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Abstract: Walk detection (WD) and step counting (SC) have become popular applications in the
recent emergence of wearable devices. These devices monitor user states and process data from
MEMS-based accelerometers and optional gyroscope sensors. Various algorithms have been proposed
for WD and SC, which are generally sensitive to the contexts of applications, i.e., (1) the locations of
sensor placement; (2) the sensor orientations; (3) the user’s walking patterns; (4) the preprocessing
window sizes; and (5) the sensor sampling rates. A thorough understanding of how these dynamic
factors affect the algorithms’ performances is investigated and compared in this paper. In particular,
representative WD and SC algorithms are introduced according to their design methodologies.
A series of experiments is designed in consideration of different application contexts to form an
experimental dataset. Different algorithms are then implemented and evaluated on the dataset.
The evaluation results provide a quantitative performance comparison indicating the advantages and
weaknesses of different algorithms under different application scenarios, giving valuable guidance
for algorithm selection in practical applications.

Keywords: walk detection; step counting; gait analysis; machine learning; signal processing

1. Introduction

We have witnessed the rapid growth and wide popularity of smart watches, smart bands and
smartphones in recent years. Walk detection (WD) and step counting (SC) are fundamental applications
using these smart devices. They also provide the algorithmic basis for daily activity recognition,
calorie consumption estimation, body state diagnosis and indoor navigation.

WD and SC are generally carried out by processing sensing data, from an MEMS-based accelerometer
and optionally gyroscope sensors. These sensors are generally tiny and low-cost and embedded in the
wearable devices. They provide continuous 1D to 3D accelerator or angle rate data, so as to indicate
the motion dynamics of the user who is wearing the device. Various algorithms have been proposed to
process the accelerator data stream to extract temporal and frequency features from the sensing data and
design recognition algorithms for walk detection and step counting. In particular, walk detection could
differentiate walking from other daily activities, such as sitting, standing and running. Step counting
counts the number of steps when users are in a walking state.

Algorithms were designed using different ways to process the accelerator stream data, in order to
conduct walk detection and step counting. The common design methodologies include heuristic-based,
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signal processing and machine learning methods. However, a common feature of these algorithms
is that the design is based on recognizing the patterns of a gait cycle. In particular, a gait cycle of a
human is composed of several consecutive phases, i.e., stance phase and swing phase. Algorithms
recognize and extract the features of these phases to detect walking, and the distinguished periodical
events are exploited for step counting.

However, the algorithms’ performances are shown to be highly sensitive to the application
contexts, and the following contexts are used in this paper: (1) the sensor placements; (2) the sensor
orientations; (3) the user’s walking patterns; (4) the preprocessing window sizes; and (5) the sensor
sampling rates. How the WD and SC algorithms are impacted by the dynamic contexts has not yet been
adequately investigated. Most previous works have only treated the sensor placement as the major
context factor [1–3]. As in Brajdic’s intensive survey [4], they only compared different algorithms and
the effects of placements, including [4], who evaluated the performance of step counting algorithms in
a loose way. To date, few works have studied the impact of all five application contexts simultaneously
within the same experiment. In this paper, we extended the single context factor of placement to
five context factors. We also employed a new criterion (Section 5.3.1) to evaluate the performance of
step counting.

In addition, existing datasets do not provide enough information in evaluating WD and SC
thoroughly. For example, the dataset of [5] is small, and only gestures are collected. USC-HAD [6]
fixed the sensor position at the front right hip. The UCI smartphone dataset [7–9] only fixed the
sensor at limited positions. The PlaceLab dataset [10] only had one subject. The work [11] lacks step
data. To evaluate WD and SC thoroughly, we built our own dataset. We consider context factors
including placement, orientation, walking pattern factors and also window size and sampling rate.
The window size and sampling rate are determined by the potential applications and are also limited
by the hardware. We collected and labeled datasets by the five factors.

In the other applications, WD and SC are fundamental algorithms. For example, [12] used SC to
assist in indoor navigation; [13] recognized physical activity such as walking, running, etc.; [14] was a
real-time gait analysis in walking and running. The work in [15] could detect falls among activities
for elderly people. The work in [16] was a low-cost indoor/outdoor navigation system aided by
GPS. Many studies have employed multiple sensors such as the accelerometer, gyroscope, heart rate
sensor and a barometer to detect human activity. While placing more sensors in different locations
can be cumbersome for subjects, one single accelerometer is more preferable due to the low power
consumption and low cost.

From the algorithmic aspect, five algorithms from three main categories (heuristic, signal
processing and machine learning) are investigated and summarized in this paper. We carefully
design experiments to evaluate the impacts of different contexts thoroughly. In each experiment,
testing datasets were constructed by recording multiple users’ movement indoors and outdoors, using
Android phones and smart watches as the testing devices. The accuracy and fragility of different
algorithms provide valuable guidance for algorithm selection for the related applications. Although
many commercial wristbands, pedometers and step counting applications have been developed, they
usually suffer from false positives. We employ a receiver operating characteristic (ROC) curve to make
a more accurate evaluation.

The remaining sections are organized as follows. The related works and context impacts are
defined in Section 2. Related algorithms are introduced in Section 3. The experiment design is
introduced in Section 4. Performance evaluation and comparisons are presented in Section 5. Section 6
concludes the paper.
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2. Take Context into Consideration

2.1. Context Definition

Because the application contexts are diverse and time varying in real applications, they can hardly
be considered in the algorithm design phase. However, they do have observable impacts on the WD
and SC performances. To evaluate the impacts of dynamic contexts on the algorithms’ performances,
the availability of real-time context knowledge is modeled as variables. In this paper, five context
variables are considered, as shown in Table 1.

