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Abstract: The ubiquity of sensor-rich smartphones provides opportunities for a low-cost method
to track indoor pedestrians. In this situation, pedestrian dead reckoning (PDR) is a widely used
technology; however, its cumulative error seriously affects its accuracy. This paper presents a method
of combining infrastructure-free indoor acoustic self-positioning with PDR self-positioning, which
verifies the rationality of PDR results through the acoustic constraint between a sound source and its
image sources. We further determine the first-order echo delay measurements, thus obtaining the
mobile user position. We verify that the proposed method can achieve a continuous self-positioning
median error of 0.19 m, and the error probability below 0.12 m is 54.46%, which indicates its ability to
eliminate PDR error, as well as its adaptability to environmental disturbances.

Keywords: indoor acoustic localization; acoustic image model; motion dynamics information;
pedestrian dead reckoning; smartphone-based self-positioning

1. Introduction

The increasing number of sensor-rich smartphones has raised interest in using their sensors for
indoor localization applications, such as indoor navigation [1], location-based services [2], providing
aid for hearing-impaired persons [3], and environmental perception [4,5]. Global positioning system
(GPS) can provide effective localization results for pedestrians in outdoor environments, but may not
be useful for indoor environments due to weak signal reception and the indoor shadowing effect [6].
Therefore, indoor pedestrian self-positioning technology has attracted considerable attention.

Based on specific technology, it is possible to categorize methodologies for smartphone-based
indoor pedestrian self-positioning systems into two distinct groups: (1) infrastructure-based systems
that use auxiliary equipment or a cooperation between nodes to realize target tracking [1–9], and (2) the
infrastructure-free systems that realize pedestrian self-positioning using only the information provided
by the smartphone carried on one’s person [9–20]. However, when using the former, the pedestrian is
likely to experience difficulties in position acquisition when the cooperative information is unavailable.
The widely used pedestrian dead reckoning (PDR) method only provides a relative position estimate,
with its accuracy degrading over time. The fusion of other positioning methods has been proposed to
solve this problem [21–26]. Yang et al. [23] proposed a novel smartphone-based indoor localization
system that improved the PDR results by integrating an infrastructure-based acoustic localization
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system, reaching sub-meter localization accuracy at the expense of a complicated data availability
analysis and computational complexity.

To reduce the influences of noise on the source tracking, the motion and observation models of
the moving source as well as the probability distribution model of the errors [27] must be established
for filtering methods, i.e., Kalman filter, particle filter, and their variants [26]. Such complications and
inconveniences limit the applications of the filtering methods.

To alleviate the aforementioned problems, this study provides an acoustic constraint algorithm to
verify the rationality of the PDR results, which reduces the cumulative errors by using the geometric
relationship between the sound source and its image sources.

The rest of this paper is organized as follows. Section 2 provides an overview of the proposed
indoor pedestrian self-positioning system. Section 3 details the first-order echo estimates based
on an acoustic image model (AIM). In Section 4, we describe the solution for the first-order echo
measurements in three steps: the calculation of the cross-correlation, the calculation of first-order
echo measurements; and the acoustic principle-based constraints. Section 5 summarizes the applied
Levenberg–Marquardt algorithm-based weighted nonlinear least squares (LMA-WNLS) model for
pedestrian position values. Section 6 highlights the performance of the proposed method and the results
analysis, which proves the effectiveness of the proposed system for indoor pedestrian continuous
position acquisition. The conclusions are drawn in Section 7.

2. System Overview

We assume that a sounding smartphone is always carried by the indoor pedestrian. The pedestrian
moves autonomously inside a room. At every step, the loudspeaker of the smartphone produces a
chirp pulse, the microphone of this smartphone registers the echoes, and the inertial sensors record
the accelerometer and gyroscope readings. We define the room to be a K-faced rectangular room,
which is widely used in teaching buildings. The pedestrian is modeled in a room as a point source
in a rectangular cavity, and thus, for ease of explanation, the pedestrian and the sound source (the
loudspeaker of the user smartphone) are hereafter equivalently used in this paper. We worked
in two-dimensional (2D) space, ignoring the floor and the ceiling, given K = 4, but the results
could be extended to three-dimensional space. The proposed system was implemented to achieve
submeter-level positioning accuracy and reliability. To this end, five steps were followed to obtain the
position of the indoor pedestrian, as presented in Figure 1.
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Figure 1. Overview of the proposed system architecture. AIM: Acoustic Image Model. ITM: Isosceles 
Trapezoid Model; LMA-WNLS: Levenberg–Marquardt algorithm-based weighted nonlinear least 
squares. 

