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Abstract: For the purpose of improving the accuracy of underwater acoustic target recognition
with only a small number of labeled data, we proposed a novel recognition method, including
4 steps: pre-processing, pre-training, fine-tuning and recognition. The 4 steps can be explained as
follows: (1) Pre-processing with Resonance-based Sparsity Signal Decomposition (RSSD): RSSD was
firstly utilized to extract high-resonance components from ship-radiated noise. The high-resonance
components contain the major information for target recognition. (2) Pre-training with unsupervised
feature-extraction: we proposed a one-dimensional convolution autoencoder-decoder model and then
we pre-trained the model to extract features from the high-resonance components. (3) Fine-tuning
with supervised feature-separation: a supervised feature-separation algorithm was proposed to
fine-tune the model and separate the extracted features. (4) Recognition: classifiers were trained to
recognize the separated features and complete the recognition mission. The unsupervised pre-training
autoencoder-decoder can make good use of a large number of unlabeled data, so that only a small
number of labeled data are required in the following supervised fine-tuning and recognition, which
is quite effective when it is difficult to collect enough labeled data. The recognition experiments were
all conducted on ship-radiated noise data recorded using a sensory hydrophone. By combining the
4 steps above, the proposed recognition method can achieve recognition accuracy of 93.28%, which
sufficiently surpasses other traditional state-of-art feature-extraction methods.

Keywords: deep learning; autoencoder-decoder; Resonance-based Sparsity Signal Decomposition;
target recognition; ship-radiated noise; feature-extraction; feature-separation

1. Introduction

When a ship moves in the water, it produces noise, called ship-radiated noise. Due to the unique
characteristics of the radiated noise of different classes of ships, it is possible to identify a specific class
of ships or even a specific ship by analyzing the ship-radiated noise. Recognition for ship-radiated
underwater noise is one of the most important and challenging subjects in underwater acoustic
signal processing. Traditionally, underwater acoustic target recognition depends on the decisions of
well-trained sonar men, which can be highly inaccurate due to the need of continuous monitoring,
and at times much affected by weather conditions. Hence, it is necessary to develop an automatic
and robust recognizing system to replace humans work. Underwater acoustic target recognition is a
complex pattern recognition problem. Due to the difficulty in collecting a large number of ship-radiated
noise data, target recognition from ship-radiated noise is typically done under limited samples or even
small samples.

Ship-radiated noise is composed of four generated sources: propulsion noise, propeller
noise, auxiliary noise and hydrodynamic noise [1]. Quasi-periodic harmonics with low-frequency
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narrow-band components are produced by propulsion engines and propellers, whose amplitudes and
frequencies are independent of ship speed [2]. Therefore, the harmonic elements play an important
role in detection and recognition of underwater acoustic targets [3]. Due to generating mechanism
of ship-radiated noise and effect of underwater acoustic channels, ship-radiated noise has the
characteristics of oscillation, non-stationary and non-linearity [4]. Knowing that the harmonic elements
or oscillatory components of ship-radiated noise play an important role in the detection and recognition
of underwater acoustic targets, and motivated by the oscillatory nature, resonance-based sparsity signal
decomposition (RSSD) [5] was proposed to extract the oscillatory signatures and condense noise.
In pro-processing, RSSD is used to extract the oscillatory components (the high-resonance components)
from ship-radiated noise. Once the high-resonance components are extracted, they can be used for
further recognition of underwater acoustic targets.

To improve the recognition accuracy, many efforts were made to solve this intractable problem.
Early work attempted to extract hand-crafted features from ship-radiated noise and feed them into
different kinds of classifiers. Jian et al. in [6] extracted line spectrum features from ship-radiated
noise and used support vector machine (SVM) to identify these features. More recently, Wei et al.
in [7] introduced an approach for extracting ship-radiated noise based on 1 1

2
D spectrum and Principal

Component Analysis (PCA) method. Zhang et al. in [8] extracted Mel Frequency Cepstrum Coefficients
(MFCC), first-order differential MFCC, and second-order differential MFCC features and considered
these features as the most effective traditional features for underwater acoustic target recognition.
Meng and Yang in [9] designed a fusion feature of zero-crossing wavelength, peek-to-peek amplitude,
and zero-crossing-wavelength difference for the recognition of underwater acoustic targets. Though
the traditional hand-crafted features have contributed a lot to underwater acoustic target recognition,
the process of extracting these features needs complicated engineering skill, domain expertise and
prior knowledge. Especially the prior knowledge of ship-radiated noise, is usually difficult to be fully
obtained because of the complicated ambient environment in oceans.

To solve the feature-extraction problems, many researchers also use neural networks to extract
features. Utilizing neural networks to extract features requires less engineering skill, domain expertise
and prior knowledge, but utilizing neural networks can also achieve a competitive performance even
an outstanding performance compared with the traditional methods that extract the hand-crafted
features. The performance of target recognition mainly relies on the distinction of the features extracted
by neural networks. In [10], sparse Autoencoder (AE) was utilized to learn invariant features from
spectral data of underwater targets . Then Cao et al. in [10] used Stacked Autoencoder (SAE) to extract
high-level features and achieved a convincing recognition result. Some researchers attempted to
introduce effective methods to modify the structure of neural networks. In [11], Yang et al. introduced
competitive learning to Deep Belief Nets (DBN) and then built a so called competitive Deep Belief Nets
(cDBN) for underwater acoustic target recognition. The idea of modifying the structure of a neural
network always leads to surprising results.

Underwater acoustic target recognition based on ship-radiated noise belongs to the
small-sample-size recognition problem. As described in [11], unsupervised pre-training models
(such as DBN) can make use of unlabeled data, and only a small number of labeled data are required.
Knowing that an autoencoder-decoder is a type of artificial neural network used to learn efficient
data coding in an unsupervised manner, we attempted to build an autoencoder-decoder model to fully
make use of unlabeled data just like the DBN. Therefore, we firstly proposed a autoencoder-decoder
model pre-trained by a large number of unlabeled data to fully learn the underlying laws from
ship-radiated noise. Once the model is fully pre-trained by a large number of unlabeled data, the
model can learn to extract features from ship-radiated noise as the unlabeled data always contain
the general features of the interested underwater acoustic targets. In this paper, we call the phase of
unsupervised pre-training feature-extraction. Besides this, we managed to use autoencoder-decoder to
build a symmetrical model with encoding part of one-dimensional convolution and with decoding part
of one-dimensional deconvolution. The autoencoder-decoders can be stacked to build a deeper model.
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Ranzato et al. in [12] proposed an unsupervised energy-based algorithm for separately pre-training
layers of a Convolution Neural Network (CNN). Inspired by Ranzato’s work, we also applied an
unsupervised layer-wise pre-training method to pre-train the model. Though the phase of unsupervised
pre-training can extract features from ship-radiated noise, these features have not been identified with
specific classes of ships. Then what we need to do is to further identify or separate these features
with supervised training or fine-tuning. Inspired by SVM, we proposed a supervised feature-separation
algorithm to fine-tune the model and separate the features extracted in the unsupervised pre-training.
Finally, classifiers were trained to recognize the separated features and complete the recognition
mission. The whole process of underwater acoustic target recognition is depicted in Figure 1.
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Figure 1. The whole process of underwater acoustic target recognition.

