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Abstract: Recently, the emergence of low-cost sensors have allowed electronic noses to be considered
for densifying the actual air pollution monitoring networks in urban areas. Electronic noses are
affected by changes in environmental conditions and sensor drifts over time. Therefore, they need
to be calibrated periodically and also individually because the characteristics of identical sensors
are slightly different. For these reasons, the calibration process has become very expensive and
time consuming. To cope with these drawbacks, calibration transfer between systems constitutes a
satisfactory alternative. Among them, direct standardization shows good efficiency for calibration
transfer. In this paper, we propose to improve this method by using kernel SPXY (sample set
partitioning based on joint x-y distances) for data selection and support vector machine regression
to match between electronic noses. The calibration transfer approach introduced in this paper was
tested using two identical electronic noses dedicated to monitoring nitrogen dioxide. Experimental
results show that our method gave the highest efficiency compared to classical direct standardization.

Keywords: calibration transfer; direct standardization; support vector machine regression; electronic
nose; air pollution monitoring; gas sensors

1. Introduction

Nowadays, governmental authorities monitor air pollutants by using a limited number of
measurement stations because of the high cost of these instruments, their maintenance, and their
cumbersome nature [1]. Within the low spatial resolution given by these stations of air quality
monitoring, the data are combined with some modeling software in order to estimate the average
pollution in urban areas. However, the dispersion of pollution is a very complex phenomenon that is
highly affected by environmental factors and the urban structure. Therefore, densifying the network of
air pollution monitoring to get a high spatial and also temporal resolution is a real necessity [2,3].

Due to technological advances, low cost sensors are now able to measure very low pollutant gas
concentrations (parts per billion, ppb), which make them promising solutions to cope with the low
resolution of the currently implemented air pollution monitoring networks [4–6]. During recent years,
many studies have revealed that electrochemical and metal oxide gas sensors (MOX) can perform at a
ppb level of concentration [7]. Metal oxide gas sensors tend to have higher sensitivity but suffer from
the lack of reproducibility and stability. Electrochemical sensors present better stability and selectivity
but have a short lifetime [8]. The major difficulties of low cost gas sensors as reviewed in the literature
can be summarized in two aspects [9]:
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1. Those related to the working principle of the sensors such as the dynamic boundaries, systematic
errors, non-linear responses and signal drifts.

2. Those caused by external error sources, such as environmental dependencies and low selectivity.

To overcome these limitations, one can use a system called an electronic nose made up of a
sensors array associated with machine learning algorithms [10]. Using an electronic nose allows the
exploitation of all the information from its sensors, including the cross-sensitivity and interference
from environmental factors, to create a calibration model able to successfully predict pollutant
concentrations [11]. After the establishment of this initial calibration model, the other issues limiting
the use of electronic noses are related to sensor response changes after a certain period of time or after
sensor replacement. Consequently, the current calibration model becomes invalid and a new one must
be generated [12]. Each of the units should also be calibrated individually due to poor reproducibility
in the sensors fabrication process [13].

Techniques such as calibration transfer are an attractive solution to extend the lifetime of the
calibration model by allowing the use of one calibration model for different units. Calibration transfer
first appeared in the spectroscopy domain and has since been extended to the gas sensors array [14].
Before presenting transfer calibration techniques, we consider that the transfer calibration is performed
between two units, respectively called the master unit and the slave unit. The slave unit may be a
different unit identical to the master unit, or it may be the master unit itself over time. Calibration
transfer techniques can be divided into two categories. The first one is based on removing the
dissimilarity between the master and the slave units by transforming sensor responses of both units to
become more similar before creating a calibration model. Among the methods that use this technique,
we can cite Orthogonal Signal Correction (OSC) [15], Component Correction (CC) [16] and Generalized
Least Squares Weighting (GLSW) [17]. The second category attempts to modify the data of the slave
unit to be similar to that of the master unit. These techniques allow the use of the calibration model of
the master unit for the data of the slave unit. This family of calibration transfer, called standardization
methods, can be classified into three classes according to their strategies [18]:

• Standardization of the model coefficients: consists of modifying the calibration model, which is
built on the master unit so as to be suitable for data from the slave unit.

• Standardization of the sensors’ responses: based on transforming the sensors’ responses of the
slave unit to be similar to those of the master unit. The calibration model of the master unit then
becomes usable for the slave unit.

• Standardization of the predicted values: the predictive values from the slave unit are corrected
using a linear relationship calculated between predictive values of the master and the slave units.
All standardization methods need a set of known samples from both units (slave and master) that
allows matching between them.

