reader with the notation to be used throughout the article.

2.1. Kinematic Model

By treating the unknown ESV as a state variable, a single-beacon underwater tracking
model—referred to as the “5-sv” (5 state variables) model—was proposed in [20–22]:
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ẋ(t)
ẏ(t)

v̇cx(t)
v̇cy(t)
v̇e(t)


=



vw(t) cos ϕ(t) + vcx(t)
vw(t) sin ϕ(t) + vcy(t)

0
0
0


(1)

where the state variables x(t) and y(t) represent the horizontal position of the vehicle; vcx(t) and vcy(t)
are the two unknown ocean current components in the x and y directions, respectively; and ve(t) is the
ESV between the beacon and the vehicle. When the ESV is multiplied by the acoustic signal transit
time between two underwater point yields the geometric or slant range between them. In Equation (1),
vw(t) and ϕ(t) are the vehicle speed and heading through water, which are measured from a speed
sensor and an electronic compass, respectively.

While treating vw(t) and ϕ(t) as control parameters, and including the process noise w(t),
Equation (1) can be rewritten as

ẋ(t) = F(t)x(t) + L(t)u(t) + w(t) (2)

where

F(t) =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , L(t) =


1 0
0 1
0 0
0 0
0 0

 (3)

and

x(t) =



x(t)
y(t)

vcx(t)
vcy(t)
ve(t)


, u(t) =

{
vwx(t)
vwy(t)

}
(4)

in which vwx = vw cos ϕ and vwy = vw sin ϕ are the in-water speed components of the vehicle in the
directions of x and y, respectively. The process noise vector w(t) ∈ R5×1 accounts for the uncertainty
of the kinematic model.

Assuming that the control term u(t) is constant within the discrete sampling interval ∆t, we obtain
the corresponding discrete kinematic equation

xk = Ak−1xk−1 + Bk−1uk−1 + wk−1 (5)

where

Ak =


1 0 ∆t 0 0
0 1 0 ∆t 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , Bk =


∆t 0
0 ∆t
0 0
0 0
0 0

 (6)

and

xk =



xk
yk

vcx,k
vcy,k
ve,k


, uk =

{
vwx,k
vwy,k

}
, wk =



wx,k
wy,k
wcx,k
wcy,k
we,k


(7)
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in which the subscript k denotes the kth time step. The uncertainty wk associated with the discrete
kinematic model is modeled as Gaussian white noise processes, consisting of five components in
three groups: (1) wx,k and wy,k, position uncertainty in the x and y directions; (2) wcx,k and wcy,k,
ocean current uncertainty in the x and y directions; and (3) we,k, uncertainty associated with the ESV.
The corresponding process noise covariance matrix is:

Qk =


∆t2(σ2

wcos2 ϕk+σ2
c ) ∆t2σ2

wcosϕksinϕk 0 0 0
∆t2σ2

wcosϕksinϕk ∆t2(σ2
wsin2 ϕk+σ2

c) 0 0 0
0 0 σ2

c 0 0
0 0 0 σ2

c 0
0 0 0 0 σ2

e,k

 (8)

where σw is the standard deviation of vw,k uncertainty, σc is the standard deviation of wcx,k and wcy,k,
and σe,k is that of we,k.

2.2. Measurement Model

In the application of the Kalman filter for single-beacon underwater tracking, the measurement
equation is a nonlinear function of the state variables, with the general form

mk = hk(xk) + vk (9)

in which hk(·) is a nonlinear function. It is assumed that the process and measurement noise wk and
vk are mutually independent, zero-mean, Gaussian random processes, with covariance matrices Qk
and Rk, respectively.

In the present application, if the time of emission (TOE) Te
k is known and the TOA Ta

k is measured,
then the transit time Tt

k is given by

Tt
k = Ta

k − Te
k (10)

By treating the transit time Tt
k as the measured quantity for mk, we have the nonlinear

measurement equation

mk = hk(xk) + υt,k (11)

where hk can be expressed in terms of the state variables xk, yk and ve,k to be

hk =

√
(xk − xb)2 + (yk − yb)2 + (zk − zb)2

ve,k
(12)

in which (xk, yk, zk) and (xb, yb, zb) are the positions of the vehicle and the beacon, respectively.
Throughout this paper, the vertical position of an underwater vehicle zk assumed to be a known
value obtained from a depth sensor. The transit time measurement noise υt,k is modeled as a white
Gaussian noise with variance Rt,k = σ2

t,k.
It is also assumed that the vehicle velocity relative to the ground vg is measured from a device,

such as a Doppler velocity log (DVL). From the measured vg and the vehicle velocity through water
vw, using vc = vg − vw, one has an indirect measurement for the ocean current:

vc,k =

{
vcx,k
vcy,k

}
(13)
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The corresponding measurement matrix Hk associated with the ocean current measurements
is simply