Table 1. Notations and description of context variables.

Notation Description Values

IO Orientation known, unknown
IP Person info known, unknown
R Sampling rate 5 Hz–200 Hz
W Window size 1.5 s–6 s
L Wearing location Jacket pocket (FrontPocket), trouser back pocket (BackPocket),

trouser front pocket (UpPocket), foot-mounted (Foot), handheld
(Hand), handheld using (HandU).

The knowledge of orientation IO and person information IP are modeled by binary variables.
IO indicates whether the sensor orientation is known or not, and IP indicates whether the model is
personalized (trained and tested on each subject); the sampling rate S and window size W are modeled
as discrete real numbers, with data range shown in the table; the wearing location is also modeled as a
discrete variable, with possible values shown in the table. The available “training” and “testing” data
were changed according to the different contexts; for example, if we restrict L to being Foot, then only
data collected at Foot is available.

Then, let x = {x1, · · · , xT} be the accelerator data sequence collected from 1–T, s = {s1, · · · , sT}
be the user state ground truth during this period and nT be the step number ground truth. With
the consideration of application contexts, fw(x) is a specific WD algorithm, which outputs the
states of whether the user is walking at each time point from 1–T. fs(x) is a specific step counting
algorithm, which outputs the estimated number of steps from 1–T. Then, the walk detection error with
consideration of context impacts is represented by:

ew,T = ∑
t=1:T

|st − fw(x, IO, IP, R, W, L))| (1)

The step counting error is represented by:

es,T =
|nT − fs (x, IO, IP, R, W, L)) |

nT
(2)

In the following sections, we introduce walk detection and step counting algorithms,
i.e., {fw(x), fs(x)}, and present the performance evaluations of these algorithms for different
application contexts.

2.2. Related Works on Context Impacts

Since WD is part of human activity recognition (HAR), we surveyed the HAR works that
considered the contexts such as placement and personalization, instead of purely WD. We will also
introduce some typical SC works that considered contexts.

(1) Placement is the most common context and is the factor that has attracted researchers’ attention.
Olguin et al. placed one or two accelerometers on three different parts of the body and studied
the classification accuracy of activity recognition [17]. Lester et al. studied whether a single
accelerometer could generalize well on different locations and the reliability of activity recognition
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on a novel individual [18]. The works in [2,19] explored the influences of placements on different
body parts. The work in [1,3] showed that the negative influence of various placements of
the sensor could be mitigated. Cleland et al. studied the optimal placement to detect daily
activities [20]. Sun et al. investigated the effects of varying positions and orientations on the
accuracy of activity recognition [21].

(2) The impact of personalization was investigated in [22]. The work in [22] compared the impersonal
model and personal model. The impersonal model was built using the data from many users and
tested on a new user; the personal model was a personalized method built with the data from the
specified user and tested on him/herself. The result showed that the personalized method was
much better than the impersonal model. By using active learning and semi-supervised learning
algorithms, [23,24] in fact developed a personalized model based on a original classifier and
showed the significant improvement over the original classifier, which was trained on the data
from many users.

(3) The impacts of window size were evaluated in [21,25,26]. Although [25] demonstrated that the
accuracy was nearly the same under different window sizes, these findings contradicted those
of [21,26]. The main reason is that the contexts of the three works were different, which shows
the importance of conducting complete evaluations under various contexts.

(4) The impacts of multiple contexts were also investigated in some existing works. The work
in [3] investigated the placements, feature selection and the window on/off on the accelerator
to evaluate the accuracy of activity recognition. The research showed that the accuracy at the
trouser front pocket position had lower accuracy to classify activities and also had difficulty
in distinguishing normal walking and fast walking. In addition, the work showed that the
classification accuracy between standing and sitting could be significantly enhanced if the sensor
position were considered.

Kunze [1,2] evaluated the context impact of placements and orientations. The work considered
the placement including head, trousers, torso and wrist. It showed that the displacement of sensors
could harm the accuracy, but this could be mitigated by extracting placement-independent features
and placement recognition. Besides, it showed that the closely related placements usually generated
misclassifications.

For step counting, the Pan-Tompkins method (PTM) [27] only mounted the sensor at the foot
and reached a high accuracy in SC. In [28], each subject wore the sensor on his/her waist, and then,
the activities were classified and steps counted.

It can be seen that previous activity recognition studies mainly conducted the experiments under
a few contexts such as classifiers, placements and orientations of the sensor; therefore, in-depth studies
considering complete contexts are needed. Besides, The majority of most past research only studied
HAR, which made the evaluations on both WD and SC under various contexts necessary. In our
paper, we considered more comprehensive application contexts that include classifiers, placements,
orientations, window size, sampling rates and personalization to make a complete comparison.

3. WD and SC Algorithms

Walk detection (WD) and step counting (SC) algorithms were generally designed following a similar
routine: (1) feature extraction; (2) feature detection; and (3) state recognition. In an implementation, the
design methodologies can be roughly categorized into: (1) heuristic-based; (2) signal processing based;
and (3) machine learning-based. The related algorithms are briefly summarized and introduced.