The choice among standardization methods depends on the application itself, whether it is a
simple or complex system [18]. However, standardization of sensors response methods such as direct
standardization (DS) [19] and piece wise direct standardization (PDS) [20] are the most popular.

In this work, we focused on DS and we proposed to use the kernel SPXY (sample set partitioning
based on joint x-y distances) algorithm for selecting standardization samples. We also utilized the
support vector machine regression (SVM) instead of the classical transformation matrix to make
the calibration transfer. For this purpose, we considered the case of two identical systems exposed
to the same gas concentrations under the same conditions. The rest of this paper is organized as
follows: in Section 2 we describe the experiment setup and data collection process performed in
the laboratory. In Section 3, we introduce the methods and algorithms used to make the calibration
transfer. We compared the performance of our method with the performance of existing classical direct
standardization method in Section 4. Finally, a conclusion of this work and further directions are given
in Section 5.
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2. Experiment Setup and Data Collection

We have designed two identical E-noses for nitrogen dioxide (NO2) monitoring. Each one was
made up of three gas sensors, an electrochemical sensor (NO2-B43F from Alphasense, Essex, UK),
and two MOX sensors (MICS-2714 from SGX Sensortech, Corcelles-Cormondreche, Switzerland and
GGS7530 from UST Umweltsensortechnik, Geschwenda, Germany). We used a homemade diffuser
system to control and generate different concentrations of NO2 in pure air (Figure 1). Two mass
flow controllers were used to monitor the flow of the pure air and nitrogen dioxide cylinders. The
total flowrate was set to 400 mL/min and we could generate different concentrations by varying the
percentage of nitrogen dioxide flow over the total flow. The nitrogen dioxide cylinder had a dilution of
10 ppm (parts per million). Therefore, to generate 250 ppb, we had to dilute 10 mL/min of nitrogen
dioxide in 390 mL/min of pure air. Nitrogen dioxide and pure air were first introduced in a gas-mixing
chamber to ensure the homogeneity of the gas before crossing to the sensors cell which contained two
identical electronic noses. We collected 508 measurements. Each measurement took 300 s to reach
the steady state response of all sensors. The 508 measurements were distributed between different
concentrations of NO2 ranging from 25 ppb to 250 ppb, with a step of 25 ppb in order to simulate the
real pollution rates found near highways. The collected data were organized in two matrices: X1D

N for
unit 1 and X2D

N for unit 2. Their corresponding known concentration was grouped in YN :

X1D
N =

 x11
1 . . . x1D

1
...

. . .
...

x11
N . . . x1D

N

 X2D
N =

 x21
1 . . . x2D

1
...

. . .
...

x21
N . . . x2D

N

 YN =

 y1
...

yN


where N = 508 represents number of samples and D = 900 is the dimension of samples composed from
300 data points for each of the three sensors.
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3. Calibration Transfer

Before introducing our proposal method, let us first present the DS method. We considered X1D
N

and X2D
N to be the data matrices of the master unit and the slave unit, respectively, where N is the
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number of samples and D is the dimension of a sample. To match between these two units, we needed
to select a subset of samples from both of them. S1D

m and S2D
m were the response matrices containing m

samples selected respectively from each of X1D
N and X2D

N . The classical DS was based on using the
transformation matrix F given by:

F = S2+ × S1 (1)

where S2+ is the generalized or pseudo-inverse of S2.
Data from the slave unit can be standardized as:

X2stand = X2× F (2)

Once the data from the slave unit was standardized, concentrations could be predicted using the
calibration model of the master unit. Direct standardization was based on two essential elements:

1. An algorithm that can select the standardization samples in a way to be as representative as
possible of the entire dataset.

2. A technique that can match the two units with a fewer number of standardization samples.

In our proposal method, we used kernel SPXY to select the standardization samples and we
replaced the matrix transformation by applying SVM regression between S2 and S1.

3.1. Kernel SPXY

All data selection algorithms used the same principle and were based on calculating the distance
between samples. The algorithms started by taking the pair (p, q) of samples that had the largest
distance d(p, q). To select a new sample, the distances of all the remaining samples with respect to
all samples already selected were calculated. For each sample, these algorithms kept their minimum
distance regarding other selected samples. The sample to be selected should then have the maximum
distance. These algorithms stopped when they achieved the desired number of samples to be selected.
The only difference between these algorithms was in their manner of calculating the distance between
samples. The Kennard-Stone algorithm uses the Euclidian distance and is given by:

dx(p, q) =

√√√√ D

∑
i=1

(
xp(i)− xq(i)

)2 (3)

where p, q are samples and D is the dimension.
SPXY algorithms take in consideration not only data response but also target values