The original and main contributions of this paper can be briefly summarized as follows: (1) we
proposed a novel recognition method of 4 steps for underwater acoustic target recognition; (2) we
carefully considered the oscillatory nature of ship-radiated noise and we proved the effectiveness of
RSSD used in extracting “invariant” part of the ship-radiated noise for recognition; (3) we specially
designed a totally new model with specific structures for extracting informative and invariant features
for underwater acoustic target recognition; (4) we created a totally new universal loss function which
named “feature-separation” algorithm for recognition.

The rest of this paper is organized as follows: The next section (Section 2) introduces RSSD for
pre-processing. Section 3 describes the one-dimensional convolution autoencoder-decoder model for
unsupervised pre-training. Section 4 fully explains the supervised feature-separation algorithm for
supervised fine-tuning. Section 5 contains experiments and discussions. The last section (Section 6)
is conclusion.

2. Resonance-Based Sparsity Signal Decomposition for Pre-Processing

The RSSD aims to decompose an objected signal into high-resonance, low-resonance and residual
component, where the high-resonance component is a signal consisting of multiple simultaneous
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sustained oscillations, the low-resonance component is a signal consisting of non-oscillatory transients,
and the residual component is Gaussian white noise [5]. The low-resonance component mostly
contains the non-oscillatory transients, usually refer to pulse or transient interference, which
is inevitably caused by complicated ocean environment during long-range transmission of the
ship-radiated noise. On the contrary, the high-resonance component consists of the sustained
oscillations, mostly composed of harmonic elements, which contain the main features for ship
classification. Therefore, we abandon the low-resonance components and we use the high-resonance
components for underwater acoustic target recognition. The RSSD algorithm for pro-processing
mainly includes two parts: Tunable Q-Factor Wavelet Transform (TQWT) [13] and Morphological
Component Analysis (MCA) [14].

The TQWT is a flexible fully-discrete wavelet transform which can be tuned according to the
oscillatory behavior of the signal to which it is applied. The transform is based on real-valued scaling
factors (dilation-factors) and is implemented using a perfect reconstruction over-sampled filter bank
with real-valued sampling factors. The main parameters for the TQWT are Q-factor, redundancy r,
and the number of stages J. The Q-factor, denoted Q, affects the oscillatory behavior of the wavelet,
which is defined as [4]:

Q =
2− β

β
(1)

where β is high-pass scaling factor. A signal with a higher Q-factor reveals a higher oscillatory intensity
in time-domain and, at the same time, better frequency concentration, and vice versa.

The aim of MCA is to construct the optimal sparse representation of the high-resonance and the
low-resonance component, then separate these two components. Consider a given ship-radiated noise
signal x as the sum of an oscillatory signal x1, a non-oscillatory signal x2 and a Gaussian white noise n:

x = x1 + x2 + n (2)

The signal x is a measured signal, x1 and x2 are to be determined in such a way that x1 consists
mostly of sustained oscillations and x2 consists mostly of non-oscillatory transients. As described
in [13], such a decomposition is necessarily nonlinear in x, and it cannot be accomplished using
frequency-based filtering. One approach is to model x1 and x2 as having sparse representations using
high Q-factor and low Q-factor wavelet transform respectively. In this case, a sparse representations of
the signal x using both high Q-factor and low Q-factor TQWT jointly, makes the separation of x1 and
x2 feasible. To separate x1 and x2, the approach is to minimize the following cost function [15]:

arg min
w1,w2

||x−Φ1w1 −Φ2w2||2 +
J1+1

∑
j=1

λ1,j||w1,j||1 +
J2+1

∑
j=1

λ2,j||w2,j||1 (3)

where w denotes coefficients of the TQWT, ||.||2 denotes L2 norm, ||.||1 denotes L1 norm, and Φ1

and Φ2 represent the inverse TQWT having high and low Q-factor respectively. The regularization
parameters λ1 and λ2 are chosen by the user according the power of the noise. w1 and w2 are obtained
by using Split Augmented Lagrangian Shrinkage Algorithm (SALSA) [5] to minimize Equation (3).
After w1 and w2 are obtained, we set:

x1 = TQWT−1
1 (w1), x2 = TQWT−1

2 (w2) (4)

and then we can get the high-resonance component x1 and the low-resonance component x2. The
residual component will be n = x− x1 − x2.

3. One-Dimensional Convolution Autoencoder-Decoder Model for Unsupervised Pre-Training

The unsupervised pre-training autoencoder-decoder model can make good use of a large number
of unlabeled data, so that only a small number of labeled data are required in the following supervised
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fine-tuning and recognition. This is quite effective when it is difficult to collect enough labeled
ship-radiated noise data. The model will be described in detail as follows.

3.1. Building Units

Many unsupervised feature-extraction methods are based on encoder-decoder architecture [12].
In underwater acoustic target recognition, we want to build an autoencoder-decoder model to code
the input spectrum, in other words, we want to automatically represent the input spectrum with code
vectors. As the code vectors are abstractive representations of the inputs, they can be used to support
high-level missions such as classification and pattern recognition. The model introduces convolution
from CNN, but different from normal CNN, the model replaces two-dimensional convolution of the
CNN with one-dimensional convolution. We managed to use the autoencoder-decoder to build a
symmetrical model with encoding part of one-dimensional convolution and with decoding part of
one-dimensional deconvolution. In this paper, we call the autoencoder-decoders building units. Note
that a building unit is equivalent to a kernel (kernel, depth, and channel are the same in this paper).

3.2. The First Layer of the Model

Using the building units, we proposed a one-dimensional convolution autoencoder-decoder
model to automatically code the input spectrum. The first layer of the model is depicted in Figure 2.
A whole structure of the model will be described in next subsection. For simplicity, we denote
all one-dimensional convolution as convolution and denote all one-dimensional deconvolution
as deconvolution.
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Figure 2. The first layer of the model.

