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Abstract: An accurate and fast simulation tool plays an important role in the design of wireless
passive impedance-loaded surface acoustic wave (SAW) sensors which have received much
attention recently. This paper presents a finite transducer analysis method for wireless passive
impedance-loaded SAW sensors. The finite transducer analysis method uses a numerically combined
finite element method-boundary element method (FEM/BEM) model to analyze non-periodic
transducers. In non-periodic transducers, FEM/BEM was the most accurate analysis method until
now, however this method consumes central processing unit (CPU) time. This paper presents a
faster algorithm to calculate the bulk wave part of the equation coefficient which usually requires a
long time. A complete non-periodic FEM/BEM model of the impedance sensors was constructed.
Modifications were made to the final equations in the FEM/BEM model to adjust for the impedance
variation of the sensors. Compared with the conventional method, the proposed method reduces the
computation time efficiently while maintaining the same high degree of accuracy. Simulations and
their comparisons with experimental results for test devices are shown to prove the effectiveness of
the analysis method.

Keywords: surface acoustic wave (SAW) sensor; wireless passive impedance-loaded SAW sensor;
boundary element method; finite element method

1. Introduction

Wireless passive surface acoustic wave sensors have been investigated since the 1990s because
they have several advantages, such as, no need for power supply, good environmental durability,
high sensitivity, etc. [1]. There are various types of surface acoustic wave (SAW) sensors, pressure
sensors [2], gas sensors [3], torque sensors [4], etc. Compared with them, impedance-loaded surface
acoustic wave sensors offer a much wider application range [5,6]. These sensors use the SAW chip as a
transponder and the load sensing part can be any impedance-varying sensor that matches the scope of
impedance variation. Impedance-loaded sensors with a wide application range have received much
attention in recent years [7–9].

Conventional impedance-loaded sensors have two types of structures: The delay line structure
and resonator structure [6,7,10,11]. The basic construction of delay line structure sensors is shown
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in Figure 1. The SAW transponder is composed of several interdigital transducers (IDTs), one of
which is used as a transmitting/receiving IDT responsible for transmitting and receiving wireless
signals and the others are used as reflectors. One of the reflectors is loaded with conventional sensors
whose varying impedance can be of any type, resistance, capacitance, or inductance. The wireless
interrogating electromagnetic wave signal is received by the antenna and transformed to a surface
acoustic wave by the transmitting/receiving IDT. The surface acoustic wave propagates along the
substrate surface and is reflected by the reflectors. At the same time, the reflection coefficient would
be influenced by the externally loaded sensors impedance. The returned surface acoustic wave is
transformed back into an electromagnetic (EM) wave by the transmitting/receiving IDT and sent by the
antenna. By changing the impedance of outside conventional sensors (electrical boundary condition),
the scattering parameters S11 of the sensors also changed, which can be detected by the interrogators.
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Figure 1. Schematic of an impedance-loaded surface acoustic wave (SAW) sensor.

Impedance-loaded SAW sensors operate at high frequency and should be designed to maintain
low loss in order to achieve wireless measurement. Therefore, the sensor design must be based on
an accurate model. The numerical combined FEM/BEM model is now widely used to derive the
influence of device parameters on the frequency response in the design of SAW devices [12,13]. It is
more accurate than other conventional models like the equivalent circuit model (ECM) model, this
is because it includes the second order effects which other models do not consider. The FEM/BEM
model is comprised of a periodic model and a non-periodic model.

The periodic FEM/BEM model can be used to calculate the characteristics of periodic structures,
from which more accurate and flexible coupling-of-modes (COM) parameters can be derived. In our
previous work [14,15], the COM model of impedance-loaded SAW sensors was constructed based on
the models of SAW IDT. The COM parameters, whose accuracy determines the accuracy of the COM
model, were calculated using a periodic FEM/BEM model. Next, the SAW device admittance can be
derived by the COM model. Moreover, the effects of the impedance matching circuit and the loaded
conventional sensors are included in the model.