Hk =

[
0 0 1 0 0
0 0 0 1 0

]
(14)

2.3. Comparison with Traditional Model

Traditional single-beacon tracking methods always treated the ESV as a known quantity.
In reference to Equations (7) and (8), the corresponding discrete state vector and process uncertainty
model are:

xk =


xk
yk

vcx,k
vcy,k

 (15)

and

Qk =


∆t2(σ2

wcos2 ϕk+σ2
c ) ∆t2σ2

wcosϕksinϕk 0 0
∆t2σ2

wcosϕksinϕk ∆t2(σ2
wsin2 ϕk+σ2

c) 0 0
0 0 σ2

c 0
0 0 0 σ2

c

 (16)

From Equations (4), (8), (15) and (16), it is clear that an additional parameter σe is introduced and
needed to be properly tuned while implementing EKF based on the “5-sv” model.

Furthermore, when the slant range rk computed from a transit time measurement is used in
traditional models, the counterpart of Equation (12) is

hk =
√
(xk − xb)2 + (yk − yb)2 + (zk − zb)2 (17)

Interested readers are referred to [20–22] for detailed comparison between the “5-sv” model and
traditional models.

Compared from Equations (12) and (17), it can be seen that the degree of nonlinearity of
the measurement equation in the “5-sv” model is much severer than that of traditional models.
In essence, the “5-sv” model has converted the problem of estimating two unknowns (xk and yk)
from one measurement (rk) into the problem of estimating three unknowns (xk, yk and ve,k) from one
measurement (Tt

k). Difficulties of the Kalman tuning process while using the “5-sv” model also appears
in that the setting of ESV uncertainty σe interacts with the initial setting of position uncertainties.
EKF based on the “5-sv” model is much harder to tune, and more likely to diverge than traditional
models if the initial settings are improper. Furthermore, the physics of acoustic wave propagation
and the underwater acoustic environment creates some unique differences, including longer transit
times and severe refraction through the stratified ocean. Thus, uncertainty associated with the acoustic
propagation velocity are very difficult to deal with because they cannot be measured and are generally
varying with both space and time. Even if an approximate σe is obtained from experience or data
post-processing, divergence issue of EKF based on the “5-sv” model would still occur frequently due
to the violation of known noise statistics assumptions. In Section 4.2, a sensitivity study of σe based on
filed data will be done to indicate the effect of σe on the estimator performance.

3. Windows-Based Adaptive Single-Beacon Tracking Algorithm

Unlike the EKF, the AKF can adjust the noise parameters online based upon the immediate
measurements and had proven to be a good solution to improve the robustness of Kalman filters.
In this section, a Windows-based adaptive single-beacon tracking algorithm based on the “5-sv” model
will be proposed to solve the divergence issue of traditional EKF-based methods.
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As presented in many textbooks [26,28], the discrete Kalman filter equations include the
prediction and correction equations. Compared with EKFs, the Windows-based AKF introduced
an additional step for estimating the process and measurement noise covariance matrices based upon
the innovation sequence.

3.1. State Prediction

Since the kinematic equation of the “5-sv” model is linear, the prediction equation of the adaptive
single-beacon tracking algorithm is the same as the standard Kalman filter, so the estimate of the state
vector x̂−k and the corresponding covariance matrix P−k are

x̂−k = Ak−1x̂+k−1 + Bk−1uk−1 (18)

and
P−k = Ak−1P+

k−1AT
k−1 + Q̂k−1 (19)

where Q̂k−1 is the estimated process noise covariance matrix at the (k− 1)th epoch.
Throughout this paper, a variable with a hat, such as x̂, represents the estimate of the variable,

superscripts “−” and “+” denote quantities associated with a priori (prediction) and a posteriori
(correction) estimates, respectively.