The first layer of the model contains two parts. The first part is an encoder. In Figure 2, size of the
input spectrum is 1× 1024, size of a convolution kernel is 1× 125, and the number of kernels is 32.
After the convolution, the number of feature maps will be 32, and because stride of the convolution is
[1,1], size of each feature map will be 1× 1024. A max-pooling layer and a sigmoid activation layer
follow the convolution. The second part is a decoder, which reconstructs the input spectrum through
depth-wise separable deconvolution [16]. Different from the traditional deconvolution, depth-wise
separable deconvolution contains two steps: First, we apply deconvolution on a feature map. Size
of the deconvolution is 1× 125, which is corresponding to the convolution. Size of the feature map
is 1× 256, and stride of the deconvolution is [1,4], thus size of output of the deconvolution will be
1× 1024, which is the same as that of the input spectrum. Second, we apply deconvolution on each of
all 32 input feature maps, and thus we will get 32 outputs. Finally, reconstruction spectrum is the sum
of the 32 outputs.

It is worth knowing that the proposed model has three specifically designed properties:
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(1) Sparse and shift-invariant: Traditionally, sparsity is introduced by adding L1 regularization on
feature maps, but in the model, max-pooling layers are introduced to achieve sparsity as well as
shift-invariance. The sparsity can be viewed as limiting “capacity” of the networks, and it often
results in more easily interpretable feature representations. The shift-invariance will make the
model tolerate slight difference of the inputs. The reason for introducing the shift-invariance is to
make the same class of input result in a same output. For the same class of ship-radiated noise,
their spectrum usually only has slight difference, and shift-invariance will make outputs of the
same class cluster together.

(2) Non-linear: Between the encoder and the decoder, there is a layer of sigmoid activation. This
activation builds nonlinearity between two layers, which potentially makes the model build
hierarchical representations of the inputs with the increasing of layers.

(3) Depth-wise separable: The model treats each depth independently. First, in unsupervised
pre-training, features of each kernel are extracted separately and correlations between them are
ignored. Then in supervised fine-tuning, the correlations between features of each kernel will be
actually considered. The purpose of this operation is to make each feature more interpretable.
This will be discussed in experiments section.

3.3. Stack Layers to Hierarchically Extract Features

In order to get more informative and invariant representations of the input spectrum, several
layers of autoencoder-decoder are stacked to build a hierarchical model. We first introduce how we
stacked the layers to build the model.

3.3.1. Hyper-Parameter Optimization

The number of layers, kernel size of each layer, kernel number, kernel stride, type of activation
function and so on are hyper-parameters of the model that need to be manually adjusted according to
previous work, experiences or intuitions. The hyper-parameters of the model are listed in Table 1.

Table 1. Hyper-parameters of the Model.

Hyper-Parameters Considered Values Used Values

Layer 1
Kernel size 1 × 256, 1 × 125, 1 × 64, 1 × 32, 1 × 16, 1 × 8, 1 × 4, 1 × 2 1 × 125
Kernel number 128, 64, 32, 16, 4 32
Kernel stride [1,1], [1,2], [1,4] [1,1]

Layer 2
Kernel size 1 × 64, 1 × 32, 1 × 16, 1 × 8, 1 × 4, 1 × 2 1 × 64
Kernel number 128, 64, 32, 16, 4 32
Kernel stride [1,1], [1,2], [1,4] [1,1]

Layer 3
Kernel size 1 × 32, 1 × 16, 1 × 8, 1 × 4, 1 × 2 1 × 16
Kernel number 128, 64, 32, 16, 4 32
Kernel stride [1,1], [1,2], [1,4] [1,1]

Layer 4
Kernel size 1 × 16, 1 × 8, 1 × 4, 1 × 2 1 × 4
Kernel number 128, 64, 32, 16, 4 32
Kernel stride [1,1], [1,2], [1,4] [1,1]

The number of layers 1, 2, 3, 4, 5 4

Type of activation function Sigmoid, Tanh, ReLU, Leakey ReLU Sigmoid

Max-pooling stride [1,4], [1,8] [1,4]

Depthwise separable Yes, not Yes

Since no previous work is available, we adjusted these hyper-parameters according to experiences
and we conducted corresponding experiments to verify performance of the model of these adjustments.
In other words, we explored each combination of the considered values in Table 1 (some combinations
are not reasonable) and we conducted corresponding experiments to figure out whether these
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combinations or adjustments can improve performance (mainly refers to recognition accuracy) of the
model. Through many experiments, the hyper-parameters that led to the best performance of the
model were chosen, as listed in Table 1 the used values. The process of adjusting the hyper-parameters
is similar to parameter optimization in [17] where conducted many experiments to choose the optimal
parameters that led to the best performance of the network.

3.3.2. The Structure of the Hierarchical Model

The structure of the hierarchical model is depicted in Figure 3.
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Figure 3. The structure of the hierarchical model.

For layer 1, the encoder is a convolution with kernel size of 1× 125, followed by a max-pooling
layer and a sigmoid activation layer, and correspondingly, the decoder is a depth-wise separable
deconvolution with kernel size of 1× 125. The encoder of layer 2 is a depth-wise separable convolution
with kernel size of 1× 64, followed by a max-pooling layer and a sigmoid activation layer. The decoder
of layer 2 is a depth-wise separable deconvolution with kernel size of 1× 64. Layer 3 and layer 4 of
the model are organized similarly to the previous two layers. depth-wise separable convolution and
depth-wise separable deconvolution means that the model treats each kernel independently with
convolution or deconvolution.

3.4. Learning Algorithm for Unsupervised Pre-Training

In Convolutional Networks [18], all the kernels are learned with a supervised gradient-based
algorithm. However, a large number of labeled ship-radiated noise data are not always available
to underwater target recognition. Due to the lack of labeled ship-radiated noise data, unsupervised
pre-training with a large number of unlabeled data are introduced to initialize the network’s parameters.
In other unsupervised pre-training models like DBN in [19], to fully make use of unlabeled data, they
always use Contrastive Divergence (CD) algorithm to pre-train their models. It has been formally
demonstrated that minimizing the CD is an approximation of maximizing likelihood [20]. Thus,
weight connections of each layer of their models can have a good representative of the input data.
However, their models do not have an encoder or decoder are forced to perform an expensive
optimization in order to do inference even after learning the parameters. If the autoencoder-decoder
is used, the general learning algorithm is only to minimize the reconstruction error between input
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spectrum and reconstruction spectrum. In other words, we search for feature maps that minimize the
reconstruction error, while being not too different from outputs of the encoder. Note that the general
learning algorithm is suitable for any encoder-decoder architecture, and not specific to a particular kind
of features or architecture choices. In this paper, the learning algorithm for unsupervised pre-training is:

arg min
w

||X−
N

∑
i=1

fi ∗ Zi||2 + λ||w||2 (5)

where X denotes the input spectrum of size 1× 1024, fi(i = 1, 2, · · · , N) denotes deconvolution kernel,
Zi is the ith feature map corresponding to the ith deconvolution kernel fi, and ∗ denotes deconvolution.
The second item in Equation (5) is L2 regularization used for avoiding over-fitting, w is the parameter
of the model, and λ is “penalty” factor that controls the impact of L2 regularization on the learning
algorithm. A larger value of λ will place more “penalty” on w. A proper value of λ can prevent w from
getting too large while avoiding over-fitting. A typical value of λ is 0.0001. Similar to maximize the
likelihood using CD, once the model is pre-trained by a large number of unlabeled ship-radiated noise
data, the model can also fully learn the underlying laws from ship-radiated noise. Adaptive Moment
Estimation (Adam) [21] is an effective way to minimize Equation (5).