The non-periodic FEM/BEM model is derived from the basic laws of physics such as Newton’s
second law, piezoelectric constitutive equations and Maxwell equations to form a set of system
equations. The admittance of a SAW device can be directly derived from the solutions of the system
equations with its geometrical characteristics, materials properties, and mechanical and electrical
boundary conditions known. The non-periodic FEM/BEM model is more accurate than the COM
model for radio frequency (RF) devices because it includes most of the second order effects, but it
requires more computing time. In this model, calculating the coefficients of the system equations, which
involves double numerical integrals and solving the equations, takes most of the central processing
unit (CPU) time. The main calculation content can be divided into four parts, among which the
bulk wave contribution takes a long computation time, for it requires the calculation of the general
Green’s function at all frequencies. A huge amount of computing time will be needed if the adaptive
quadrature method was adopted. Weibiao Wang et al. presented a method based on the sinusoidal
weighted integral [16]. However, the case when the integral variable tends to zero was not mentioned.
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In our paper, this case was carefully considered and the whole numerical properties in the local area
were treated accordingly. Our new algorithm leads to a half reduction in required computation time.

When the non-periodic FEM/BEM model is applied to impedance-loaded SAW sensors,
the calculation is more time consuming. The loaded impedance is varying, which changes the electrical
boundary condition of the IDT. This means that every time the loaded impedance is changed the model
calculation needs to be performed. When the electrical boundary condition changes, the complete
system equation should be solved once, which requires a long time for solving the large dimension
linear equations. For the sensor performance calculation, the loaded impedance might be assigned
values twenty times, which leads to the system equation requiring to be solved twenty times. Thus,
the calculated cost will be considerably increased. In this paper, a finite transducer analysis method
using a non-periodic FEM/BEM model was introduced to simulate impedance-loaded SAW sensors.
A fast algorithm was introduced to calculate the coefficients of the system equations. It was shown
that, after some modification to the non-periodic model, the sensor admittance can be obtained at
any external loaded impedance by using the network theory after performing the calculation for only
two states: Short circuit and open circuit. Section 2 provides a short introduction to the non-periodic
FEM/BEM model. Section 3 describes in detail an accurate and fast algorithm to calculate the bulk
wave part of the equation coefficient. Sections 4 and 5 present the method that is used to calculate
the sensor response at any outside sensor impedance. Section 6 illustrates the simulated results of
a test device with different structures. Comparison of the simulated results to the measured results
showed good accordance and Section 7 presents the conclusion that our finite transducer analysis of
the impedance-loaded SAW sensors is valid.

2. Basics of the Non-Periodic FEM/BEM Model

As shown in Figure 2, the structure is composed of a semi-infinite piezoelectric substrate extending
in the half space z < 0, whose surface is loaded with metal strip gratings. The grating electrodes are
parallel to the y axis and are assumed to be long enough along the y axis such that any dependence on
y can be ignored. Throughout this paper, the time harmonic factor exp (jωt) will be omitted.
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Figure 2. Schematic drawing of the electrodes array.

It is supposed that there are Ne electrodes in the array. The first IDT has N1 electrodes and the
second IDT has N2 electrodes. Obviously, Ne equals the sum of N1 and N2. The location of the kth
electrode is Xk, the width of the kth electrode is 2ak, and the applied potential on the kth electrode is Vk.
Because stress and charge distributions are zero outside the electrode-substrate interface, the three



Sensors 2018, 18, 3988 4 of 12

components (mechanical displacement, u; stress vector, ts; electrical potential, φ) and the surface charge
density σ can be related using the general Green’s function G(x) [17]:(

u(x)
φ(x)

)
=
∫ +∞

−∞
G(x− x′)( ts(x′)

σ(x′) )dx′, (1)

The distributions of stress and free charge are expanded using the first-kind Chebyshev
polynomial Tn(x) for the kth electrode:

(
ts(x)
σ(x)

)
=

Nch
k

∑
n=0

(
Bt

kn
Bσ

kn

)
Tn(xk)√

1− x2
k

, xk =
x− Xk

ak
,

k = 1, . . . , Ne

n = 0, . . . , Nch
k

, (2)

where Nch
k is the number of Chebyshev polynomials used to expand stress and charge on the kth

electrode. By incorporating Equation (2) in Equation (1) and timing the Chebyshev polynomials
Ti(xj)√