3.2. State Correction

For the correction equations of adaptive single-beacon tracking algorithm, the estimate of the
state vector x̂+k and the corresponding covariance matrix P+

k are

x̂+k = x̂−k + Kk(mk − h(x̂−k )) (20)

and
P+

k = (I−KkHk)P
−
k (21)

in which
Kk = P−k HT

k (HkP−k HT
k + R̂k)

−1 (22)

is the Kalman gain matrix and R̂k is the estimated measurement noise covariance matrix. For
the single-beacon underwater tracking algorithm discussed herein, Hk is the Jaccbian of nonlinear
measurement equation h(•) at the a priori estimate x̂−k

Hk(x̂
−
k ) =

[
x̂−k −xb
v̂−e,k r̂k

ŷ−k −yb
v̂−e,k r̂k

0 0 − r̂k
(v̂−e,k)

2

]
(23)

in which r̂k is computed by

r̂k =
√
(x̂−k − xb)2 + (ŷ−k − yb)2 + (ẑ−k − zb)2 (24)

Noting that ẑ−k is available from a depth sensor. The measurement innovation (mk − h(x̂−k )) in
Equation (20) is denoted by ēk in this paper.

3.3. Estimation of Unknown Rk

From literature [23], the main purpose of the Windows-based adaptive estimation is to estimate
the Rk through the innovation sequence, in which the innovation is considered to be an intermediate
variable. The fundamental principle is making the elements in the actual innovation covariance
matrix consistent with their theoretical value. Their actual values are intractable; however, they can be
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estimated based on maximum likelihood (ML) criterion. The likelihood function is chosen to be the
joint conditional probability of measurement given estimated variable within the fixed windows W:

Jk =
k

∏
j=k−W+1

p(zj|C̄vj) (25)

where C̄vj = E(ējēT
j ) is the covariance matrix of innovation vector at time tj.

Assuming ēj satisfies zero-mean Gauss distribution, Equation (25) can be written as

Jk =
k

∏
j=k−W+1

N (zj : h(x̂−k ), C̄vj) (26)

where N (x : µ, Q) means the vector x satisfies Gaussian distribution with mean µ and covariance
matrix Q. The probability density function is

N (x : µ, Q) =
1√
|2πQ|

exp (−1
2
(x− µ)TQ−1(x− µ)) (27)

The logarithmic form of Equation (26) is taken as

ln Jk =
k

∑
j=k−W+1

−1
2
(ln |2π × C̄vj|+ ēT

j C̄−1
vj ēj) (28)

To simplify the expression, the following hypothesis is made:

Hypothesis 1. For a Windows-based AKF, the innovation covariance matrix is constant within the windows
width W, that is

C̄vj = C̄vk, (k−W + 1) ≤ j ≤ k (29)

After multiplying Equation (28) by −2 and neglecting the constant term, the ML criterion of
maximizing J within the windows width W becomes the minimization problem which is described as{

ˆ̄Cvk = arg min J1,k
J1,k = ∑k

j=k−W+1 ln |C̄vk|+ ∑k
j=k−W+1 ēT

j C̄−1
vk ēj

(30)

The minimum value is calculated by the partial of J1,k with respect to C̄vk

∂J1,k

∂C̄vk
= Wtr{C̄−1

vk } −
k

∑
j=k−W+1

ēT
j C̄−1

vk C̄−1
vk ēj (31)

To obtain the above formula, the following two relations from matrix differential calculus have
been used

∂ ln |A|
∂x

=
1
|A|

∂|A|
∂x

= tr{A−1 ∂|A|
∂x
} (32)

∂A−1

∂x
= −A−1 ∂|A|

∂x
A−1 (33)

Based on the relations from vector inner product xTx = tr(xxT) and the trace property of matrix,
Equation (31) can be written as

∂J1,k

∂C̄vk
= tr{C̄−1

vk (WC̄vk −
k

∑
j=k−W+1

ējēT
j )C̄

−1
vk } (34)
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Let
∂J1,k

∂C̄vk
= 0 (35)

then the estimated innovation covariance matrix is obtained as

ˆ̄Cvk =
1

W

k

∑
j=k−W+1

ējēT
j (36)

On the other hand, the theoretical innovation covariance matrix can be calculated through the
definition of innovation, and have

C̄vk = HkP−k HT
k + Rk (37)

Let the estimated value of the innovation covariance matrix equals to the theoretical value,
the estimated Rk can then be obtained

R̂k =
1

W

k

∑
j=k−W+1

ējēT
j −HkP−k HT

k (38)

This estimated Rk will be used for calculating the Kalman gain at epoch k.