Similar to separately pre-train layers of a network in [12], we pre-train the model layer-by-layer.
The whole procedure of layer-wise pre-training is showed in Figure 4. Once layer 1 is pre-trained, all
parameters of this layer will be frozen. Similarly, all parameters of layer 2 will be frozen if pre-training
of this layer is finished. Layer 3 and Layer 4 are pre-trained in the same way as the previous two
layers. Proposed by Hinton et al. in [22], layer-wise pre-training is a very effective method to handle
the training issue of a deep network with a large number of parameters. Layer-wise pre-training
can effectively avoid steeping into a local optimal and speed up the convergence of the following
supervised fine-tuning.
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Figure 4. The procedure of layer-wise pre-training. (a) Pre-train layer1. (b) Pre-train layer 2. (c) Pre-train
layer 3. (d) Pre-train layer 4.
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4. Supervised Fine-Tuning and Feature-Separation

The model under unsupervised pre-training can extract informative features that support
underwater acoustic target recognition. However, these features have not been identified with specific
classes of ships. Then what we need to do is to further identify these features with supervised
fine-tuning. As mentioned in [11], applying layer-wise pre-training and supervised fine-tuning, a deep
neural network is built to obtain specific features from underwater acoustic targets. Inspired by
this, we also apply fine-tuning to obtain more specific features from the targets. In this section,
we first introduce a traditional supervised training algorithm for fine-tuning and then fully explain the
supervised feature-separation algorithm for fine-tuning.

4.1. The Traditional Supervised Training Algorithm for Fine-Tuning

During unsupervised pre-training, feature maps are extracted from the encoder. The feature maps
are abstractive representations of the inputs and that can be used for supporting target recognition.
Further, these feature maps are fed into a global average pooling layer and feature vectors (as shown
in Figure 5, 32 feature maps passing through a global average layer will become a feature vector
of 32 dimensions) are obtained for fine-tuning. The traditional supervised training algorithm for
fine-tuning is showed in Figure 5. In this algorithm, a fully-connected layer and a soft-max layer are
used to fine-tune layer 1 of the model. The process of fine-tuning higher layers is the same as the
fine-tuning of layer 1.
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Figure 5. Procedure of the traditional supervised training algorithm for fine-tuning.
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Assume that a feature vector (32 dimensions) passing through a fully-connected layer will become
a vector x = (x1, x2). The vector x passing through a soft-max layer will output [10]:

softmax(x)i =
exi

∑2
i=1 exi

, i = 1, 2 (6)

Equation (6) means that the soft-max layer will turn a vector into a probability distribution
in which each element corresponds to a specific class (e.g., a class of ships). Then in fine-tuning,
we minimize cross-entropy between this probability distribution and the class label distribution
y = (y1, y2):

H

(
yi,

exi

∑2
i=1 exi

)
= −

2

∑
i=1

yi log

(
exi

∑2
i=1 exi

)
(7)

If we finish minimizing Equation (7), the probability distribution will become more closer to the
class label distribution.

In fine-tuning, we can use Adam to minimize Equation (7). The traditional supervised training
algorithm for fine-tuning can be summarized as follows:

arg min
x

H

(
yi,

exi

∑2
i=1 exi

)
= arg min

x

[
−

2

∑
i=1

yi log

(
exi

∑2
i=1 exi

)]
(8)

4.2. The Supervised Feature-Separation Algorithm for Fine-Tuning

4.2.1. Procedure of the Supervised Feature-Separation Algorithm

Procedure of the supervised feature-separation algorithm is showed in Figure 6. In Figure 6,
the feature-separation layer corresponds to the supervised feature-separation algorithm.

4.2.2. Explanation of the Supervised Feature-Separation Algorithm

As features extracted by the model under unsupervised pre-training belong to different classes of
ships, we aim to separate or identify these features according to different ship labels. In this algorithm,
we use a hyperplane to separate these features.

Assume that in a 32-dimensional space, there is a hyperplane that can separate two classes of
points, which means that one class of points lie on one side of the hyperplane, and the other class of
points lie on the other side of the hyperplane. Then, our goal is to design the hyperplane that can
handle the separation job. In a high-dimensional space, function of a hyperplane is:

wTx + b = 0 (9)

where T denotes vector transpose, x denotes points on the hyperplane, w and b denote parameters
of the hyperplane. In a 32-dimensional space, w is a vector of 32 dimensions, and b is a constant.
Once the parameters (w and b) are fixed, then a unique hyperplane will be fixed, which means that a
unique hyperplane corresponds to a unique set of parameters (w and b). For points on the hyperplane,
Equation (9) will be satisfied, which means that if points are on the hyperplane, their distance to the
hyperplane will be 0. When a hyperplane is fixed, we can use:

f (x) = |wTx + b| (10)

to measure the distance f (x) from a random point x in the space to the hyperplane. By observing
whether the sign of wTx + b is consistent with the sign of class label, it can be judged whether the
classification is correct. Therefore, the positive and negative of wTx + b can be used to determine or



Sensors 2018, 18, 4318 11 of 24

indicate the correctness of the classification. More specifically, we use functional margin γ̂ to denote
the correctness of the classification:

γ̂ = y(wTx + b) (11)

where y denotes class labels (−1 or 1). However, if we change w and b proportionally (such as changing
them to 2w and 2b), value of the functional margin γ̂ becomes twice the original value, while the
hyperplane has not changed. Therefore, geometrical margin γ̃ is used to truly define the distance from
points to the hyperplane:

γ̃ =
γ̂

||w||2
=

y(wTx + b)
||w||2

(12)
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Figure 6. Procedure of the supervised feature-separation algorithm for fine-tuning.