1−x2
j

at both sides of Equation (1), we obtain

(
cu

j

cφ
j

)
i

=
Ne

∑
k=1

Nch
k

∑
n=0

Yij
kn

(
Bt

kn
Bσ

kn

)
j, k = 1, . . . , Ne

i, n = 0, . . . , Nch
k

, (3)

where

Yij
kn = ak

1∫
−1

1∫
−1

G(ajxj − akxk + ∆jk)
Ti(xj)√
1− x2

j

Tn(xk)√
1− xk

2
dxjdxk, ∆jk = Xj − Xk, (4)

(
cu

j

cφ
j

)
i

=
∫ 1

−1

(
u(ajxj + Xj)

φ(ajxj + Xj)

)
Ti(xj)√
1− xj

2
dxj, (5)

The key point in the numerical calculation of the non-periodic FEM/BEM model is calculating the
equation coefficient Yij

kn in Equation (3). Because G(x), which is Green’s function in the space domain,
is numerically calculated, its double integral should also be numerically calculated. It is necessary to
decompose the function into a sum of various contributions (electrostatic contribution, G0(x); surface
wave contribution, Gs(x); asymptotic contribution, G∞(x); bulk wave contribution, Gb(x)) due to its
extremely fast variations [16].

G(x) = G0(x) + Gs(x) + G∞(x) + Gb(x), (6)

Incorporating Equation (6) in Equation (4) leads to

Yij
kn =

(
Yij

kn

)0
+
(

Yij
kn

)s
+
(

Yij
kn

)∞
+
(

Yij
kn

)b
, (7)

where
(

Yij
kn

)0
,
(

Yij
kn

)s
,
(

Yij
kn

)∞
and

(
Yij

kn

)b
are the equation coefficients related to electrostatic

contribution, surface wave contribution, asymptotic contribution and bulk wave contribution,
respectively. All the above parts can be easily integrated by numerical methods [12,13,16] except
the bulk wave contribution. The bulk wave contribution relates to the computation of the general
Green’s function at all frequencies, of which the integrated expression requires a long computing time.
In the next section, an accurate and fast algorithm for computing the bulk wave contribution part of
Yij

kn is presented.
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3. Accurate and Fast Algorithm for Computing the Bulk Wave Contribution Part of Yij
kn

The bulk wave contribution
(

Yij
kn

)b
can be expressed as [16]:

(
Yij

kn

)b
= jn−kπaj

∫ sm

−sm

Hb
(s)
|s| exp(−jsω∆)Jk(sωai)Jn(sωaj)ds, (8)

where ∆ = Xi − Xj is the distance between the ith and the jth electrodes. s is the slowness, and ω is

the angular frequency. In Equation (8), the calculation of Hb
(s)
|s| , which is the bulk wave part of the

Green’s function, requires most of the computing time. The property that the Green’s function is only
dependent on the slowness for homogeneous substrates makes it possible that the computation of
Hb

(s)
|s| can be done only once. Then the Green’s function can be obtained for all cases on the same

substrate simply by interpolation using Chebyshev expansion.

The values of Hb
(s)
|s| in the slowness domain vary within wide limits. For example, Figure 3 shows

the variation of Hb
44(s)
|s| in the scope of s ∈ (0, 1× 10−3) for 42◦ LiTaO3 on which the leaky wave exists.

There are still some sharp changes and turns near the leaky wave pole point and branch points after
removing the surface wave part of the Green’s function. The function must interpolate in several
intervals in the slowness domain to ensure accuracy and lower interpolation expansion numbers. The

larger the amplitude of function variation, the greater the interval number. As shown in Figure 4, Hb
44(s)
|s|

is monotonic and asymptotic when s > 1× 10−3. So, fewer sections can be divided for interpolation in

that area. At each interval, Hb
(s)
|s| is monotonic and smooth. The interval number is 2N + 1, denoted as

−sm = s − N < s − N + 1 <, . . . , <s0 = 0 < s1, . . . , <sN = sm.
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The Chebyshev expansion of Hb
(s)
|s| is performed in the Qth interval [sQ, sQ+1],