Since we aim to give a comprehensive evaluation of various contexts, a proper set of algorithms that
could exactly reflect the contexts’ changes should be selected. Some features and algorithms that are too
sensitive or not widely applied could not provide fair comparisons of different contexts. Too complicated
features and some ‘best’ algorithms should be avoided because they may generate biased results.
Therefore, we surveyed many papers on both feature extractions and classification algorithms and
selected the most stable features and algorithms to conduct the experiments and evaluations.
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3.1. Feature Extraction Techniques

Feature extraction from the accelerator data stream is crucial for walk detection and step counting.
Various features have been presented in the literature. Statistical features in the time domain, including mean,
variance, correlation, skewness, kurtosis, energy, etc., were proposed in [29–34]. Other features such as peak
interval and zero/mean-crossing rate were also proposed in [9,35]. Additionally, root mean square (RMS)
and histogram were proposed in [36].

Features in frequency and transformed domains were also proposed in many works. FFT bins
were used in [28,37], and wavelet coefficients were introduced in [38,39]. The peak frequency and
power ratio of different frequency bands were exploited in [37]. Mel-frequency cepstral coefficients
(MFCCs) and Bark-frequency cepstral coefficients (BFCCs) as complex features of frequency domains
were also proposed in [36].

Besides these conventional features, principal component analysis (PCA) was proposed in [40],
although it is commonly used as a feature selection method. Autoencoder networks [40] and sparse
coding [41,42] have also been introduced recently. Furthermore, some manually designed features
such as weightlessness features were used in [43].

We split the common features of WD and SC into three groups in Table 2.

Table 2. Feature categorization of walk detection (WD) and step counting (SC). BFCC, Bark-frequency
cepstral coefficients.

Category Features

Time Domain mean, variance, peak, peak interval, skewness, kurtosis, energy, entropy,
correlation coefficients, RMS, zero/mean crossing rate

Frequency Domain FFT bins, wavelet coefficients, MFCCs, BFCCs, peak frequency, spectral
entropy, power ratio of different frequency bands

Other PCA, autoencoder networks, sparse coding, weightlessness feature

3.2. Related Algorithms

3.2.1. Heuristic Methods

Heuristic methods build a series of rules that leverage the cyclic patterns in the time domain
to perform walk detection and step counting. The representative algorithms include the multiple
threshold method (MT) and the finite state machine (FSM) method. The multiple threshold method,
which was proposed by Kim et al. [44], makes use of the cyclic peaks, valleys and thresholds to count
steps. The finite state machine (FSM) by Alzantot et al. [35] sets some thresholds in the magnitude to
drive an FSM to count steps.

In addition, Randell et al. [45], Bylemans et al. [46] and Ailisto et al. [47] proposed algorithms to
detect the step event by finding the consecutive local maxima and minima of the low-pass version of
the sensor signal. Beauregard et al. [48] found the positive-going zero-crossing event that indicates the
boundaries of each step cycle to count steps. Ying et al. [27] detected the negative peaks that were
caused by the heel-strike event to count steps. The correspondence between a peak value and a step
was shown in the study of Goyal et al. [49], which finds the peak within one zero-crossing interval
when the sensor is placed at the pelvis.

3.2.2. Signal Processing Methods

Signal processing techniques were also exploited to detect walking and to count steps, generally in
a transformed domain, by methods such as fast Fourier transform (FFT), short time Fourier
transform (STFT) and discrete/continuous wavelet transform (DWT/CWT). Matching methods,
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such as auto-correlation, cross-correlation, template matching, dynamic time warping (DTW), etc.,
were also used.

The Pan-Tompkins method (PTM) [27] uses a series of a filter, integration and derivative module
to extract step events. STFT [28,50,51] exploits the energy ratio of different frequency bands to perform
walk detection, and the period information is used to perform step counting. DWT/CWT [50,52]
decompose the original signal into multiple resolutions of the frequency and time domain, which
could discriminate walking activity by comparing the ratio between different wavelet coefficients.

Autocorrelation, cross-correlation, template matching and DTW all exploit the similarity between
a predefined typical signal of a step cycle and the test sensor data to count steps. The autocorrelation
method [53] thresholds the coefficients to detect walk activity and count steps by using the
repetitiveness walk activity. Cross-correlation and template matching [27,54] threshold the high
positive correlation coefficients to count steps. Ying et al. [27] extracted the first step cycle as the
template and computed the normalized cross-correlation to count steps. Although these methods are
accurate, the predefined typical template is different in various contexts and hard to find. Similarly, the
DTW [55] method measures the similarity between a predefined typical template and the test sensor
data, which is time-invariant and robust at various speeds.

3.2.3. Machine Learning Methods

Machine learning techniques such as supervised learning, unsupervised learning, online learning
and transfer learning have been investigated for activity recognition and walk detection.

Supervised learning such as decision trees (DT) [56], neural networks (NN), support vector
machines (SVM), Gaussian mixture models (GMMs) [32], k-nearest neighbor (KNN) [29], naive Bayes
classifiers [28] and boosting methods [57] have been studied and generally achieve good
detection accuracy.

Unsupervised methods have been used in activity recognition. For example, hidden Markov
models [36,58–60] are powerful in sequence data analysis; they could also be used to model the
walking activity. K-means clustering [61,62] clusters the data in feature space, where the activities
could be identified. Although the recognition accuracy of unsupervised learning is generally lower
than supervised learning [36], it exempts people from the costly work of labeling the training data.