3.4. Estimation of Unknown Qk

To estimate the unknown Qk, rewritten Equation (22) as

Kk = P−k HT
k

ˆ̄C
−1
vk (39)

where ˆ̄Cvk is assumed to predetermined from Equation (36). Since ˆ̄Cvk and P−k are symmetric matrices,
Equation (39) can be written as

ˆ̄CvkKT
k = HkP−k (40)

Plugging the left side of Equation (40) into Equation (21) yields

P−k = Kk
ˆ̄CvkKT

k + P+
k (41)

From Equations (41) and (19), the estimated Q̂k−1 can be get

Q̂k−1 = Kk
ˆ̄CvkKT

k −Ak−1P+
k−1AT

k−1 + P+
k (42)

To calculate Q̂k, the following hypothesis is made:

Hypothesis 2. The varying period of Qk is much larger than the sampling period ∆t, thus we have

Qk ≈ Qk−1 (43)

Based on the Hypothesis 2, Equations (36) and (42), the estimated Qk at time tk can be obtained

Q̂k =
1

W

k

∑
j=k−W+1

KkējēT
j KT

k −Ak−1P+
k−1AT

k−1 + P+
k (44)

Algorithm 1 summarizes the detailed procedure of the Windows-based adaptive single-beacon
underwater tracking algorithm.
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Algorithm 1 Windows-based adaptive single-beacon underwater tracking algorithm

Input:x̂+k−1, P+
k−1, {ēk−W+1, ēk−W+2, · · · ēk−1}

Prediction:

1: x̂−k = Ak−1x̂+k−1 + Bk−1uk−1

2: P−k = Ak−1P+
k−1AT

k−1 + Q̂k−1

Correction:

1: r̂k =
√
(x̂−k − xb)2 + (ŷ−k − yb)2 + (ẑ−k − zb)2

2: Hk = [
x̂−k −xb
v̂−e,k r̂k

ŷ−k −yb
v̂−e,k r̂k

0 0 − r̂k
(v̂−e,k)

2 ]

3: ēk = mk − h(x̂−k )
4: R̂k =

1
W ∑k

j=k−W+1 ējēT
j −HkP−k HT

k
5: Kk = P−k HT

k (HkP−k HT
k + R̂k)

−1

6: x̂+k = x̂−k + Kkēk

7: P+
k = (I−KkHk)P

−
k

8: Q̂k =
1

W ∑k
j=k−W+1 KkējēT

j KT
k −Ak−1P+

k−1AT
k−1 + P+

k

Return:x̂+k , P+
k , ēk

4. Numerical Studies

Both simulation and field data are used to evaluate the performance of the Windows-based
adaptive single-beacon underwater tracking algorithm (to be referred to as the “ASB” algorithm)
against that of the EKF-based algorithm (to be referred to as the “ESB” algorithm). In addition to the
real-time filter tracking, this paper also implements the RTS smoother for post-processing. The RTS
smoother is the most commonly used fixed-interval smoother, which operates backward in time steps
after the complete filtering solution has been obtained [26,27].

4.1. Simulation Data

The reader is referred to [20] regarding the simulation technique for generating TOA data.
For consistency, the trajectory in simulation was chosen to be the same as the trajectory of field
data (shown in Figure 1). For the simulation of TOAs, the ESV has been set equal to a constant
1530 m/s during the whole trajectory, with TOEs every 10 seconds. Both ocean current components in
the x and y directions are 0.3 m/s. The process noise parameter σe is chosen as 0.1 m/s. σc and σw are
both set to 0.01 m/s. For clarity, the estimation performance of the unknown Rk and Qk are studied in
two distinct scenarios, respectively. The Qk is assumed to be precisely available during the estimation
of unknown Rk, and vice versa.

The sampling frequency of each simulated measurement and the corresponding noise level
characterized by its standard deviation are summarized in Table 1. Notice that the sampling interval
of the hydrophone is irregular due to varying acoustic propagation times because of vehicle motion.
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Figure 1. Simulated Trajectory.

Table 1. Sampling frequency and noise level of simulated measurements.

Sensor Measurement Simulated Sampling
Frequency (Hz) Noise (σ)

DVL vgx, vgy 1 0.002 m/s
electronic compass ϕ 1 0.2◦

speed sensor vw 1 0.001 m/s
hydrophone TOA – 0.001 s

In the application of the ASB and the ESB algorithms, the following initial settings have
been chosen: (1) a total of 10 meters in both the x and y directions for the initial position offset;
(2) ve,0 = 1540 m/s for the initial ESV; (3) 0.35 m/s for the initial ocean current in both x and y
directions; and (4) σw = 0.01 m/s; (5) σc = 0.01 m/s. Specifically, the innovation window width W is
chosen as 10 while implementing the ASB algorithm.