The first step is to compute the image sound sources, denoted as 𝑆 , , 𝑘 = 1, … ,4 as shown in 
Figure 2, without loss of generality. One corner marked with 𝑂 in the room is placed as the origin 
based on the AIM [28,29]. Then, Euclidean distance analysis is applied for the first-order echo 
estimates, which are detailed in Section 3. An isosceles trapezoid geometry [20] was adopted to 
calculate the first-order echo measurements based on the PDR information (i.e., the step length 𝐿  
[30] and the heading angular 𝜃 [31]) and the locations of all 𝑆 , . The fourth step is to exploit the 
acoustic constraits to update the measurementsvalues. Lastly, the LMA-WNLS is performed, which 
is used to quickly iterate the current pedestrian position coordinates and achieve the tracking effect. 
The LMA-WNLS is detailed by Mensing [32], and a brief summary is provided in Section 5. 

Figure 1. Overview of the proposed system architecture. AIM: Acoustic Image Model. ITM:
Isosceles Trapezoid Model; LMA-WNLS: Levenberg–Marquardt algorithm-based weighted nonlinear
least squares.

The first step is to compute the image sound sources, denoted as St,k, k = 1, . . . , 4 as shown in
Figure 2, without loss of generality. One corner marked with O in the room is placed as the origin based
on the AIM [28,29]. Then, Euclidean distance analysis is applied for the first-order echo estimates,
which are detailed in Section 3. An isosceles trapezoid geometry [20] was adopted to calculate the
first-order echo measurements based on the PDR information (i.e., the step length Ltra [30] and the
heading angular θ [31]) and the locations of all St,k. The fourth step is to exploit the acoustic constraits
to update the measurementsvalues. Lastly, the LMA-WNLS is performed, which is used to quickly
iterate the current pedestrian position coordinates and achieve the tracking effect. The LMA-WNLS is
detailed by Mensing [32], and a brief summary is provided in Section 5.
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Figure 2. Illustration of the spatial geometrical models presented in this paper. We suppose the room 
size is 𝐿 , 𝐿 , and the origin point is located at 𝑂(0,0). (a) The acoustic image model (AIM) for the 
first-order images. Point 𝑝 is an arbitrary point of the 𝑘th wall. Vector 𝑛 is the outward-pointing 
unit normal associated with the 𝑘th wall, 𝑆 , , 𝑘 = 1, … , 𝐾  are the first-order image sources of 𝑆  
corresponding to the 𝑘th wall. (b) The isosceles trapezoid model (ITM) for a moving sound source. 
When the sound source moves from 𝑆  to 𝑆 , 𝑆 ,  moves to the 𝑆 , , 𝑘 = 1, …, 4, respectively; 
then, these points (𝑆 , 𝑆 , , 𝑆 , 𝑆 , ) can form a set of isosceles trapezoids with the waist length 
represented as the step length 𝐿  and the inner angle as the heading angular 𝜃. The step forward 
from 𝑆  to 𝑆  is shown as a green full line, the sound rays at time 𝑡 are the blue dashed line, and 
sound rays at time 𝑡 + 1 are the red dotted line. 
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Figure 2. Illustration of the spatial geometrical models presented in this paper. We suppose the room
size is

[
Lx, Ly

]
, and the origin point is located at O(0, 0). (a) The acoustic image model (AIM) for

the first-order images. Point p is an arbitrary point of the kth wall. Vector n is the outward-pointing
unit normal associated with the kth wall, St,k, k = 1, . . . , K are the first-order image sources of St

corresponding to the kth wall. (b) The isosceles trapezoid model (ITM) for a moving sound source.
When the sound source moves from St to St+1, St,k moves to the St+1,k, k = 1, . . . , 4, respectively;
then, these points (St, St,k, St+1, St+1,k) can form a set of isosceles trapezoids with the waist length
represented as the step length Ltra and the inner angle as the heading angular θ. The step forward from
St to St+1 is shown as a green full line, the sound rays at time t are the blue dashed line, and sound
rays at time t + 1 are the red dotted line.

3. First-Order Echo Estimates

In the AIM, the reflections from the walls are replaced with signals produced by image sound
sources across the corresponding walls. For a first-order echo and the kth wall described by the
outward-pointing unit normal nk and an arbitrary wall point pk, the image sources St,k of the real
source St are computed as:

St,k = St + 2〈pk − St, nk〉nk (1)

where 〈·〉 is the inner product operator. According to Equation (1), given nk and pk, St,k can be
determined by St using the dimension analysis introduced by Figure 1 in Fu et al. [29]. For example,
when k = 3 (the east wall), the unit normal n3 = (1, 0) and the wall point p3 = (Lx, 0). Supposing a
real sound source is located at St(x, y), its first-order image sound sources are located at St,k(xt,k, yt,k)

for the kth wall at time t, and then St,3(xt,3, yt,3) could be St,3(2Lx − x, y) using Equation (1). Similarly,
the other images’ positions could be computed as shown in Table 1.

Table 1. Suppose a real sound source is located at St(x, y): its first-order image sound sources are
located at St,k

(
xt,k, yt,k

)
for different k at any time t. The corresponding coordinates and reflection

orders are shown below.