Besides these typical learning approaches, Cheng et al. [63] investigated zero-shot learning that
could recognize unseen new activities when there were no corresponding samples in the training
dataset. Rebetez et al. [64] introduced growing neural gas (GNG) to build an online learning
recognition system that did not require labeled data. Transfer learning [65,66] could transfer activity
recognition from one domain to another domain, which adapts the changes of sensor position [33,67],
activity type [68] or environment scenario [69].

3.3. Selected Algorithms for Comparison

We choose some representative algorithms in each category to evaluate the context impacts
considering the complexity and practicability. In heuristic methods, threshold (THR) and FSM [35]
were selected because they are intuitive and simple to implement in real systems. In the signal
processing category, STFT [50], DWT [50] and PTM [27] were selected. We chose STFT and DWT
because they are popular and simple to implement. We chose PTM because it has a refined processing
chain. In the machine learning category, we chose KNN [29] and SVM as the simple model and
complex model, respectively.

These algorithms are chosen from simpler to more complex models considering the requirements
and resources of a real system. The evaluation routine is shown in Figure 1.
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Figure 1. The method of context impacts the algorithm and output. THR, threshold; PTM, Pan-
Tompkins method.

4. Experiment Design

In order to evaluate the contexts completely, we need to design the experiments carefully and
correctly. First, we will give a detailed definition of walk and how to distinguish walk from other
activities. Then, by simplifying the problem of complex and varying contexts, we could make sure our
evaluation is reliable. Last, extensive experiments are conducted, and we will show how to set the
parameters of data-preprocessing, feature extraction and model training. We also give an interpretation
of false positive in step counting.

4.1. Experiment Settings

4.1.1. User Activity Categorization

Considering the periodic pattern of the walk, we categorized daily activities into two groups:
periodic activities and non-periodic activities. Additionally, according to the similarity among these
activities, we categorized them into four classes: walk, walk-like activities, walk-related activities and
walk-unrelated activities. We show these in Figure 2. Walk-like activities are an extension of walking,
which includes going upstairs and downstairs, and could be used in some undemanding systems.
Walk-related activities contain those that might be misclassified by algorithms in prior studies, such as
running, riding a bicycle and brushing teeth.

Figure 2. Hierarchical walk activity definition.
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In fact, it is quite easy to distinguish walking and walk-like activities from walk-related and
walk-unrelated activities. Therefore, we largely simplified the analysis and data collection of
walk-related and walk-unrelated in the remainder of the article.

4.1.2. Problem Simplification

In a rigorous way to evaluate the context impacts, we should depict the performance function
f (x1, x2, . . . , xi, . . . , xn), 1 ≤ i ≤ n, where xi is the i-th context variable such as placement, orientation,
sampling rate, subject, algorithm, age, gender, place of experiment, time of the experiment, sensor type
and walking velocity. However, it is impossible to collect data under all these context variables. Instead,
we should simplify the experiment by restricting some conditions:

- Sample data at 200 Hz, which is nearly the highest sampling rate of most devices, and downsample
it to the evaluation.

- Carry one or two devices at one time and repeat it to cover all the six placements defined in Table 3,
since the acceleration data in consecutive rounds within a same building are similar.

- Device orientation of the same placement across different subjects is the same.

Table 3. The context variables in the experiments.

Context Variable Settings

Activity Walk, non-walk (stairs up, stairs down, riding, etc.)
Placement UpPocket, BackPocket, FrontPocket, Foot, Hand, HandU
Sampling rate 10 Hz, 50 Hz, 100 Hz, 200 Hz
Orientation Free direction
Individual difference Age, gender, height, weight, etc.

In order to evaluate the context impacts of these factors, we should collect data that traverse all the
possible cases. Therefore, by exploiting those preliminaries, we conduct our experiments as follows.

4.1.3. Experiment Scheme

In order to collect data for our context impact evaluation tasks, it is necessary to have many
different kinds of people participating in our experiments. A total of 15 subjects including 10 males
and 5 females, with ages ranging from 18 to 28, heights ranging from 1.6 m to 1.85 m and weights
ranging from 45 kg to 90 kg, participated in our experiments. Under the assumptions highlighted in
Section 4.1.2, we conducted our experiments as follows. Each subject was required to carry multiple
smartphones mounted at different positions on the body and walk continuously alongside an indoor
track as in Figure 3. This included walking through corridors, going upstairs, going downstairs
and going back to the starting point. As we did not use six devices to collect data simultaneously,
multiple rounds of walking with the devices mounted at different locations were required to cover all
six placements in the data collection. We also employed a camera in this indoor track to obtain the
ground truth of step counting. Besides, activities such as running, riding, brushing teeth and driving,
as shown in Table 4, do not need to be collected at all six placements, because the signal is similar
under different positions. Hand is the subject carries the smartphone in their hand naturally, which
is mainly used to simulate the position of the wrist band. Handheld using (HandU) is the subject
carries the smartphone, as well as watches the screen, in order to reflect typical walking and using
states. The smartphones are not limited to the left or right side; the individual just behaves naturally
since we observe that the signal is similar.

Using these assumptions and experiments, we simplified the data collection, and the data could
reflect and represent the real contexts well. In the comparison of each context, we only selected data
that were generated under the specific context to train the model. For example, we could simply only
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use the data collected at FrontPocket to train and test the model when we want to get the accuracies of
the placements of FrontPocket.

Table 4. Mounted placements of activities in data collection.