As geometrical margin γ̃ measures the distance from points to the hyperplane, it can also be
used to define the distance from high-dimensional feature vectors to the hyperplane. More specially,
we view a high-dimensional feature vector as a point in the high-dimensional space, then we can
use Equation (12) to calculate its distance to the hyperplane. Now, we are going to make feature
vectors belong to one class of ships lie on one side of the hyperplane, and make feature vectors belong
to the other class of ships lie on the other side of the hyperplane. The approach is to maximize
Equation (12), so that different classes of feature vectors will both move away from the hyperplane,
and that completes the separation of feature vectors of different classes. In conclusion, the supervised
feature-separation algorithm can be explained as:
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arg max
w,b,x

y(wTx + b)
||w||2

= arg min
w,b,x

1
y(wT x+b)
||w||2

(13)

where x denotes feature vectors, y denotes class labels (−1 or 1) corresponding to x, w and b are
parameters of the hyperplane that can be trained automatically. In fine-tuning, we set parameters
(w and b) of the hyperplane to be trainable, and meanwhile set the parameters of the model to be
trainable too. The model is fine-tuned with a small number of labeled ship-radiated noise data. Along
with the process of fine-tuning, feature vectors of different classes of ships will gradually move away
from the hyperplane (see Figure 7), and the hyperplane will eventually be fixed. Similarly, we can also
use Adam to minimize Equation (13).

Maximizing 

geometrical margin

Feature-separation

Fine-tuning

Figure 7. The process of feature-separation.

Compared with the traditional supervised training algorithm (Figure 5), the supervised
feature-separation algorithm (Figure 6) can reduce the number of parameters of a network. For example,
in Figure 5, the fully-connected layer has 66 parameters (32× 2 weights and 1× 2 biases), while a
feature-separation layer only has 33 parameters (the hyperplane has 33 parameters, w is a vector of
32 dimensions, and b is a constant), which means that the supervised feature-separation algorithm can
reduce 50% of the parameters. More importantly, the supervised feature-separation algorithm provides
a perfect interface connecting to different kinds of classifiers directly, which means that feature vectors
passing through a feature-separation layer can be fed to classifiers directly without reducing their
dimensions (As shown in Figure 6, before passing through the feature-separation layer, the feature
vectors have 32 dimensions, and after passing through the feature-separation layer, the feature vectors
still have 32 dimensions, while in Figure 5, feature vectors passing through a fully-connected layer
only have 2 dimensions left). Besides this, the feature-separation algorithm with dimension-invariance
also builds a bridge connecting unsupervised pre-training and supervised fine-tuning, which is quite
suitable for target recognition of small samples. Last but not least, we created a universal loss function
(Equation (13)) for fine-tuning, which makes the process of fine-tuning more explanatory and intuitive,
because we make the meaning of the feature-separation layer quite clear–it is a hyperplane.

5. Experiments and Discussion

5.1. Experiment Dataset

All data of ship-radiated noise come from a database called ShipsEar [23]. During 2012 and
2013 the sounds of many different classes of ships were recorded on the Spanish Atlantic coast and
were included in the ShipsEar database (available at http://atlanttic.uvigo.es/underwaternoise/).
The recordings were made with autonomous acoustic digitalHyd SR-1 recorders, manufactured by
MarSensing Lda (Faro, Portugal). This compact recorder includes a hydrophone with a nominal
sensitivity of −193.5 dB re 1 V/1 uPa and a flat response in the 1 Hz–28 kHz frequency range.

http://atlanttic.uvigo.es/underwaternoise/
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We choose two classes of ship-radiated noise as labeled data, and rest of the ship-radiated noise will be
treated as unlabeled data for unsupervised pre-training. The pre-training data also include underwater
ambient noise. There are 9983 samples in class 1, and 22,523 in class 2. Each sample lasts approximately
0.03 s with sampling frequency of 52,734 Hz. We set 80% of labeled data for supervised fine-tuning,
and we set remaining 20% of labeled data for recognition accuracy testing. We randomly picked up
some originally recorded samples in class 1 and class 2 and we show them in Figure 8. In Figure 8,
class 1 denotes motorboats and class 2 denotes passenger ferries.
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Figure 8. Some originally recorded samples. (a) Pictures and spectrum of the recorded samples in
class 1. (b) Pictures and spectrum of the recorded samples in class 2.

5.2. Experiment of Pre-Processing

In pre-processing, RSSD was utilized to extract the high-resonance components from ship-radiated
noise. We set Q1 = 4, r1 = 3, and J1 = 32 for the high-Q TQWT [4]. For the low-Q TQWT, we
set Q2 = 1, r2 = 3, and J2 = 3 [4]. We randomly picked up a originally recorded signal and
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demonstrated its RSSD result in Figure 9. RSSD decomposes the originally recorded signal into
high-resonance, low-resonance and residual component, which are shown in Figure 9b–d, respectively,
and the originally recorded signal is shown in Figure 9a. The spectrum of the original recorded signal,
the high-resonance component, the low-resonance component and the residual component are shown
in Figure 9e–h, respectively.
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Figure 9. RSSD result. (a) Waveform of the originally recorded signal. (b) Waveform of the
high-resonance component. (c) Waveform of the low-resonance component. (d) Waveform of the
residual component. (e) 3-D spectrogram of the originally recorded signal. (f) 3-D spectrogram of
the high-resonance component. (g) 3-D spectrogram of the low-resonance component. (h) 3-D
spectrogram of the residual component.

It is clear from Figure 9 that the high-resonance component contains much less noise and its
spectrogram is much more pure compared with that of the original signal. Besides this, we can know
that the high-resonance component contains the most part of energy of the original signal and its
spectrogram is the most similar with that of the original signal. We further demonstrate the energy
distribution of the original signal and the high-resonance component in Figure 10.
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Figure 10. (a) Energy distribution of the original signal. (b) Energy distribution of the
high-resonance component.

Figure 10b shows that energy of the high-resonance component mostly concentrates on a narrow
band in low frequency. This will improve the recognition accuracy of underwater acoustic targets
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because the harmonic elements, especially in the low frequency are the main features (also known as
line spectrum) of the ship-radiated noise [3]. A similar result is showed in Figure 11. It is obviously
from Figure 11 that the harmonic elements of the high-resonance component in the low frequency are
much more clear than that of the original signal.
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Figure 11. (a) Spectrogram of the original signal. (b) Spectrogram of the high-resonance component.

For further evaluating the effectiveness of the RSSD used in pre-processing, we calculated
Spectral Correlation Coefficient Cxy [24] of the original signals and their high-resonance components,
respectively. Cxy is almost independent of the sailing speed of ships [24]. The same class of ships tend
to have a large Cxy while Cxy between different classes of ships is much smaller [24]. The Cxy is defined
as follow:

Cxy =

∫ f2
f1

Nxx( f ) · Nyy( f ) d f√∫ f2
f1

N2
xx( f ) d f ·

∫ f2
f1

N2
yy( f ) d f

(14)

where N(·) denotes spectrum. Table 2 is the results of calculating Cxy.

Table 2. The Results of Calculating Cxy.