Coordinate −1st Order Real Source 1st Order

x St,1(−x, y) St(x, y) St,3(2Lx − x, y)
y St,2(x,−y) St(x, y) St,4

(
x, 2Ly − y

)

Denote ret,k as the Euclidean distance between the St and its St,k at time t, then:

ret,k =‖ St − St,k ‖=
√
(x− xt,k)

2 + (y− yt,k)
2, k = 1, 2, . . . , K (2)

As the sound propagation speed c is used as a constant here, in the following, we treat distances
and propagation times as equivalent. Thus, the first-order echo estimates d(ret,k) as a delay set for real
sound source at time t could be expressed by the difference of ret,k as:

d(ret,k) =
[
ret,2 − ret,1, ret,3 − ret,1, . . . , ret,k̂ − ret,1

]
, k̂ = 2, 3, . . . , K (3)
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4. First-Order Echo Measurements

When the loudspeaker S of the smartphone chirps in an indoor environment, the smartphone
microphone M records both the direct path of the sound and its reflections from the walls. Motivated
by the robustness of the transfer-function measurement approach based on sequences with better
cross-correlation and autocorrelation properties [33], a chirp impulse [16] with similar properties
and those more compatible with smartphones [7] was chosen as the emitting signal to simplify
the processing of the first-order echo measurements using the generalized cross correlation (GCC)
introduced by Knapp et al. [34], which performed well in separating arrivals that were close in time.

4.1. Calculation of the Cross-Correlation

The chirp impulse, emitted from S, works between 0 ≤ t ≤ T with a start frequency f0 and an
end frequency f1, which can be described as:

s(t) = sin
(

2π

(
f0 +

f1 − f0

2T
t
)

t
)

(4)

Let the time-domain received signals be r(t), the GCC between the received signals r(t) and the
reference signal s(t) is given by the phase transform (PHAT) in time domain:

R(τ)s,r =
1

2π

∫ +∞

−∞

s(ω)r∗(ω)

|s(ω)r(ω)| e
jωτdω (5)

where ∗ is the conjugate operator, s(ω) and r(ω) represent the Fourier transforms of the reference
signal and the signals received by the microphone of the smartphone, respectively. The GCC-PHAT
method has several advantages: first, the correlation between the received signals with a known signal
removes uncorrelated noise; second, the implementation of the cross correlation in the frequency
domain is more computationally efficient than its implementation in the time domain; third, the
PHAT has the ability to decrease the effects of reverberation [35]. In our experiments, since the
pedestrian walks along the room’s walls and the dominant directions (east, west, south, north), shown
by the reference walking lines in Figure 3, the distance to the four walls are not always equal and
the range-resolution is sufficient for path separation. Thus, given the advantage of the chirp’s good
correlation characteristics, the GCC-PHAT R(τ)s,r has the ability to detect the time-of-flights (TOFs),
both of the direct path and the reflected path.Sensors 2018, 18, x 5 of 15 
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4.2. Calculation of First-Order Echo Measurements 

Given a fixed reflecting surface with a fixed orientation and a sound source point, the expression 
for the position of the image point can obtained with Equation (1). If also given the boundary values 
of the room size, this position can be explicitly expressed by Table 1. Thus, according to Equation (2), 
the distance relationship between the real sound source and its first-order image sound sources can 
be expressed by taking advantage of the isosceles trapezoid model (ITM), shown in Figure 2b, as: 

⎩⎪⎨
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 (6) 

where 𝑟 ,  is the distance between 𝑆 ,  and 𝑆 ,  for the 𝑘𝑡ℎ  wall at time 𝑡 . In the 
aforementioned expression, the dependence on the wall index 𝑘 is omitted for the sake of brevity; 
here, 𝑘 = 1 is specifically the west wall. 𝑟 ,  is the distance for the 𝑘𝑡ℎ wall at time 𝑡 + 1. 𝑆  
and 𝑆  with the subscript 𝑥 or 𝑦 are the corresponding coordinate values of 𝑆 at time 𝑡 and 
time 𝑡 + 1, respectively. 

Since the smartphone is carried by the moving pedestrian, the PDR information—which is 
regarded as the distance moved (the step length 𝐿 ), and the movement heading attitude changes 
(the heading angle 𝜃 )—could be solved by the adaptive step length algorithm presented by  
Shin et al. [30] and a heading correction method similar to the one presented by Deng et al [31]. 
Denoting 𝑊𝐹 as the walking frequency when the steps are detected and 𝐴𝑉 as the acceleration 
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equal to 0.5, because the measurement errors are minimized. 𝛼  and 𝓋 , as well as 𝛼  and 𝓋 , 
are the linear fit parameters for 𝑊𝐹 and 𝐴𝑉, respectively. In our experiment, the parameters of 𝛼  
and 𝓋 , as well as 𝛼  and 𝓋 , were obtained by averaging the results by recording multiple 
measurements on the same experimental route. Thus, 𝛼 ,  𝛽 , and 𝛾  are the optimal step length 
estimation parameters. 