Activities Covered Placements

Level Walk, Stairs Up, Stairs Down Hand, HandU, BackPocket, FrontPocket, UpPocket, Foot
Running Hand, BackPocket, FrontPocket, UpPocket, Foot
Riding, Brush Teeth, Driving, Riding bus, Sitting, Standing FrontPocket, Hand

Figure 3. Designed indoor trajectory in data collection.

4.2. Data Pre-Processing

We calculate the magnitude of a tri-axis accelerometer to remove the orientation constraints in
WD and SC tasks except for the evaluation of orientation.

d = ‖Acc‖ =
√

x2 + y2 + z2 (3)

For WD, the raw data of the sensor are first filtered by a low-pass filter with a cut-off frequency of
15 Hz and then segmented into frames of 3 s with 0.5 s overlap. For the evaluation of window size,
overlap is always one-sixth of the window size. We record the start time and end time of each activity
and then label the data. The activity recognition is performed based on these frames and the labels.

For SC, contexts such as subjects, placements, movement intensities and speeds would cause
the deviation of the amplitude, variance, maximum and minimum of the raw sensor data; thus,
normalization is necessary. We normalize the raw data by variance since it outperforms other
normalization methods such as maximum, minimum and amplitude.

4.3. Feature Extraction

Feature extraction is a crucial part of machine learning and has a great influence on the
classification performance. Instead of achieving a high accuracy by some complex features in
Section 3.1, we aim to evaluate the context impacts and use some popular features in our research.
Mean, variation, min, max, energy, skewness, kurtosis, FFT amplitudes, mean-crossing rates and RMS
were extracted from the sensor data as features.

4.4. Algorithm Parameter Setting

We empirically optimize the parameters of each algorithm and show the implementation details
in this section.

THR is used for walk detection. We heuristically threshold the magnitude variance of the sensor
data. The optimal threshold value is chosen by exhaustively searching within the range of minimum
and maximum variance.
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FSM is used for step counting. It has four thresholds that determine the state sequence of the
input data stream [35]. We conduct a grid search for the four thresholds used in the model and choose
the thresholds that have the best accuracy.

PTM is used for step counting. It includes a series of models such as low-pass filter, differentiator,
squaring and integrator, which could find the large sloping part in the sensor data. One local maximum
of PTM output means one step. We have the best accuracy when the filter order is 200, the cut-off
frequency is 50 Hz and integrator window size is 0.5 s.

STFT is used for both walk detection and step counting. Walk detection by STFT in
Barralon et al. [50] places the sensor on the chest, while we do not make this restriction. We first
compute FFT coefficients in each frame, then detect walk by setting a threshold on the frequency
energy in [0.66 Hz, 1.66 Hz], which outperforms the energy ratio method in [50].

For step counting, we also abandon the placement on the waist, as in [28], and place the sensor at
various positions. We add a differentiator module after the energy-based filter that accounts for 20% of
the full energy to achieve better performance.

DWT is used for both walk detection and step counting. The decomposition is eight levels by
the dh10 wavelet. Instead of comparing the ratio of detail power coefficients, we first smooth the
whole energy samples of seven and eight levels’ details of each sample and then detect the walk by
considering the mean energy of each window.

For step counting, we reconstruct the signal by 6, 7, 8 and 2, 3 levels’ details, respectively, as two
methods, which are denoted as DWT and DWT2, respectively, in the following.

SVM is used for walk detection, and the Gaussian radial basis function (RBF) kernel performs
best in our experiments.

k-NN is used for walk detection, and k = 5 performs best in our dataset.
Besides the parameters that we mentioned here, there are also many parameters of each algorithm

to be decided such as filter order, filter coefficients, differentiator coefficients, etc. In different contexts,
we empirically choose these values to achieve the best accuracy.

4.5. Counting

Walking is a repetitive activity, which makes the sensor data cyclic. We could see features such
as large slope changes, local maxima, local minima, peaks, valleys and mean-crossing events in the
magnitude of each gait cycle, where some features could be used to identify and count step cycles.
In fact, we expect to detect only one representative event in a gait cycle. However, those features are
generated by physical movements, which is intrinsically not stable or uniform distributed in each
gait cycle, might emerge more than once in one gait cycle and be sensitive to contexts. For example,
more than one large slope change, local maxima, peaks, etc., are observed in one gait cycle because of
the context impacts, as well as noises in the physical movement. Therefore, although the algorithm
could detect all those features in each gait cycle, step counting is still not accurate since two or more
large slope changes might exist in the signal of one gait cycle. In fact, each SC algorithm could detect
one feature, for instance each peak in the output of PTM means a large slope change exists in the
corresponding position of the input signal. Therefore, simple features, which might emerge more than
once in one gait cycle, are inclined to have high false positives; while complex features, which might
not appear in a gait cycle, tend to have low true positives. Thus, we need more approaches to balance
false positive rate and true positive rate and evaluate the algorithms.

In an algorithmic view, each feature in the gait cycle has one peak in the output, so there might
be multiple peaks in the output of each gait cycle. In order to remove the peaks that are generated
by noises, we use not only a threshold, but also the minimum peak distance, minimum peak height
and minimum peak prominence. These conditions could remove most false positives without the loss
of true positives and achieve a better trade off.
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5. Evaluation Results

We first give a figurative example to present the WD. We apply THR and SVM walk detection
algorithms to the continuous activities in a real indoor scenario. The activities consist of a walk, using
a phone, going up stairs, going down stairs and some temporal irregular activities such as pushing the
door or handshake.