Hb
(s)
|s| =

NQ

∑
p=0

cQ
p (

s− soQ

∆Q
)

p
, (9)

cQ
p are the expansion coefficients of Chebyshev polynomials and they only need to be calculated

once. The expansion numbers NQ can be 8–10 for large intervals and 3–5 for small intervals.
Substituting Equation (9) into Equation (8), we can get

(
Yij

kn

)b
=

NQ

∑
p=0

cQ
p

∫ sQ+1

sQ

(
s− soQ

∆Q
)

p
Jk(sωai)Jn(sωaj) exp(−jsω∆)ds, (10)

Equation (10) can be decomposed into typical sine or cosine weighted integration forms. Then,
the adaptive quadrature method could be applied to approximate the integration.

In the general case when the electrode number is greater than 100, sω∆ could be larger than 200
for long transducer RF SAW devices. The integral of Equation (10) is an oscillatory integral, where the
computation cost is proportional to the value of sω∆. When the scale of sω∆ is larger than 1 × 104,
the accuracy of the adaptive quadrature is poor.

A robust and accurate algorithm is needed to calculate the appropriate cases for all values of sω∆.
The best way to solve this problem is by expanding the integrand to an analytic series. Thus, another
algorithm is presented according to the properties of the Bessel function. The products of the Bessel
function are expanded to a series, which makes the integral analytic in nature and thereby integrable.

When ωas ≤ 8, the limited series expression can be used as follows:

Jk(as)Jn(bs) =
1

Γ(n + 1)
(

as
2
)

k
(

bs
2
)

n
×

∞

∑
q=0

(−1)q
2F1(−q,−k− q; n + 1; b2

a2 )

q!Γ(k + q + 1)
(

as
2
)

2q
, (11)

where b ≤ a, Γ(n) is the gamma function and 2F1(α, β, γ, x) is the hypergeometric function. When
ωas > 8, the asymptotic expansion formula of the Bessel function can be used as follows:

JAsy
k (s) ≈

√
2

πx
[cos(s− kπ

2
− π

4
)

∞

∑
p=0

(−1)p(k, 2p)

(2s)2p − sin(s− kπ

2
− π

4
)

∞

∑
p=0

(−1)p(k, 2p + 1)

(2s)2p+1 ], (12)

According to the numerical analysis, it is accurate enough for p = 5 in Equation (12) when k, n ≤ 6.
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Substituting Equations (11) and (12) into Equation (3), we can get the analytical and integrable
forms of Equation (10) as follows:

(
Yij

kn

)b
=

NQ

∑
p=0

cQ
p

Nkn

∑
l=0

Jkn(l)
∫ sQ+1

sQ

(
s− soQ

∆Q
)

p
(ωais)

k(ωajs)
n+2Q exp(−jsω∆)ds, (13)

or (
Yij

kn

)b
=

NQ

∑
p=0

cQ
p

∫ sQ+1

sQ

(
s− soQ

∆Q
)

p
JAsy
k (ωais)JAsy

n (ωajs) exp(−jsω∆)ds, (14)

In Equation (13), the general form of the integral is
∫ sQ+1

sQ
(ωais)

t exp(−jsω∆)ds. In Equation

(14), the general form of the integral is
∫ sQ+1

sQ
(ωais)

−t exp(−jsω∆)cos[(aj ± ai)ωs]ds or∫ sQ+1
sQ

(ωais)
−t exp(−jsω∆) sin[(aj ± ai)ωs]ds. These can be calculated using integration by parts

for the large value ∆ case.
Thus, the accurate calculation algorithm of Equation (8) can be obtained using the series expansion

of Jk(sωai)Jn(sωaj) and polynomial interpolation of Hb
(s)
|s| . Figure 5 shows the calculated results of Yij

kn
with different ∆ij for different methods. The value of k as well as n is 0, as the first series represents the
main item. The frequency is close to the center frequency of the transducer. The black line represents
the results calculated using our approximation algorithm, and the red and blue lines are the results
calculated from adaptive quadrature. The calculation time for our algorithm is one tenth that of the
previous algorithm while maintaining the same degree of precision.
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After calculating Yij
kn, the FEM method was applied to derive the relation between cu

j and
Bt

kn [12,13]: (
cu

j

)
i
= YeBt

kn. (15)