Figure 3. Illustration of the fifth corridor of the Jinji Campus Library in GUET. GUET: Guilin University
of Electronic Technology. The dashed lines are the reference walking lines. A small green triangle dot
denotes the beginning point and a red one denotes the ending point. The dominant directions are
denoted as E: East, S: South, W: West, N: North.
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4.2. Calculation of First-Order Echo Measurements

Given a fixed reflecting surface with a fixed orientation and a sound source point, the expression
for the position of the image point can obtained with Equation (1). If also given the boundary values
of the room size, this position can be explicitly expressed by Table 1. Thus, according to Equation (2),
the distance relationship between the real sound source and its first-order image sound sources can be
expressed by taking advantage of the isosceles trapezoid model (ITM), shown in Figure 2b, as:

rmt+1,k = rmt,1 ± 2Ltracosθ, k = 1, 3, St+1,x > St,x

rmt+1,k = rmt,1 ± 2Ltrasinθ, k = 2, 4, St+1,y > St,y

rmt+1,k = rmt,1 ∓ 2Ltracosθ, k = 1, 3, St+1,x < St,x

rmt+1,k = rmt,1 ∓ 2Ltrasinθ, k = 2, 4, St+1,y < St,y

(6)

where rmt,k is the distance between St,k and St+1,k for the kth wall at time t. In the aforementioned
expression, the dependence on the wall index k is omitted for the sake of brevity; here, k = 1 is
specifically the west wall. rmt+1,k is the distance for the kth wall at time t + 1. St and St+1 with the
subscript x or y are the corresponding coordinate values of S at time t and time t + 1, respectively.

Since the smartphone is carried by the moving pedestrian, the PDR information—which is
regarded as the distance moved (the step length Ltra), and the movement heading attitude changes (the
heading angle θ)—could be solved by the adaptive step length algorithm presented by Shin et al. [30]
and a heading correction method similar to the one presented by Deng et al [31]. Denoting WF as the
walking frequency when the steps are detected and AV as the acceleration variance, the step length is
a linear function of the following measurements:

Ltra =
(

mw f αw f

)
WF + (mavαav)AV +

(
vw f + vav

)
= αOptWF + βOpt AV + γOpt (7)

where mw f and mav are the measurement errors of WF and AV, respectively, and they are both equal to
0.5, because the measurement errors are minimized. αw f and vw f , as well as αav and vav, are the linear
fit parameters for WF and AV, respectively. In our experiment, the parameters of αw f and vw f , as well
as αav and vav, were obtained by averaging the results by recording multiple measurements on the same
experimental route. Thus, αOpt, βOpt, and γOpt are the optimal step length estimation parameters.

As the real paths of the experimenter in this study were along the dominant directions, and during
the experiment, the smartphone was always horizontally and statically held in the hand, we simplified
the processing of θ by superimposing the z-axis angular rate reading ωz,κ from the gyroscope at every
step κ. 0 ≤ κ ≤ K, where K is the total step number:

θ =
K
∑
κ=1

ωz,κ (8)

Similarly, the first-order echo measurements d(rmt,k) as a delay set for S at time t could be

d(rmt,k) =
[
rmt,2 − rmt,1, rmt,3 − rmt,1, . . . , rmt,k̂ − rmt,1

]
, k̂ = 2, 3, . . . , K (9)

4.3. Acoustic Principle-Based Constraints

Since the distance between S and M is very small, i.e.,‖ S−M ‖→ 0 , the direct sound path from
S to M can be described as:

τdirect = argmax
τ
|R(τ)s,r| (10)
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where |·| is the modulo operation. Similarly, the direct sound paths from St,k to M can be regarded as
the path from St,k to S, and we denote τre f lect as a TOF set of these paths as:

τre f lect = arg
τ
(|R(τ)s,r| −max|R(τ)s,r|) (11)

The first-order echo measurements are provided by solving the unknown top or base values of
the isosceles trapezoids that should be the impulse delays in the R(τ)s,r. To reduce the errors of the
first-order echo measurements, the acoustic principle-based constraint algorithm is proposed to update
the measurements.