(concentrations) to calculate the distance between two samples:

dxy(p, q) =
dx(p, q)

max(p,q)ε[1,N]dx(p, q)
+

dy(p, q)
max(p,q)ε[1,N]dy(p, q)

(4)

dxy(p, q) =

√
∑D

i=1
(

xp(i)− xq(i)
)2

max(p,q)ε[1,N]dx(p, q)
+

√(
yp − yq

)2

max(p,q)ε[1,N]dy(p, q)
(5)

The kernel SPXY algorithm is a modified version of the SPXY algorithm in which the Euclidian
distance of the SPXY algorithm is replace by a kernel distance (kd) given by:

kdxy(p, q) =
kdx(p, q)

max(p,q)ε[1,N]kdx(p, q)
+

kdy(p, q)
max(p,q)ε[1,N]kdy(p, q)

(6)

where



Sensors 2018, 18, 3716 5 of 11

kdx(p, q) =

√√√√ D

∑
i=1

K
(

xp(i), xp(i)
)
+

D

∑
i=1

K
(

xq(i), xq(i)
)
− 2

D

∑
i=1

K
(
xp(i), xq(i)

)
(7)

and
kdy(p, q) =

√
K
(
yp, yp

)
+ K

(
yq, yq

)
− 2K

(
yp, yq

)
(8)

For further details about kernel SPXY, the reader can refer to Gani et al. [21] in which the authors
concluded that kernel SPXY algorithm performs better than the SPXY and Kennard-Stone algorithms.

3.2. Support Vector Machine Regression

Support vector machine regression is a machine learning method widely used for building
calibration models [22]. Its structure guarantees a good generalization and accuracy with a limited
number of learning samples [23]. Support vector machine establishes a linear regression function
between dataset x and the target values y as follows:

f (xi, w) = w.xi + b (9)

where w is the regression coefficients vector and b is the bias term.
In order to calculate the regression coefficients, SVM regression attempts to minimize the loss

function as defined by:

|yi − f (xi, w)|ε =
{

0
|yi − f (xi, w)| − ε

if |yi − f (xi, w)| ≤ ε

otherwise
(10)

where ε is the maximum difference between the predicted value and the target value that can
be neglected.

In order to simultaneously minimize the empirical risk and model complexity, support vector
machine regression was formulated as an optimization problem with constraints:

Minimizing :
1
2
||w ||2 + C

n

∑
i=1

(ξi + ξ∗i ) (11)

Subject to


yi − f (xi, w)− b ≤ ε + ξ∗i
f (xi, w) + b− yi ≤ ε + ξi

ξ∗i , ξi ≥ 0
(12)

where C is a constant regularization parameter which determines the tradeoff between the flatness
of f (x) and the empirical risk. ξ∗i , ξi are slack variables which measure deviations larger than ε.

Using Lagrange multipliers and the Karush-Kuhn-Tucker conditions, we can get the
following solution:

f (x) =
n

∑
i=1

(αi − α∗i )K(xi, x) + b (13)

where αi and α∗i are the Lagrange multipliers and K(xi, x) constitutes the kernel function. The kernel
function used in this work was the Gaussian kernel defined as follows:

k
(

xi, xj
)
= exp(

−||xi, xj ||2

2δ2 ) (14)

where δ is the standard deviation of the kernel.
In any machine learning, the results depend on a good choice of their hyperparameters. For this

work, we used the generalized pattern search (GPS) [24] to optimize SVM regression hyperparameters
by minimizing the cross validation prediction error. The parameters considered were:
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• Gaussian kernel with δ = 30
• The constraint C = 2000
• Epsilon-insensitive band ε = 0.0001

Figure 2 summarizes our procedure for calibration transfer. We used kernel SPXY to select
the desired number of standardization samples from the dataset of the master unit (E-nose 1).
The remaining data were used to build a model calibration using SVM regression. Support vector
machine regression hyperparameters were optimized using generalized pattern search (GPS). Next,
from the slave unit (E-nose 2), we selected the analogue samples of the selected samples from the
master unit. SVM regression was used again to create another model used to standardize data from
the slave unit. Finally, we could predict concentration using the model calibration built on the master
unit with data from the slave unit.
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4. Results and Discussion