Equation (3) can be rewritten in the matrix form as(
cu

j

cφ
j

)
i

= Y

(
Bt

kn
Bσ

kn

)
=

(
Yu Yuφ

Yφu Yφ

)(
Bt

kn
Bσ

kn

)
, (16)



Sensors 2018, 18, 3988 8 of 12

where Y is the matrix form of Yij
kn, and Yu, Yuφ, Yφu, and Yφ are matrices related to the

mechanical-mechanical, mechanical-electrical, electrical-mechanical and electrical-electrical couplings,
respectively.

Substituting Equation (15) into Equation (16), we get(
0
cφ

j

)
i

=

(
Yu −Ye Yuφ

Yφu Yφ

)(
Bt

kn
Bσ

kn

)
, (17)

Equation (17) is the system equation for the non-periodic FEM/BEM model. As shown in
Figure 6, the electrical boundary conditions of the impedance-loaded SAW sensors will be applied to
Equation (17).
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of impedance-loaded SAW sensors.

The potential of the ground bus bar of the IDTs is noted as V1 and the potential of the output
and input IDTs are noted as V2 and (1 + V1), respectively. The omitted time harmonic coefficient is
exp(jωt). The condition dictates that the total electric charge must be zero. Substituting the electrical
conditions thus gives 

0
cφ

j
0
0


i

=


Yu −Ye

Yφu

0
0

Yuφ

Yφ

C2

C4

0
C1

C3

C5




Bt
kn

Bσ
kn

V1

V2

, (18)

where C1 is a 2×
Ne
∑

k=1
Nch

k dimension submatrix, C2 and C4 are
Ne
∑

k=1
Nch

k dimensional row vectors, and C3

and C5 are two-dimensional row vectors.
For the elements related to the N1 input IDT in cφ

j , the expressions are cφ
j (N1) = π, C1(N1, 1) = 1,

and C1(N1, 2) = 0. For the elements related to the N2 IDT in cφ
j , the expressions are cφ

j (N2) = 0,
C1(N2, 1) = π, and C1(N2, 2) = −π.

C2 is determined by the charge conservation condition, C3 = 0, and C4 and C5 are determined by
Ne
∑

k=N1+1
ak jωπBσ

k0 = −V2−V1
ZL

, where ZL is the impedance of the external loaded sensor.
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If ZL is known, Equation (18) can be solved and Equation (19) is obtained as the final solution.

U1 = 1
U2 = V2 −V1

I1 =
N1
∑

k=1
ak jωπBσ

k,0

I2 = −
Ne
∑

k=N1+1
ak jωπBσ

k,0

, (19)

The outside sensor impedance variation will have a great deal of influence on the electric charge
and electric potential distribution. As seen from Equation (18), every time the outside impedance
varies, part of the coefficient of the system equations (C4 and C5) will change. Thus, the whole system
equations must be solved once, which requires a long time for solving the large dimension linear
equations. A new strategy was presented in next section.

5. Modification of the Non-Periodic Model

In the above method, the SAW sensor was calculated as a unitary device (shown in Figure 6a).
In our method, the SAW sensor was treated in a two-port network and the SAW transponder and the
loaded impedance sensor part were calculated as a form of the ABCD matrix separately [18] (Figure 6b).
This route can isolate the time-consuming large sparse equation-solving task with varying boundary
conditions. The ABCD matrix [18] of the SAW chip can be derived using the non-periodic FEM/BEM
model under two electrical boundary conditions: Short circuit and open circuit.

When we set the output IDTs as short circuit and open circuit, we can calculate the solutions
of Equation (18) for the two situations. Then, we can obtain the expression of the ABCD matrix at
all frequency points according to Equation (20). These values in the ABCD matrix are set because it
represents the device without considering the external boundary conditions.[

U1

I1

]
=

[
A B
C D

][
U2

I2

]
, (20)

When the end of the output IDT is loaded with an impedance ZL, we can get I2 = U2/ZL.
Substituting I2 = U2/ZL into Equation (20), we get{

I1 = (C + D/ZL)U2

U1 = (B/ZL + A)U2
, (21)

The input impedance of the U1 port is Y = I1
U1

= C+D/ZL
B/ZL+A . Then, the scattering parameters of this

special two-port device can be obtained using the conventional formulae.
Using this method, Equation (18) can be solved twice which reduces computation time.