4.3.1. Sound Pressure Level Constraint

The Haas effect, also known as the priority effect, reflects the perception of the sound source’s
orientation based on the first sound that arrives at the human ear. According to the conclusion of the
classic Hass experiment, sounds reflected within 5 to 35 ms after the direct sound can be distinguished
when the sound pressure level (SPL) of the reflected sound is greater than 10 dB of the SPL of the direct
sound. Thus:

SPLre f lect − SPLdirect ≥ 10 dB (12)

where SPLre f lect and SPLdirect are the SPLs of the first-order reflections and the direct arrived sound,
respectively. Since the sound source is a point source, assume that the image sources are also point
sources, so the wavefront is a spherical wave. The expression of spherical acoustic wave attenuation
with distance at normal temperature is:

SPL = LW − 10lgr− k (13)

where the LW is the sound power level, r is the distance between the sound source (the real source or
the image source) and the receiver, and k is the spacial modifying coefficient. Let LWre f lect and LWdirect
be the sound power level at the real sound source and its first-order image sound source, respectively.
Based on the image concepts in AIM, LWre f lect = LWdirect. Then:

SPLre f lect− SPLdirect
= LWre f lect − 20lgrre f lect − k− (LWdirect − 20lgrdirect − k)

= 20lgrdirect − 20lgrre f lect = 20lg
(

cτdirect
cτre f lect

) (14)

Thus, τre f lect ≤ τdirect√
10

, which means if any first-order reflected sounds within 5 to 35 ms after the
direct sound, the rmt,k, t ≥ 0 must follow:

rmt,k ≤
c·τdirect√

10
(15)

If some of them (the rmt,k) are outside this range, the known room size
[
Lx, Ly

]
should be used

to restrict their values. For example, when the pedestrian walks along the west wall (k = 1), rmt,1
should be the smallest one among all the rmt,k values along the west wall phase, rmt,1 must follow
Equation (15); however, the first-order echo delay according to the opposite side (the east wall, k = 3)
in this phase may be outside the 5 to 35 ms range, then the rmt,3 value should be restricted by Lx, i.e.,
rmt,3 = Lx − rmt,1. A similar analysis also applies to the rmt,2 and rmt,4 with Ly.
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4.3.2. Sound Energy Constraint

Based on the distance relationship between the real sound source and its image sound sources,
the propagation delay ξt,k for any rmt,k, t ≥ 0 is:

ξt,k = round
( rmt,k

c

)
(16)

where round(·) is the rounding operation. As ξt,k should be a TOF value in R(τ)s,r, and the computed
rmt,k

c is not always an integer, a rounding operation is needed. Based on the fact that the energy of
the wave is proportional to the square of its amplitude, the pulse amplitude of the cross-correlation
function could be used to represent the energy constraint. The sound energy (SE) constraint of the
first-order echo impulses according to ξt,k should be:∣∣∣R(ξt,k)s,r

∣∣∣2 ≥ ∆ (17)

where ∆ is an empirical energy threshold that depends on the room average absorption coefficient.
Because the four sides of our experimental environment are glass windows, doors and walls, and
the ceiling is mainly glass with steel stent supports (as shown in Figure 3), according to the sound
absorption coefficient analysis [36], the sound field is not uniform. Under these conditions, the
calculated coefficient will always be smaller than when the sound field is uniform. We calculate
the indoor reverberation time according to the Sabine formula, confirming that the room is a high
reverberation environment. This may result in the superposition of multiple reflected sounds at the
position where the first-order reflected wave occurs. In addition, in large rooms, the sound propagation
will experience a long path, when the frequency is above 2 kHz, the air absorption can account for
20–25% of the total sound absorption of the whole space. Therefore, through experimental observation,
our empirical energy threshold is set as the following

∆ = (
1

2K
K
∑
i=1

max|Ri

(
τre f lect

)
s,r
|)

2

(18)

4.3.3. Update Algorithm

If the first-order echo measurements d(rmt,k) satisfy the SPL and SE constraints, meaning the
PDR is authentic, d(rmt,k) is correct. If not, the PDR is not completely authentic, and d(rmt,k) should
be updated by the new values extracted from the constraint range. The above constraint steps are
summarized in Algorithm 1.

Algorithm 1. Algorithm for Updated First-Order Echo Measurements.

Input: rmt,k, ξt,k, τdirect, c, R(τ)s,r, ∆, τre f lect
Output: the updated d

(
rmt,k

)
1: if rmt,k ≤ c·τdirect√

10
and

∣∣∣R(ξt,k
)

s,r

∣∣∣2 ≥ ∆ then

2: d
(
rmt,k

)
← d

(
ξt,k·c

)
3: otherwise, τ̂ ← select delays of candidate echos that satisfy both the SPL and the SE constraits
4: for all the delay samples of ξt,k and τ̂ do
5: ξt,k ← argmin

t
(ξt,k − τ̂)

6: return ξt,k
7: end for
8: d

(
rmt,k

)
← d

(
ξt,k·c

)
9: end if
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5. LMA-WNLS-Based Pedestrian Self-Positioning

Based on the weighted non-linear least squares (WNLS) approach, the cost function is:

ε(St) = (d(rmt,k)− d(ret,k))
T ∗ D−1 ∗ (d(rmt,k)− d(ret,k)) (19)

where (·)T is the transpose operation, (·)−1 is the inverse operation, and D is the noise covariance
matrix. D = σ2 IK−1, where σ2 is the noise covariance and I is the identity matrix. As estimated
distances ret,k and measured distances rmt,k are solved by the steps introduced in Sections 3 and 4, the
optimal pedestrian position St is:

St = argmin
St

ε(St) (20)

However, the main limitation of the WNLS is that, in order to maintain optimal robustness, its
learning rate parameters are usually set to small positives, resulting in a slower convergence rate.
Thus, the application of the Levenberg–Marquardt algorithm (LMA) to WNLS could accelerate the
convergence while ensuring robustness, and satisfy real-time positioning requirements.