Fifty Monte Carlo simulations have been done to compare the performance of the ESB and the
ASB algorithm. The root mean square (RMS) of the horizontal distance error ∆H and the estimation
error of the ESV ∆ve are chosen as the evaluation indexes of the Monte Carlo simulations, which are
defined respectively as: 

RMS∆H ,

√
1
M

M
∑

s=1

(
(xs

k − x̂s
k)

2 + (ys
k − ŷs

k)
2
)

RMS∆ve
,

√
1
M

M
∑

s=1

(
(vs

e,k − v̂s
e,k)

2
) (45)

in which (xs
k, ys

k) and (x̂s
k, ŷs

k) represent respectively the target and the estimated positions at the sth
Monte Carlo run, and vs

e,k, v̂s
e,k represent respectively the target and the estimated ESV at the sth Monte

Carlo run. M = 50 represents the total number of Monte Carlo runs.

4.1.1. Estimate the Unknown Rk

For the first simulation, the measurement noise parameter is unknown to both the ASB and ESB
algorithms, while the parameters of Qk are chosen exactly their target value. Specifically, the initial σe

is chosen the same as its target value as 0.1 m/s, while the initial σt is set as 0.05 s with the same initial
offset for both the ASB and ESB algorithms.

The comparison of the RMS∆H between the ASB and the ESB algorithm is shown in Figure 2a,b
from running the filter and the RTS smoother, respectively. It can be concluded that the tracking error
associated with the ASB algorithm is noticeably smaller than that of the ESB algorithm.
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(a) (b)

Figure 2. RMS of Horizontal distance error comparison between the ESB and the ASB algorithms using
simulation data with unknown Rk: (a) Filter; (b) RTS smoother.

Furthermore, the innovation of the transit time measurement ēt for the ESB and the ASB algorithm
is compared in Figure 3. Since ēt is a signed variable, it is compared from one randomly selected
Monte Carlo simulation. From Figure 3, it is obviously that ēt of the ASB algorithm converges rapidly
then fluctuates around zero indicating a consistent filter, while that of the ESB algorithm has a large
variation due to the improper setting of σt.

Figure 3. Comparison of transit time measurement innovation between the ESB and the ASB algorithms
using simulation data with unknown Rk.

From the comparison of RMS∆ve
shown in Figure 4, it can be seen that considering both the

converging rate and steady state estimation error, the estimation performance of the ESV while
implementing the ASB algorithm outperforms that of the ESB algorithm significantly.
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(a) (b)

Figure 4. RMS of ESV estimated error by the ESB and the ASB algorithms using simulation data with
unknown Rk: (a) Filter; (b) RTS smoother.

Finally, the mean value of the estimated σt while implementing the ASB algorithm from running
50 Monte Carlo simulations is shown in Figure 5. The estimated σt agrees well with its target value,
while that in the ESB algorithm remains invariant as respected.

Figure 5. Estimated measurement noise of the ESB and the ASB algorithms using simulation data with
unknown Rk.

4.1.2. Estimate the Unknown Qk

In the second scenario, the process noise parameter is unknown to both the ASB and ESB
algorithms, while the parameter of measurement noise is chosen exactly their target value. Specifically,
the initial σe is set as 0.5 m/s for both the ASB and ESB algorithms with the same initial offset.
To eliminate the possible impact of measurement noise, the hydrophone is kept clean without
random noise contamination while generating the simulation data, and the initial σt is chosen as
zero for consistency.

For comparing the performance of the ASB algorithm with those of the ESB algorithm, the RMS∆H

for both two algorithms are shown in Figure 6a,b from running the filter and the RTS smoother,
respectively. Clearly, using the ASB algorithm can significantly enhance the tracking accuracy over the
ESB algorithm.
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(a) (b)

Figure 6. RMS of horizontal distance error comparison between the ESB and the ASB algorithms using
simulation data with unknown Qk: (a) Filter; (b) RTS smoother.

The comparison of the measurement innovations is shown in Figure 7, in which similar features
with the unknown Rk scenario can be observed.

Figure 7. Comparison of transit time measurement innovation between the ESB and the ASB algorithms
using simulation data with unknown Qk.