The Original Signals The High-Resonance Components

Cxy (Class 1)x (Class 2)x Cxy (Class 1)x (Class 2)x
(Class 1)y 0.5830 0.5389 (Class 1)y 0.6191 0.5496
(Class 2)y 0.5389 0.5409 (Class 2)y 0.5496 0.5622

Table 2 shows that the high-resonance components tend to have a larger Cxy between the same
class of ships and a relatively smaller Cxy between the different classes of ships compared with that of
the original signals. Table 2 shows that after applying RSSD, the “invariant” part of the ship-radiated
noise is extracted. This “invariant” part tends to make the same class of ships more related and to
make the different classes of ships more independent. We can make a conclusion that RSSD can
make the different classes of ships more easily distinguishable. The following experiments will be all
conducted on the high-resonance components of the ship-radiated noise.

5.3. Experiment of Unsupervised Pre-Training

To illustrate the performance of the model, T-Distribution Stochastic Neighbor Embedding
(t-SNE) [25] was used to visualize the feature vectors. The visualization technique t-SNE can map
high-dimensional feature vectors into 2 dimensions and show distributions of the high-dimensional
feature vectors. For this moment, the model has not been fine-tuned with labeled data, and data
used for visualization are not included in pre-training. Data used for visualization come from a small
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part of the labeled data. As mentioned in [11], traditional hand-crafted features used for underwater
acoustic target recognition include Mel Frequency Cepstrum Coefficients (MFCC), waveform, auditory
and wavelet features of the ship-radiated noise. However, in [11], experiments have proved that the
MFCC features are the best traditional hand-crafted features for the recognition, so we only use MFCC
features for comparison. After pre-training the model with a large number of unlabeled data, we can
feed it with labeled data to extract feature vectors from each layer. What we obtained were feature
vectors after using labeled data to do feed-forward inference, and we used t-SNE to visualize these
feature vectors. For comparison, we also visualized MFCC features of the same labeled ship-radiated
noise data. Figure 12a is the visualization result of MFCC features, while Figure 12b is the visualization
result of feature vectors of layer 1 under unsupervised pre-training.

(a) (b)

Figure 12. Feature visualization results. (a) MFCC features (23 dimensions). (b) Feature vectors
(32 dimensions) of layer 1 under unsupervised pre-training.

Figure 12a shows that two different classes of MFCC features mainly cluster into two parts,
which indicates that to a certain extent, MFCC features are quite effective for target classification and
recognition. In Figure 12b, the distributions of feature vectors of layer 1 is similar to the distributions
of MFCC features. For this, we can preliminarily think that the model under unsupervised pre-training
can learn potential laws from the ship-radiated noise.

Then, we used t-SNE to visualize feature vectors of each layer of the model under unsupervised
pre-training, which are showed in Figure 13.

Figure 13 shows that for layer 1, two different classes of feature vectors mix together, however,
with the increasing of layers, two different classes of feature vectors gradually move away from each
other and eventually cluster into two parts (Figure 13d). It is undoubted that two different classes of
feature vectors of layer 4 are more distinguishable than that of layer 1. It is worth knowing that the
three specifically designed properties (sparse and shift-invariant, non-linear, depth-wise separable)
of the model mainly contribute to these results. The shift-invariance makes the same class of feature
vectors cluster together, and the non-linearity makes the feature vectors gradually become more
informative with the increasing of layers. For this we can draw a conclusion: with specifically designed
properties, the proposed hierarchical model can gradually extract more informative and invariant
features for target recognition with the increasing of layers.
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(a) (b)

(c) (d)

Figure 13. Feature visualization under unsupervised pre-training. (a) Layer 1. (b) Layer 2. (c) Layer 3.
(d) Layer 4.

5.4. Experiment of Supervised Fine-Tuning

The model under unsupervised pre-training is capable of extracting informative and invariant
features for target recognition. Then, we fine-tuned the model with the traditional supervised
training algorithm (Figure 5), intending to figure out whether the algorithm can improve recognition
performance. The process of this section is similar to Section 5.3, what is different is that the model
has been fine-tuned with labeled data. Figure 13 has demonstrated the visualization results of feature
vectors of each layer under unsupervised pre-training, and similar results are depicted in Figure 14
but after fine-tuning with the traditional supervised training algorithm.

Figure 14 shows that after fine-tuning with the traditional supervised training algorithm, two
different classes of feature vectors of each layer tend to move away from each other compared with
that of Figure 13. Two different classes of feature vectors of each layer become more distinguishable.

Then we fine-tuned the model with the supervised feature-separation algorithm (Figure 6). For a
fair comparison, all experimental conditions were the same. The visualization results are depicted in
Figure 15.

Figure 15 shows that in comparison with Figure 13, two different classes of feature vectors of each
layer also tend to move away from each other after fine-tuning with the supervised feature-separation
algorithm. We can imagine that there is a hyperplane between the two classes of feature vectors that
always tend to keep these two classes of feature vectors separated. Especially layer 1 (Figure 15a), two
different classes of feature vectors are almost separated away from each other after fine-tuning with
the supervised feature-separation algorithm, which verifies the effectiveness of the algorithm.
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(a) (b)

(c) (d)

Figure 14. Feature visualization after fine-tuning with the traditional supervised training algorithm.
(a) Layer 1. (b) Layer 2. (c) Layer 3. (d) Layer 4.

(a) (b)

(c) (d)

Figure 15. Feature visualization after fine-tuning with the supervised feature-separation algorithm.
(a) Layer 1. (b) Layer 2. (c) Layer 3. (d) Layer 4.
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In the traditional supervised training algorithm, the fully-connected layer tends to map the
“distributed feature representations” to different sample space, which means that the fully-connected
layer focuses on each dimension of a feature vector and identify each dimension of a feature vector
separately, while the feature-separation layer views a feature vector as an entirety (a point in the
high-dimensional space) and directly separates it from others with a hyperplane. Since we apply
depth-wise separable convolution and deconvolution in pre-training, the correlations between features
of each kernel are ignored. However, when we apply the supervised feature-separation algorithm in
fine-tuning, the correlations between features of each kernel will be actually considered because we
view a feature vector as an entirety. The operation of “first splitting up and then combining together”
makes each feature more interpretable because we both consider the independence and the correlations
of features of each kernel but in a separated way. The distributions of two different classes of feature
vectors are different passing through a fully-connected layer or a feature-separation layer, but they
both become more distinguishable.

5.5. Experiment of Underwater Acoustic Target Recognition

This section we will discuss the performance of underwater acoustic target recognition of the
model. As mentioned in [11], MFCC features have been experimentally proved to be the best
hand-crafted features for the recognition, we only use MFCC features for comparison. We extracted
MFCC features of training data to train SVM classifiers and extracted MFCC features of testing data to
calculate recognition accuracy.