6. Experiment

We validated the proposed approach with the data collected from the corridor of the fifth floor of
the Jinji Campus Library in GUET, GuiLin, Guangxi Zhuang Autonomous Region, China. The cloister
size was

[
Lx, Ly

]
= [19, 35]. The four sides of the library corridor are doors, glass windows, and walls;

the ceiling is mainly glass with steel stent supports; and the floor is covered with ordinary tile. The
whole corridor is a rectangular ring.

The data collection tool used in this experiment was a Huawei Rongyao 7 smartphone installed
with a chirp application developed by our team and already authorized by China National Intellectual
Property Administration, which was used to emit and store the chirp sound signal. The chirp sample
frequency was set as fs = 44.1 kHz, the duration was T = 0.006 s, the lower frequency was f0 = 16 kHz,
the upper frequency was f1 = 22 kHz, and the emitting interval was 0.3 s. The PDR sample frequency
was set as fpdr = 20 Hz. The empirical energy threshold was set as ∆ = 0.01.

We had the loudspeaker of the smartphone facing the nearest wall, opened the chirp application,
and then walked normally from the starting point (green dot) at [1.5, 9] along the corridor to the end
point (red dot) at [1.5, 5]. During data collection, students and staff walked around normally as usual.

6.1. Calculation of PDR Information (Ltra and θ)

To obtain the adaptive step length Ltra, the pedestrian acceleration (denoted aNORM) was
calculated from the norm of the three-axis accelerometer (denoted ‖ aκ ‖):

aNORM =‖ aκ ‖=
√
(ax,κ)

2 +
(
ay,κ
)2

+ (az,κ)
2 (21)

where ax,κ , ay,κ and az,κ , κ = 0, . . . ,K are the three-axis accelerometer readings. Then, the sliding
window summing technique was used to reduce noise:

SWS(κ) =
κ

∑
t=κ−N+1

aNORM(t) (22)

where SWS is the sliding window summing, and the window’s size was set as N = 10. Since SWS is
affected by walk motion and gravity, the acceleration differential technique was used to obtain the
acceleration differential a(κ), as shown in Figure 4:

a(κ) = SWS(κ +N )− SWS(κ) (23)
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Figure 4. Illustration of a(κ), which is the acceleration pattern of a pedestrian in walking states. The
zero crossing points, shown in red rectangles, are the detected steps.

Using the acceleration measurements, step detection and step length estimation can be
accomplished through the walking frequency WF and acceleration variance AV:

WF = 1/(tκ − tκ−1), AV = (
M
∑
κ=1

(a(κ)− a(κ)))/(M− 1) (24)

whereM and a(κ) are the number of samples and the acceleration mean during a step, respectively.
Finally, we obtain K = 140 from counting the peaks over zero in a(κ) using the find-peaks function.
The Ltra plot is shown in Figure 5, and the θ plot is shown in Figure 6, which was generated using the
method described in Section 4.2.
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6.2. First-Order Echo Measurements d(rmt,k)

When walking along the corridor, the changing trends of distances from the sound source to the
four walls were directly reflected in the values of rmt,k, as shown in Figure 7.
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Firstly, from step κ = 1 to step κ = 40 (the first corner), the user moved from the south to the
north. During this phase, the distance from the east wall and the west wall should remain unchanged,
the distance from the south wall should be increasingly larger, and the distance to the north wall
should be increasingly smaller. Thus, the trajectory trend when 1 ≤ κ ≤ 40 was gentle for k = 1 and
k = 3, increasing for k = 2, and decreasing for k = 4.

Next, the user moved from the west to the east; that is, from the first corner (κ = 40) to the second
corner (κ = 62). During this phase, the distance from the south wall and the north wall should remain
unchanged, the distance from the west wall should increase, and the distance to the east wall should
decrease. Thus, the trajectory trend when 40 ≤ κ ≤ 62 is gentle for k = 2 and k = 4, increasing for
k = 1, and decreasing for k = 3.

Similarly, the trends of the distance changes for other sections were the same as the changes in the
actual distances.