This method can also be used in the situation where an impedance matching circuit has an influence
on the electrical boundary conditions of the IDT, either at the front or the back ends of the device.

6. Experimental Verification

A test device was manufactured to verify the simulated results. The device parameters
are as follows: The substrate of the sample is 128◦ YX-LiNbO3. The electrode is aluminium.
The periods of the transmitting/receiving IDT and the programmable reflector are both 12.3
µm. The transmitting/receiving IDT has a single finger and the number of finger pairs is 20.
The programmable reflector is of the split finger type and the number of finger pairs here is also
20. The metallization ratio of both IDTs is 0.5 and the film thickness is 0.2 µm. The aperture of the IDTs
is 421.7 µm. The gap between the IDTs is 3631.8 µm.
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Using the methods mentioned above, the device performance can be simulated easily. The S12

characteristic of the sensor was thus calculated and compared with the measured results in Figure 7.
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It can be seen that the profiles of admittance in the simulation show good similarity with the
experimental results. However, the amplitudes at some points are different.

The parameters derived from the above figure are shown in Table 1. The center frequency and
bandwidth of the simulation agree well with the measurements. The band ripple of the simulation is
larger than the measured values. This is because the test device was measured on a test fixture, where
the bond wire effect was not considered in the simulation.

Table 1. Results analysis between the simulation and measurement.

Results Type Fc (MHz) Insertion Loss (dB) 3 dB Bandwidth (MHz) Band Ripple (dB)

Simulation 317.12 8.78 14.2 4.2
Measurement 316.83 9.16 15.1 1.98

Difference 0.09% −4.1% −5.9% 52.9%

The simulated results, including the loaded matching circuit and capacitive sensor are shown
in Figure 8. The return loss is the amplitude of the response pulse in the time domain. The return
loss variation curve shows a resonant behavior as presented before [15]. This property was verified
by several groups [19–21]. The calculated curve corresponds with the trend of the measured points.
In the range of 7–12 pF, there is a small ripple in the measured points which can also be seen clearly in
the magnified view of the simulated curve. The simulated results are approximately 5 dB lower when
the capacitance is 1 pF and 7.5 dB lower for a 2 pF value. This may be because when the capacitance
value is small the bond wire effect can easily affect the measured results.

In the last paragraph the bond wire effect was not considered and the profile of the simulated and
measured S12 curve corresponds perfectly. On the other hand, the simulation result has larger errors
for the smaller capacitance value. Both results came to a conclusion that the bond wire effect played an
important role in the simulation results, especially for the small impedance value. The next step for
our research will be taking this factor into our consideration in the simulation process.

Moreover, the result shows a resonance behavior of the return loss as a function of capacitance
of the sensor. The sensor operation could be accepted only on a portion of the capacitance, i.e.,
in the region of 1–4 pF or 4–7 pF. For the sensing region below 4 pF, the capacitive sensor only
can be integrated on the same chip with the SAW sensor to minimize the parasitic capacitance of
connecting wires. In addition, it is hard to find a commercial sensor with appropriate capacitance
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variation. Thus, the need for sensor optimization is urgent in order to shift the monotonous range by
trying different sensor configurations. Fast simulation methods will play very important roles in the
optimization process.
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7. Conclusions

The finite transducer analysis method based on the FEM/BEM model, which is one of
the most accurate methods for simulating SAW filters, was successfully applied to simulate the
impedance-loaded SAW sensors. An accurate and fast algorithm for calculating the bulk wave part of
the equation coefficient was presented to reduce the required computing time. Modification to the
non-periodic FEM/BEM model was made to adapt to the impedance-loaded sensors. Thus, we only
need to calculate the short circuit and open circuit situations of the SAW sensors respectively in order
to obtain the sensor response at each value of loaded impedance. The simulated results were compared
with the measured results of the test device, which show good accordance.
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