The estimated RMS∆ve
is shown in Figure 8a,b from running the filter and the RTS smoother,

respectively. Once again, the estimated ESV of ASB algorithm has a faster converging rate and smaller
steady state error than that of ESB algorithm.
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(a) (b)

Figure 8. RMS of the ESV estimation error comparison between the ESB and the ASB algorithms using
simulation data with unknown Qk: (a) Filter; (b) RTS smoother.

For completeness, the mean value of the estimated unknown σe from 50 Monte Carlo simulations
is shown in Figure 9. Although the estimated σe exist large variation at the beginning, the ASB
algorithm can estimate its target value after a certain period of time.

Figure 9. Estimated process noise comparison between the ESB and the ASB algorithms using
simulation data with unknown Qk.

4.2. Field Data

The field data used to demonstrate the efficiency of the ASB algorithm was collected from a surface
boat equipped with a hydrophone. The boat also had access to the GPS, so the ground truth trajectory
of the vehicle was available. A beacon was mounted at the sea floor with a surveyed location. Since the
slant range between the vehicle and beacon could be computed from their known locations, the ground
truth of every instant ESV could be computed from dividing the slant range by the corresponding
transit time, obtained from the TOA measurement minus a known TOE.

While implementing the filter and the RTS smoother on the field data, the following initial
quantities were chosen: ve,0 = 1560 m/s, σc = 0.01 m/s, σw = 0.01 m/s and σt = 0.0001 s. First,
to demonstrate the Kalman tuning issue of traditional ESB algorithms mentioned in Section 2.3,
a sensitivity study of σe is carried out based on the field data. Shown in Figure 10a is the

averaged RMS of the horizontal distance error ARMS∆H =

√
N
∑

i=1
((xi − x̂i)2 + (yi − ŷi)2) with σe

varying from 0.01 to 1 m/s. Shown in Figure 10b is the averaged RMS of the estimated ESV error
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ARMS∆ve =

√
K
∑

i=1
(ve,i − v̂e,i)2. N and K are the total number of fixed sampling interval and transit

time measurements, respectively. From Figure 10a,b, it is obviously that σe has a great influence
on the tracking performance. Improper σe in the ESB algorithm will degenerate the estimation
accuracy drastically.

(a) (b)

Figure 10. Estimation performance versus σe from EKF using field data: (a) RMS∆r ; (b) RMS∆ve .

The comparison of the estimated trajectories between the ASB and ESB is shown in Figure 11a,b
from running the filter and the RTS smoother, respectively. Similarly, Figure 12a,b are the corresponding
comparison of the horizontal distance error ∆H for the filter and the RTS smoother, respectively.
The component errors ∆x and ∆y for the ASB and ESB are shown in Figure 13. From Figures 11–13, it
can be concluded that using the ASB could greatly improve the tracking accuracy.

(a) (b)

Figure 11. Planar position estimates comparison between the ESB and the ASB algorithms using field
data with unknown Qk: (a) Filter; (b) RTS smoother.
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(a) (b)

Figure 12. Horizontal distance error comparison between the ESB and the ASB algorithms using field
data with unknown Qk: (a) Filter; (b) RTS smoother.

(a) (b)

Figure 13. Position component errors of the ESB and the ASB algorithms using field data with unknown
Qk: (a) Filter; (b) RTS smoother.

Shown in Figure 14 is the estimated ESV from the filter and RTS smoother for these two algorithms,
together with the target ESV. Similarly, the estimated ESV while implementing the ASB algorithm
agrees better with its target value than the ESB algorithm.
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(a) (b)

Figure 14. Estimated ESV by the ESB and the ASB algorithms using field data with unknown Qk:
(a) Filter; (b) RTS smoother.

5. Conclusions

To eliminate the range measurement error induced by imprecise knowledge of ESV, the so called
“5-sv” single-beacon underwater tracking model was recently proposed. However, for applying the
EKF based on the specific “5-sv” model, the tracking performance depended largely on the initial
knowledge of process and measurement noise statistics, and filter divergence occurred frequently due
to the huge variation of underwater acoustic propagation.

To overcome the limitation of EKF-based methods, this paper proposed an adaptive Kalman
filter-based single-beacon underwater tracking algorithm basing upon the “5-sv” model. Through
numerical examples of using simulated and field data, both the filter and RTS smoother results
suggested that the tracking accuracy was significantly improved while implementing the proposed
adaptive algorithm. The estimated process and measurement noise parameters also agreed well with
their true value.
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