However, the change parts marked with the black dotted rectangles at every corner point in
Figure 7, which should be the smooth transition curves, become sudden sharp declines. After repeating
the measurements, we think that the reason for this change is the remaining accumulated errors of the
heading angle θ due to the assumption that the experimenters in this study walked strictly along the
dominant directions. In fact, the randomness of a person’s walking causes their direction of travel to
deviate from the dominant direction, and this error is also eventually reflected in the trajectory of the
position tracking.

To further explain the rmt,k extracted from the cross-correlation R(τ)s,r, Figure 8 shows the rmt,k
in the R(τ)s,r when κ = 140, k = 1.
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1. The direct path impulse was found at the peak with maximum value
∣∣∣R(τ)s,r

∣∣∣, which is marked
by D : (X : 1856, Y : 113.5);

2. We subtracted R(τ)s,s from R(τ)s,r to eliminate the waveform sidelobe effect and amplify the
reverberation parts, as shown in the lower right corner of Figure 8, to find the real first-order
echo impulses;

3. Since κ = 140 > 127, we deduced that the pedestrian has passed the fourth corner and should be
on the west side of the corridor, so the peak marked with M : (X : 2344, Y : 0.02433) generated by
the rmt,k at this moment was taken as the first-order reflection from the west wall (i.e., the closest
wall); however, |Y|2 ≈ 0.0006� ∆ = 0.01, the measured result did not meet the SE constraint,
and so should be updated;

4. With the measured rmt,3 and the constraint of rmt,1 ≈ Lx − rmt,3, based on the proposed algorithm,
the first-order reflection peak related to rmt,1 was updated with the value marked with U :
(X : 2286, Y : 0.1391), which had a smaller distance error than the one before the update, thereby
reducing the error of the position; the other first-order reflection peaks were gradually found,
and updated.

6.3. Self-Positioning Trajectory Comparison

To highlight the advantages of our proposed continuous sound source self-positioning solution,
we used two strategies: PDR and our proposed system. The compared results are shown in Figure 9.
The following can be seen from the figure: (1) The output of the PDR trajectory (the red line) is
continuous and has a similar shape to the reference trajectory (the gray line), but as time increased
and the number of pedestrian steps increased, accumulative errors occurred in the accelerometer and
gyroscope, resulting in positioning failure. (2) The proposed system output (the blue short line) is
closer to the reference trajectory, because it accounts for the acoustic constraints to confirm the required
K = 4 dimension distances between the sound source and its image sources, increasing the accuracy of
the positioning result, determined by the starting point to the first corner point, and the trajectory is
closer to the reference trajectory.
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For the same reason as mentioned above, due to the inherent defect of the angle estimation
method (an angular cumulative error that cannot be totally eliminated), there were some fluctuations
in the corner areas in the tracking trajectory, which is consistent with the change parts marked with
the black dotted rectangles in Figure 7, but overall, it was closer to the reference trajectory.
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6.4. Error Analysis

The errors presented in Figure 8 are illustrated in Figure 10 with the following outcomes:

(1) When κ increased, the positioning error increased, as shown in Figure 10a. The error could be as
great as 0.5446 m, but the probability was rather low (w.r.t.1/140 = 0.71%);

(2) As shown in Figure 10b, the errors of each step were centralized by the histfit function, the
probability of error below 0.12 m was 54.46%, and the probability of the error exceeding 0.44 m
did not exceed 15.32%;

(3) The box figure (Figure 10c) details the median, maximum, and minimum of the proposed system
errors. This result proves that the proposed system is reliable.
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distribution of the collected data and visualizing the normalities and abnormalities of the data.

7. Conclusions

We proposed a sensor-rich smartphone-based indoor pedestrian self-positioning system for
continuous position acquisition based on image acoustic source impulse. Along with the processing,
an acoustic principle-based constraint algorithm was proposed to update the first-order echo
measurements generated from the PDR and ITM methods, increasing the reliability of the final
positioning results compared to the PDR method. Additionally, the LMA-WNLS model was adopted
to reduce the computational complexity of the continuous self-positioning process, thereby increasing
time efficiency. Despite this, we noticed some limitations of this system. For example, the used
smartphone must have an application that can emit and receive chirp sounds because it is impossible
for ordinary smartphones to play chirp sound signals. The arbitrariness of pedestrian motion during
walking is limited. If the actual trajectory of walking deviates from the dominant direction, heading
angle errors are produced, resulting in positioning error.

Related future work will mainly focus on the data processing of the heading angle and the
separation of the close echo arrivals, to further improve the positioning accuracy and fully port this
complete system to a smartphone application.

Author Contributions: X.S. designed and performed the experiments and wrote the paper. M.W., H.Q. and L.L.
assisted with conceiving of the idea and proofreading of the paper.

Funding: This work was funded by the National Natural Science Foundation of China, grant number
No. 61771151, Guangxi Zhuang Autonomous Region Natural Science Foundation, grant number No.
2016GXNSFBA38014, GUET Excellent Graduate Thesis Program, grant number 16YJPYBS02 and Guangxi
Experiment Center of Information Science, grant number PT1604.