Signal responses acquired from two identical electronic noses exposed to the same gas
concentration under the same conditions were different in terms of sensitivity and baseline. Figure 3
presents the signal acquired from NO2-B43F Alphasense sensors and MICS-2714 sensors of the master
unit and the slave unit. Even if the master and the slave units have undergone the same history
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of use, the signals collected from the same sensor type differed in terms of baseline and sensitivity.
For example, concerning the baseline between the two electrochemical sensors, we observed a shift
of about 12 mV, which can correspond to 75 ppb of NO2. Additionally, for the two MOX sensors,
the difference in baseline was very important. This considerable shift in MOX sensors may have been
due to the large resistance margin of the initial resistor provided by the constructor (the initial resistor
of GGS 7530 was 50 kΩ ± 35 kΩ). Concerning the sensitivity, we used a numerical indicator in Figure 3
to indicate the variation because of the very low signal scale. For example, in the case of the MICS-2714
sensors, the sensor sensitivities were 33 mV and 51 mV, respectively, for 25 ppb of NO2. This slight
difference in terms of sensitivity could significantly deviate the NO2 estimation with regard to the
very low concentration range (0–250 ppb). As a consequence, any model built on E-nose 1 could not be
useful for E-nose 2.
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Figure 3. Acquired responses signals from identical sensors under the same conditions. ppb = parts
per billion.

To show the ability of the proposed method to create a match between the sensor responses of
a master unit and a slave unit, we used principal component analysis (PCA) projection. We plotted
the first two PCA components of all the data obtained from the master and the slave units before and
after the standardization. Figure 4 shows that the data from each unit are gathered in different regions.
By the use of only 10 samples for standardization, the data from the slave unit were shifted to the
region of the master unit and they became more alike.
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Our method was compared with the classical Direct Standardization. First, we built a calibration
model on the master unit using SVM regression. Then, we used kernel SPXY to select a number of
standardization samples. After standardization of the slave unit data, we used the calibration model
built on the master unit to predict NO2 concentrations. We repeated this procedure 60 times by adding
in one sample for standardization each time. We determined the root mean square error prediction
using 10-fold cross validation. In Figure 5, we show that our method outperformed the classical DS.
This method needed 10 samples to reach a prediction accuracy around 8.7 ppb while the classical DS
method needed a least 30 samples to reach a stable and acceptable accuracy.
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The aim of any calibration transfer method is to preserve time and prevent the high cost of a new
calibration. In fact, if the standardization procedure needed as many samples as the master unit to
build a new model for the slave unit, it is not useful for making the calibration transfer, and it would
be better to calibrate each unit individually. So, we tested whether the number of samples used for
standardization was enough to build a new calibration model directly on the slave unit. We used the
same selected standardization samples to directly build a new calibration model on the slave unit.
We started the operation from one sample to 60 samples by adding in one sample each time. In each
time, we calculated the root mean square error prediction of 10-fold cross validation in the two cases:
in the case of using the samples selected for standardization and in the case of using these samples
to build a new calibration model on the slave unit. In Figure 6, we plotted the evolution of the error
prediction along with the number of samples. The figure shows that building a new calibration model
needed a least 60 samples to obtain an acceptable prediction accuracy.

Figure 7 shows the predicted concentrations as a function of the real concentrations. The predicted
values were obtained using a calibration model built on the master unit and the standardized data
from the slave unit with 10 samples used for standardization. The estimated values and the real values
were almost superposed. This was numerically confirmed by calculating the root mean square error
prediction of 10-fold cross validation, which was equal to 8.7 ppb.
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Figure 6. (a) Evolution of root mean square error as a function of the standardization sample number
by using the master calibration model. (b) Evolution of root mean square error as a function of the
sample number used for building a new model directly on the slave unit.
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Figure 7. Performance of SVM standardization using 10 samples, illustrated by the predicted
concentrations over the real concentrations.

5. Conclusions

Air pollution monitoring systems based on low cost sensors is a promising instrument that can
complement the actual air pollution monitoring network. In this work, we built two identical electronic
noses to study the performance of the calibration transfer. First, we showed that both electrochemical
and metal oxide sensors can detect a low range of concentrations that corresponded to the real
concentrations near highways. We saw that two identical electronic noses under the same conditions
provided different signals in terms of the baseline as well as the sensitivity. The goal of our study was
to develop a new approach to make a calibration transfer with a minimum number of samples used
for matching between units. To perform the calibration transfer, two essential considerations should be
taken into account: the selection of a subset of samples that should be as representative as possible for
the entire dataset, and finding a mathematical method that needs as few as possible samples to make
the relation between data units. So, we utilized kernel SPXY for data selection and SVM regression for
data standardization. Then, we demonstrated that the calibration model of the master unit could be
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used with success on the slave unit after the standardization. The results showed that this method
provided better performances than classical direct standardization. Our next challenge is to test the
proposed method in real conditions by lodging the two electronic noses in government monitoring
stations and adopting the analyzer as a reference instrument.
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