The results are shown in Figure 4. The windows surrounded by red and green rectangles indicate
the walking state recognized from SVM and THR, while the low values out of the rectangles are
non-walk activities. We saw that SVM provides better classification accuracy than the threshold
method in this example. More details will be shown in the following experiments. We could find there
are some jitters along the timeline in both algorithms; in addition, the estimated start and end times of
walking may deviate from the ground truth.

Figure 4. Example of walk detection in a real timeline.

We have defined four groups: walk, walk-like activity, walk-related activity and walk-unrelated
activity. We first address a coarse-grained WD problem that distinguishes walk and walk-like activity
from walk-related activity and walk-unrelated activities.

5.1. Coarse-Grained WD

Coarse-grained WD is defined to distinguish walk and walk-like activities from walk-related and
walk-related activities, which is a coarse classification of walk.

In Table 5, we could find that machine learning methods could easily distinguish walk and
walk-like activities from walk-related and walk-unrelated activities. STFT performs better than DWT
since walk features are better discriminated in the frequency domain than the time domain.

Table 5. Accuracy of coarse-grained walk detection.

THR STFT DWT k-NN SVM

Accuracy 77.55% 85.3% 80.7% 96.91% 97.5%

5.2. Context Impacts on Fine-Grained WD

We defined fine-grained WD in order to distinguish a walking activity from a walk-like activity
and riding a bicycle. The baseline performance (accuracy) under a predefined context is used to
compare with the new performances when more contexts such as placement and orientation are
available. Since there are more data on walking than on walk-like activities, we balance the ratio to 1:1
by random selection.
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5.2.1. Baseline Performance

The baseline performance of fine-grained WD algorithms are obtained under the sampling rate
R = 200 Hz and window size W = 3 s (600 samples), while orientation IO and personalization IP are
unknown and L is not specified. All data are trained and tested by 10-fold cross-validation, and the
result is shown in the accuracy-base row in Table 6.

Table 6. Context effects: orientation and personalization.

THR STFT DWT k-NN SVM

Baseline Accuracy 62.55% 70.96% 67.66% 82.61% 85.57%
Accuracy (IO is known) 62.22% 62.95% 68.91% 92.27% 93.07%
Accuracy (IP is known) 71.03% 83.15% 77.44% 97.62% 96.86%

5.2.2. Context Effects

We first evaluated the effects of orientation IO and personalization IP. Since we could recognize
all three axes, if IO is known, then extract features and train all of these on three axes and compare
them to the baseline accuracy, which is calculated based only on the magnitude of the sensor data.
For the heuristic method and the signal processing method, we chose an axis that performs best on all
three axes. Additionally, the accuracies under IP is known are obtained by averaging the accuracy of
the test data on each subject. We show the results in Table 6.

If the prior information of orientation IO and personalization IP are independently known,
then the performance of WD algorithms is shown in Table 6. If IO is known, then the feature extraction
of machine learning algorithms is performed on all three axes, which means that the classifier is trained
in the designed orientation. For the heuristic method and signal processing method, we chose the axis
that performs best from a gravity axis and a forwarding axis.

We found that both heuristic methods (THR) and signal processing methods (STFT, DWT) are
worse than machine learning methods (k-NN, SVM). In fact, heuristic methods and signal processing
methods could be viewed as features of machine learning methods. We found that either providing
orientation IO or personalization IP could enhance the recognition accuracy, and IP contributed more
to the accuracy increasing. If we know the sensor orientation IO, there are many techniques to employ
them such as extract features in all three dimensions or reconstruct the signal into the Earth coordinate
system. Here, we use the common method to extract features in three dimensions of the sensor to
observe the impacts. The orientation is different from placement since the sensor could be attached
freely without control while the typical placements are fixed, so we could not give comparisons in
every orientation. if IP is provided, we only use one’s data to train the personalized model and test the
model on him/herself.

Figure 5 shows the baseline accuracy of algorithms over different window sizes, which varies
from 300 to 1200 samples (1.5 s to 6 s). The heuristic methods (THR) are nearly independent of the
changing of the window size because the features are nearly time-invariant. The STFT method is best
at the window size of 600 samples (3 s). The DWT method becomes slightly higher alongside the
increase of window size. Machine learning methods overall become slightly lower along with the
increase of window size mainly because the statistical features of different activities in a larger window
size are not that easy to discriminate.

Figure 6 shows the relationship between various placements and accuracy. To evaluate the
accuracies of the placements, we selected data only from the specified position to train and test
the model and use the accuracies as criteria. The knowledge of placements boosts almost all the
accuracies compared to the baseline accuracy, which indicates that placements make the dataset more
discriminative. Although some placements slightly increase the accuracy of the heuristic method (THR),
it is not sensitive to variations of placements. The STFT method and DWT method perform even
worse than the baseline accuracy at some placements. The machine learning methods (k-NN and
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SVM) display the largest increase in Figure 6. Lastly, the accuracies of STFT, DWT, k-NN and SVM all
increased at FrontPocket.
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Figure 5. Context effects: window size.
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Figure 6. Context effects: placement.

Figure 7 depicts the baseline accuracies under different sampling rates R. The accuracy decreases
smoothly with the increase of R. Furthermore, 20 Hz is the transition point, where the accuracies of
k-NN, SVM and STFT diminish quickly. THR is nearly independent of the changes of R, since the
variance is steady. DWT becomes relatively low when the sampling rate is 100 Hz.