As shown in Figure 13, feature vectors extracted by the model under unsupervised pre-training
can be used for target recognition, because the feature vectors are distinguishable with different classes
just like the MFCC features. Therefore, we added labels to the feature vectors and used them for target
recognition. More specifically, after pre-training the model with unlabeled data, we fed it with training
data (with labels) and extracted feature vectors from each layer. Then the feature vectors (with labels)
can be used to train SVM classifiers. For testing phase, we fed testing data to the model and extracted
feature vectors to verify the recognition performance of the model.

After evaluating the recognition performance of the model under pre-training, we further
evaluated the recognition performance of the model after fine-tuning. We used both the traditional
supervised training algorithm and the supervised feature-separation algorithm for fine-tuning.
The whole experiment procedure of this section is depicted in Figure 16.

Parameters of the SVM classifiers were selected by using 10-fold cross-validation. In Table 3,
average recognition accuracy over 10 random trials is reported.

Table 3. Average Recognition Accuracy.

Methods Features Dimensions Accuracy/%

Traditional MFCC 23 79.62

Unsupervised pre-training

Layer 1 32 72.98
Layer 2 32 88.33
Layer 3 32 92.29
Layer 4 32 92.75

Fine-tuning with the traditional
supervised training algorithm

Layer 1 32 80.75
Layer 2 32 89.29
Layer 3 32 92.49
Layer 4 32 93.24

Fine-tuning with the supervised
feature-separation algorithm

Layer 1 32 83.37
Layer 2 32 91.51
Layer 3 32 92.83
Layer 4 32 93.28
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Figure 16. Procedure of the underwater acoustic target recognition experiment.

As shown in Table 3, recognition accuracy of MFCC features surpasses the feature vectors of
layer 1 of the model under pre-training, however, with the increasing of layers, recognition accuracy
of the model will greatly improve, which indicates that the model can indeed extract informative
and invariant features for target recognition. The recognition accuracy will improve after supervised
fine-tuning, especially layer 1, which improves almost 10.5% of accuracy after fine-tuning with
the supervised feature-separation algorithm. Besides this, no matter pre-training or fine-tuning,
recognition accuracy improves with the increasing of layers. Generally speaking, after fine-tuning
with the supervised feature-separation algorithm, layer 4 achieves the highest recognition accuracy
of 93.28%. We draw ROC (Receiver Operating Characteristic) curves with AUC (Area Under Curve)
values to further evaluate the recognition performance of the model, which are depicted in Figure 17.
The one has the larger AUC value has the better recognition performance.

As shown in Figure 17, with the increasing of layers, the recognition performance will improve
no matter unsupervised pre-training or supervised fine-tuning, just as mentioned above. In order to
further verify the effectiveness of the supervised feature-separation algorithm, we draw ROC curves
of each layer under unsupervised pre-training and after fine-tuning with the supervised separation
algorithm, which are depicted in Figure 18.
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(a)

(b) (c)

Figure 17. ROC curves of each layer of the model. (a) Unsupervised pre-training. (b) Fine-tuning
with the traditional supervised training algorithm. (c) Fine-tuning with the supervised feature-
separation algorithm.

(a) (b)

(c) (d)

Figure 18. ROC curves of each layer under unsupervised pre-training and after fine-tuning with the
supervised separation algorithm. (a) Layer 1. (b) Layer 2. (c) Layer 3. (d) Layer 4.
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As shown in Figure 18, compared with pre-training, no matter which layer, the recognition
performance will improve after fine-tuning with the supervised feature-separation algorithm, just as
mentioned above. Comparing Figure 18a and Figure 18d, we can know that recognition performance
of layer 1 was greatly improved after fine-tuning with the supervised separation algorithm, while the
recognition performance of layer 4 was improved only slightly. For this, we can draw a conclusion
that the supervised feature-separation algorithm is capable of separating the mixed features (just like
Figure 13a), rather than further separating the features that are already separated (just like Figure 13d).

Lastly, we draw ROC curves of each layer after fine-tuning with the traditional supervised training
algorithm and with the supervised feature-separation algorithm, which are showed in Figure 19.

(a) (b)

(c) (d)

Figure 19. ROC curves of each layer after fine-tuning with the traditional supervised training algorithm
and with the supervised feature-separation algorithm. (a) Layer 1. (b) Layer 2. (c) Layer 3. (d) Layer 4.

From Figure 19a we can indicate that the recognition performance of the supervised
feature-separation algorithm is better than the traditional supervised training algorithm when feature
vectors mix together (just like Figure 13a). This experimental result conforms our expectation,
because we indeed purposely use a hyperplane to separate the two different classes of feature
vectors. For this, we can confirm the conclusion: the supervised feature-separation algorithm is
quite capable of separating the mixed features (just like Figure 13a). However, with the increasing of
layers, the advantage of the supervised feature-separation algorithm over the traditional supervised
training algorithm become less outstanding. Just as shown in Figure 19c,d, when two different classes of
feature vectors no longer mix together, ROC curves of the two supervised algorithms overlap together,
which indicates that the both two supervised algorithms have the same recognition performance, and
the advantage of the supervised feature-separation algorithm become less outstanding.
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6. Conclusions

For the purpose of improving accuracy of underwater acoustic target recognition under the
condition of small size of labeled data, we proposed a novel recognition method of 4 steps including
pre-processing, pre-training, fine-tuning and recognition. In pre-processing, RSSD was utilized to
extract the high-resonance components from ship-radiated noise. Experiments showed that after
pre-processing with RSSD, different classes of ships become more easily distinguishable. In pre-training,
we proposed the one-dimensional convolution autoencoder-decoder model to extract features from
the high-resonance components and experiments showed that pre-trained with a large number
of unlabeled data, the model can gradually extract more informative and invariant features for
underwater acoustic target recognition with the increasing of layers. In fine-tuning, the supervised
feature-separation algorithm was proposed to further separate the features extracted in pre-training and
experiments showed that the algorithm is quite capable of separating the mixed features. By combining
the 4 steps, the model can achieve recognition accuracy of 93.28%, which sufficiently surpasses other
traditional state-of-art feature-extraction methods.

Author Contributions: F.Y. and X.K. contributed to the idea of the incentive mechanism and designed the
algorithms; F.Y. and E.C. were responsible for some parts of the theoretical analysis. X.K. designed and performed
the experiments. F.Y., E.C. and X.K. contributed with the structure, content and the paper check.