Acknowledgments: This work was supported by the Ministry of Education Key Laboratory of Cognitive Radio
and Information Processing, the Wireless Broadband and Signal Processing Guangxi Key Laboratory.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2018, 18, 4143 13 of 14

References

1. Zhang, R.; Bannoura, A.; Höflinger, F.; Reindl, L.M.; Schindelhauer, C. Indoor localization using a smart
phone. In Proceedings of the 2013 IEEE Sensors Applications Symposium Proceedings, Galveston, TX, USA,
19–21 February 2013; pp. 38–42.

2. Liu, J.; Chen, R.; Pei, L.; Guinness, R.; Kuusniemi, H. A Hybrid Smartphone Indoor Positioning Solution for
Mobile LBS. Sensors 2012, 12, 17208–17233. [CrossRef] [PubMed]

3. Parviainen, M.; Pertilä, P. Self-localization of dynamic user-worn microphones from observed speech. Appl.
Acoust. 2017, 117, 76–85. [CrossRef]

4. Cobos, M.; Perez-Solano, J.J.; Belmonte, Ó.; Ramos, G.; Torres, A.M. Simultaneous Ranging and
Self-Positioning in Unsynchronized Wireless Acoustic Sensor Networks. IEEE Trans. Signal Process. 2016, 64,
5993–6004. [CrossRef]

5. Naseri, H.; Koivunen, V. Cooperative Simultaneous Localization and Mapping by Exploiting Multipath
Propagation. IEEE Trans. Signal Process. 2016, 65, 200–211. [CrossRef]

6. Bo, C.; Li, X.Y.; Jung, T.; Mao, X. SmartLoc: Sensing landmarks silently for smartphone-based metropolitan
localization. Eurasip J. Wirel. Commun. Netw. 2016, 2016, 111. [CrossRef]

7. Lee, H.; Kim, T.H.; Choi, J.W.; Choi, S. Chirp signal-based aerial acoustic communication for smart devices.
In Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China,
26 April–1 May 2015; pp. 2407–2415.

8. Höflinger, F.; Zhang, R.; Hoppe, J.; Bannoura, A.; Reindl, L.M.; Wendeberg, J.; Bührer, M.; Schindelhauer, C.
Acoustic Self-calibrating system for indoor smartphone tracking. In Proceedings of the 2012 International
Conference on Indoor Positioning & Indoor Navigation, Sydney, Australia, 13–15 November 2012; pp. 1–9.

9. Ayllón, D.; Sánchez-Hevia, H.A.; Gil-Pita, R.; Manso, M.U.; Zurera, M.R. Indoor blind localization of
smartphones by means of sensor data fusion. In Proceedings of the IEEE Sensors Applications Symposium,
Zadar, Croatia, 13–15 April 2015; pp. 1–6.

10. Tarzia, S.P.; Dinda, P.A.; Dick, R.P.; Memik, G. Demo: Indoor localization without infrastructure using
the acoustic background spectrum. In Proceedings of the International Conference on Mobile Systems,
Applications, and Services, Bethesda, MD, USA, 28 June–1 July 2011; pp. 385–386.

11. Aloui, N.; Raoof, K.; Bouallegue, A.; Letourneur, S.; Zaibi, S. Performance evaluation of an acoustic indoor
localization system based on a fingerprinting technique. Eurasip J. Adv. Signal Process. 2014, 2014, 13.
[CrossRef]

12. Leonardo, R.; Barandas, M.; Gamboa, H. A Framework for Infrastructure-Free Indoor Localization based on
Pervasive Sound Analysis. IEEE Sens. J. 2018, 18, 4136–4144. [CrossRef]

13. Wang, B.; Chen, Q.; Yang, L.T.; Chao, H.C. Indoor smartphone localization via fingerprint crowdsourcing:
Challenges and approaches. IEEE Wirel. Commun. 2016, 23, 82–89. [CrossRef]

14. Gutierrez, N.; Belmonte, C.; Hanvey, J.; Espejo, R.; Dong, Z. Indoor localization for mobile devices. In
Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control, Miami, FL,
USA, 7–9 April 2014; pp. 173–178.

15. Vinyals, O.; Martin, E.; Friedland, G. Multimodal Indoor Localization: An Audio-Wireless-Based Approach.
In Proceedings of the IEEE 4th International Conference on Semantic Computing, IEEE Computer Society,
Pittsburgh, PA, USA, 22–24 September 2010; pp. 120–125.

16. Bordoy, J.; Wendeberg, J.; Schindelhauer, C.; Reindl, L.M. Single transceiver device-free indoor localization
using ultrasound body reflections and walls. In Proceedings of the 2015 International Conference on Indoor
Positioning and Indoor Navigation, Banff, AB, Canada, 13–16 October 2015; pp. 1–7.
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