We observed that the machine learning algorithms outperform heuristic and signal processing
methods in distinguishing walking activity from other periodic and walk-like activities. This is
mainly because the heuristic and signal processing methods suffer from the indistinguishable patterns
of variance and spectrum between walking activity and other activities. Besides, the accuracies of
heuristic methods and signal processing methods are not noticeably improved even though more
contextual information is provided. Besides, the false positives and false negatives of riding a bicycle
are much lower than other activities because the sensor movement in the FrontPocket is highly
restricted, and false positives are difficult to recognize.

The accuracy of heuristic methods and signal processing methods is a result of a balance among
true positives, true negatives, false positives and false negatives. We chose the best accuracy that was
larger than 50%, under the condition of both true positives and true negatives.
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Figure 7. Context effects: sampling rate.

5.3. Context Impacts on SC

The context impacts of SC are performed only on the walking data, without other activities such
as going upstairs, going downstairs and riding.

5.3.1. Definition

We propose two definitions to depict the accuracy of step counting algorithms and choose the
strict definition in our evaluation.

Loose definition: The most intuitive way to evaluate step counting algorithms is to compare the
estimated step counts to real step counts. This accuracy was presented by Brajdic in [4] and similar
definitions are in [27,44,51]:

Cest − Cgt

Cgt
× 100%

where Cest and Cgt are the counts of the estimated steps and ground truth steps, respectively. However,
this criterion does not consider the false positives during step counting, so it is necessary to introduce
a strict definition.

Strict definition: In a walking activity with uniform velocity, we manually mark each gait cycle in
the sensor data. Normally, the algorithm could only count one step in one gait cycle, but this may not
be true. Suppose that n steps are counted within one gait cycle, and if n > 0, then there is one true
positive step and n− 1 false positive steps. Considering this situation, we introduce an ROC curve that
includes both the false positive rate and true positive rate to evaluate the step counting algorithms.

TPR =
Ctp

Cgt
(4)

FPR =
C f p

Cgt
(5)

where Ctp and C f p are the true positive and false positive counts, respectively; TPR and FPR are the
true positive rate and false positive rate, respectively. Note that FPR might be larger than one since
C f p > Ctp is possible.

Comparison: All SC algorithms in our paper result in finding the local peaks of a signal, and one
step is detected if the peaks are larger than the threshold. Figure 8 shows two examples that have four
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gait cycles. Compared to the ideal case in Figure 8a that each gait cycle only has one peak, Figure 8b
still counts four steps, although one step is lost in the third gait cycle. Thus, our strict definition is
more comprehensive to evaluate the step counting algorithms.

Figure 8. (a) Ideal Case of SC Loose definition; (b) Bad Case Needs SC Strict definition.

We find that the pattern of the step signal has two different groups, which depends on the
placements of the sensor. When the sensor is placed at Foot, FrontPocket, BackPocket and Hand,
we could observe one period in one gait cycle of one leg. When the sensor is placed at UpPocket or
Hand, we could observe two periods in one gait cycle of one leg because the movement of the other leg
also has a period. Based on these observations, we separate the placements into two groups: Group I
and Group II.

5.3.2. Baseline Performance

The baseline performance of SC algorithms is obtained under the sampling rate R = 200 Hz,
orientation IO is unknown, personalization IP is unknown, and L is in Group I or II, where Group
I contains Foot, FrontPocket, BackPocket and Hand and Group II contains Hand and UpPocket.
The baseline performance of Group I is in Figures 9 and 10; the baseline performance of Group II is in
Table 7. For Group I, we could observe one period in one gait cycle of the leg that has a sensor; while
for Group II, we could observe two periods.
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Figure 9. ROC of step counting (Group I).
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Figure 9 shows the baseline performance of the algorithms under Group I. PTM, STFT and FSM
have higher TPR when FPR is 5%. The overall performance of STFT is best, and it keeps improving
along with the increase of FPR. FSM has the highest accuracy, while it is not robust, since it performs
poorly when the FPR is low; however, this means that one could obtain better accuracy by fine-tuning
the parameters. DWT2 performs poor in this case, because the details are not stable features in the
signal of a gait cycle. Although PTM includes a series of elegant signal processing modules, the TPR is
good only in a short interval ( f pr ≈ 4.5%).
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Figure 10. Error sources distribution (fp ≈ 0.05).

Figure 10 reveals the error proportion of each placement that accounts for the total of 5% false
positives (approximately). PTM is the most stable algorithm, and most false positives of STFT and
FSM happen at Hand.

Table 7 presents the baseline performance of the algorithms under Group II. We could see that
these algorithms outperform Group I remarkably, mainly because the features in each gait cycle are
consistent under different contexts such as placements and subjects.

Table 7. Performance of step counting (Group II).

PTM STFT FSM DWT DWT2

TPR 91.0% 97.2% 95.7% 98.1% 80.0%
FPR 0.3% 0.52% 0.1% 0.3% 0.3%

5.3.3. Context Effects

When the placement L is known, we based the models and corresponding parameters on the data
generated by the specified position. Similarly, if the personalization IP is known, then we carried out
the same process on the data of each person plus an average process. If the orientation IO is known,
we ran the algorithms on all three axes and chose the axis with the best accuracy.

Figure 11 displays the performances of algorithms when the personalization IP is known. The ROC
curve is better than the baseline performance. Compared to the baseline performance, the TPR of
FSM and STFT is larger than 95%, and the FPR is lower at the same time. Although the TPR of DWT
increases with FPR, the overall performance is poor.