Funding: This work was supported by the National Natural Science Foundation of China (Grant Nos:
61471308, 61571377, and 61771412) and the Fundamental Research Funds for the Central Universities
(Grant No.: 20720180068).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yang, L.; Chen, K. A perceptual space for underwater man-made sounds towards target classification.
Appl. Acoust. 2016, 110, 119–127. [CrossRef]

2. Harris, P.; Philip, R.; Robinson, S.; Wang, L. Monitoring anthropogenic ocean sound from shipping using an
acoustic sensor network and a compressive sensing approach. Sensors 2016, 16, 415. [CrossRef] [PubMed]

3. Averbuch, A.; Zheludev, V.; Neittaanmäki, P.; Wartiainen, P.; Huoman, K.; Janson, K. Acoustic detection and
classification of river boats. Appl. Acoust. 2011, 72, 22–34. [CrossRef]

4. Yan, J.; Sun, H.; Chen, H.; Junejo, N.U.R.; Cheng, E. Resonance-Based Time-Frequency Manifold for Feature
Extraction of Ship-Radiated Noise. Sensors 2018, 18, 936. [CrossRef] [PubMed]

5. Selesnick, I.W. Resonance-based signal decomposition: A new sparsity-enabled signal analysis method.
Signal Process. 2011, 91, 2793–2809. [CrossRef]

6. Jian, L.; Yang, H.; Zhong, L.; Ying, X. Underwater target recognition based on line spectrum and support
vector machine. In Proceedings of the International Conference on Mechatronics, Control and Electronic
Engineering (MCE2014), Shenyang, China, 29–31 August 2014; Atlantis Press: Paris, France, 2014; pp. 79–84.

7. Wei, X. On feature extraction of ship radiated noise using 11/2 d spectrum and principal components
analysis. In Proceedings of the 2016 IEEE International Conference on Signal Processing, Communications
and Computing (ICSPCC), Hong Kong, China, 5–8 August 2016; pp. 1–4.

8. Zhang, L.; Wu, D.; Han, X.; Zhu, Z. Feature extraction of underwater target signal using Mel frequency
cepstrum coefficients based on acoustic vector sensor. J. Sens. 2016, 2016, 7864213. [CrossRef]

9. Meng, Q.; Yang, S. A wave structure based method for recognition of marine acoustic target signals. J. Acoust.
Soc. Am. 2015, 137, 2242. [CrossRef]

10. Cao, X.; Zhang, X.; Yu, Y.; Niu, L. Deep learning-based recognition of underwater target. In Proceedings of
the 2016 IEEE International Conference on Digital Signal Processing (DSP), Beijing, China, 16–18 October
2016; pp. 89–93.

11. Yang, H.; Shen, S.; Yao, X.; Sheng, M.; Wang, C. Competitive Deep-Belief Networks for Underwater Acoustic
Target Recognition. Sensors 2018, 18, 952. [CrossRef] [PubMed]

12. Ranzato, M.; Huang, F.J.; Boureau, Y.L.; LeCun, Y. Unsupervised learning of invariant feature hierarchies
with applications to object recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’07), Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8.

http://dx.doi.org/10.1016/j.apacoust.2016.03.036
http://dx.doi.org/10.3390/s16030415
http://www.ncbi.nlm.nih.gov/pubmed/27011187
http://dx.doi.org/10.1016/j.apacoust.2010.09.006
http://dx.doi.org/10.3390/s18040936
http://www.ncbi.nlm.nih.gov/pubmed/29565288
http://dx.doi.org/10.1016/j.sigpro.2010.10.018
http://dx.doi.org/10.1155/2016/7864213
http://dx.doi.org/10.1121/1.4920186
http://dx.doi.org/10.3390/s18040952
http://www.ncbi.nlm.nih.gov/pubmed/29570642


Sensors 2018, 18, 4318 24 of 24

13. Selesnick, I.W. Wavelet transform with tunable Q-factor. IEEE Trans. Signal Process. 2011, 59, 3560–3575.
[CrossRef]

14. Starck, J.L.; Elad, M.; Donoho, D.L. Image decomposition via the combination of sparse representations and
a variational approach. IEEE Trans. Signal Process. 2005, 14, 1570–1582. [CrossRef]

15. Selesnick, I. TQWT Toolbox Guide; Electrical and Computer Engineering, Polytechnic Institute of New York
University: Brooklyn, NY, USA, 2011. Available online: http://eeweb.poly.edu/iselesni/TQWT/index.html
(accessed on 6 October 2011).

16. Chollet, F. Xception: Deep learning with depthwise separable convolutions. arXiv 2017, arXiv:1610.02357.
17. Tuma, M.; Rørbech, V.; Prior, M.K.; Igel, C. Integrated optimization of long-range underwater signal

detection, feature extraction, and classification for nuclear treaty monitoring. IEEE Trans. Geosci. Remote Sens.
2016, 54, 3649–3659. [CrossRef]

18. Huang, F.; LeCun, Y. Large-scale learning with svm and convolutional netw for generic object recognition.
In Proceedings of the IEEE 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, New York, NY, USA, 17–22 June 2006.

19. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
20. Hinton, G.E. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002,

14, 1771–1800. [CrossRef] [PubMed]
21. Kinga, D.; Adam, J.B. A method for stochastic optimization. In Proceedings of the International Conference

on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015; Volume 5.
22. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006,

313, 504–507. [CrossRef] [PubMed]
23. Santos-Domínguez, D.; Torres-Guijarro, S.; Cardenal-López, A.; Pena-Gimenez, A. ShipsEar: An underwater

vessel noise database. Appl. Acoust. 2016, 113, 64–69. [CrossRef]
24. Hou, W.L. SPECTRUM AUTOCORRELATION. Acta Acust. 1988, 2, 006.
25. Maaten, L.V.D.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSP.2011.2143711
http://dx.doi.org/10.1109/TIP.2005.852206
http://eeweb.poly.edu/iselesni/TQWT/index.html
http://dx.doi.org/10.1109/TGRS.2016.2522972
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1162/089976602760128018
http://www.ncbi.nlm.nih.gov/pubmed/12180402
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://dx.doi.org/10.1016/j.apacoust.2016.06.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Resonance-Based Sparsity Signal Decomposition for Pre-Processing 
	One-Dimensional Convolution Autoencoder-Decoder Model for Unsupervised Pre-Training 
	Building Units
	The First Layer of the Model
	Stack Layers to Hierarchically Extract Features
	Hyper-Parameter Optimization
	The Structure of the Hierarchical Model

	Learning Algorithm for Unsupervised Pre-Training

	Supervised Fine-Tuning and Feature-Separation 
	The Traditional Supervised Training Algorithm for Fine-Tuning
	The Supervised Feature-Separation Algorithm for Fine-Tuning
	Procedure of the Supervised Feature-Separation Algorithm
	Explanation of the Supervised Feature-Separation Algorithm


	Experiments and Discussion 
	Experiment Dataset
	Experiment of Pre-Processing
	Experiment of Unsupervised Pre-Training 
	Experiment of Supervised Fine-Tuning
	Experiment of Underwater Acoustic Target Recognition

	Conclusions 
	References