Table 8 shows the TPR and FPR when the sensor is mounted on the foot. In this situation,
all algorithms perform excellently except DWT and DWT2 because the detailed component of the
sensor data is not remarkable. The overall performance ranking of algorithms is similar to the former
experiment: STFT > FSM > PTM > DWT2 > DWT. Sensor data under this circumstance are very
regular, which leads to a much better performance.

Figure 12 exhibits the ROC curve when the sensor is in the FrontPocket. The performance ranking
is similar: STFT > FSM > PTM > DWT > DWT2. Unlike those former figures, STFT outperforms
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other algorithms overwhelmingly. FSM and PTM have a high TPR within only a short interval of FPR,
which means instability in real applications.

Fasle Positive Rate (FPR)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
T

P
R

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

STFT

FSM

DWT

DWT2

PTM

Figure 11. ROC of step counting: personalization.

Table 8. Step counting: Foot.

PTM STFT FSM DWT DWT2

TPR 98.7% 99.57% 99.13% 92.61% 95.65%
FPR 1.73% 0% 0% 5.21% 3.47%

Figure 13 illustrates the performance of algorithms when the sensor is Hand. DWT outperforms
other algorithms, and FSM is more stable than prior placements. STFT does not perform as well as
other prior placements. In this case, all algorithms suffer from higher FPR compared to other prior
placements, because the hand movement is diverse.
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Figure 12. ROC of step counting: FrontPocket.

Figure 14 demonstrates the ROC curve when the sensor is in BackPocket. None of the algorithms
display great differences under this situation, except that DWT2 performs too poorly to present.
We could observe that it is nearly impossible to achieve a high TPR when FPR is low, while the TPR is
acceptable at FPR ≈ 2%. Furthermore, the TPR is almost unchanged, although we allow larger FPR.
We could find that all algorithms’ TPR is high at the point of f pr ≈ 2%.
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Figure 13. ROC of step counting: Hand.
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Since it is difficult for people to do anything for a long time when walking, we abandon the
evaluation of placement of HandU. Besides the influence of placements, we also investigate the
influence of sensor orientation and signal sampling rate and directly gather the results into Table 9
which will be explained in the next section. If orientation is provided, we choose the axis that has the
best accuracy.

Tables 9 and 10 are calculated by comparing the new performances when more contexts are
available, in addition to the baseline performances.

Table 9. SC accuracy under various contexts (FPR ≈ 3%).

Group Algorithm Orientation Personalization Placement
(Hand, Foot, etc.)

Sampling Rate
(5 Hz to 200 Hz)

Heuristic Method FSM +1.5% +9% [−5%, +10%] [−32%, +0%]

Signal Processing

PTM +1% +16% [−49%, +17%] [−28%, +0%]
STFT +3% +5% [−46%, +9%] [−25%, +0%]
DWT +1% −1% [−8%, +28%] [−30%, +0%]

DWT2 −11% +11% [−42%, +31%] [−40%, +0%]
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Table 10. WD accuracy under various contexts.

Group Algorithm Orientation Personalization Placement
(Hand, Foot, etc.)

Window Size
(1.5 s to 6 s)

Sampling Rate
(5 Hz to 200 Hz)

Heuristic Method THR −0.3% +9% [−3%, +8%] [−2%, +5%] [−1%, +1%]

Signal Processing STFT −8% +13% [−15%, +15%] [−16%, +1%] [−13%, +1%]
DWT +1% +10% [−8%, +9%] [−5%, +4%] [−12%, +1%]

Machine Learning k-NN +10% +15% [−1%, +10%] [−6%, +7%] [−12%, +3%]
SVM +8% +11% [−8%, +7%] [−2%, +2%] [−12%, +2%]

5.4. Design Rules

We summarize some guidelines to design the WD and SC algorithms regarding the experiments
in this research:

- Although machine learning methods perform best overall, STFT could achieve an acceptable level
of accuracy when we detect walk and walk-like activity from the other two activities; 20 Hz is the
transition point of the sampling rate.

- Among all the contexts, personal info is most contributive where the model is trained on a
specific person.

- Complex does not mean accurate: in SC, STFT and FSM perform better in most test cases; PTM is
trivial; and DWT overall performs less productive comparatively except at Hand.

- If sensors are mounted on foot, then the noise is minimal, and the result is most reliable.
- Although the steps are accurate, they may suffer from miss counting and false positives; please

see the strict definition of SC.

6. Conclusions

This paper introduces context factors to evaluate walk detection and step counting algorithms
through a series of experiments. Additionally, to the best of our knowledge, the method that uses ROC
to evaluate the step counting is new and more comprehensive.

Table 10 shows the context impacts on WD algorithms. We find that different context factors
have different effects on the algorithm performance. Amongst all algorithms, heuristic methods (THR)
are the most robust to various context changes, while signal processing methods are most sensitive
to changes in placement, window size and sampling rate. Machine learning methods have the best
performance when a predefined context is given compared to the baseline performance and could be
further improved if more contexts are provided.

Table 9 shows the context impacts on SC algorithms. The contribution of orientation is not obvious,
while the contribution of personalization could remarkably enhance the overall accuracy except for
the DWT algorithm. Besides, all SC algorithms are sensitive to placements, and each placement has
its own best algorithm. Finally, when the sampling rate is larger than 20 Hz, the performance of all
algorithms remains robust.

This paper seeks to establish a connection between activity recognition and context awareness.
By presenting a quantitative comparison of algorithm performance under context impacts, this paper
gives valuable guidance in designing algorithms for walk detection and step counting.
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