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Abstract: Pin connections are commonly used in many engineering fields, and continuous operation
may cause severe wear on the pins and may lead to their eventual fracture, if undetected. However, a
reliable nonintrusive real-time method to monitor the wear of pin connections is yet to be developed.
In this paper, acoustic emission (AE)-based parametric analysis methods, including the logarithm of
the cumulative energy (LAE), the logarithm of the slope of cumulative energy (LSCE), the b-value
method, the Ib-value method, and the fast Fourier transformation (FFT), were developed to quantify
the wear degree of pin connections. The b-value method offers a criterion to quickly judge whether
severe wear occurs on a pin connection. To assist the research, an experimental apparatus to accelerate
wear test of pin connections was designed and fabricated. The AE sensor, mounted on the test
apparatus in a nondestructive manner, is capable of real-time monitoring. The micrographs of the
wear of pins, and the surface roughness of pins, verified that the values of the max LAE and the max
LSCE became larger as the wear degree of pin connections increased, which means different values of
the max LAE and the max LSCE can reflect different wear degree of pin connections. Meanwhile, the
results of the micrographs and surface roughness confirmed that the b-value is an effective method to
identify severe wear, and the value “1” can be used as a criterion to detect severe damage in different
structures. Furthermore, the results of spectrum analysis in the low frequency range showed that the
wear frequency was concentrated in the range of 0.01 to 0.02 MHz for the pin connection. This study
demonstrated that these methods, developed based on acoustic emission technique, can be utilized
in quantifying the wear degree of pin connections in a nondestructive way.

Keywords: acoustic emission (AE); b-value method; quantification of wear degree; wear frequency
spectrum; wear of pin connections

1. Introduction

Pin connections have been widely applied in many engineering fields [1,2]. Compared with other
types of connection forms, pin connections have the advantages of low cost, simplicity, and facilitation
of disassembly for repair [3]. However, continuous operation may cause damage (such as severe wear,
shear fracture, and others) on the pins, which may result in their eventual fracture if undetected [4,5].
Traditional inspection methods depend on human experience, and cannot quantify the damage of pin
connections [6,7]. Many researchers have studied the mechanical properties of pin connections. Bridge
et al. [8] studied the mechanical properties of pins by examining the influence of different parameters
of pins, and proposed modifications to previous design procedures. Aktas et al. [9] researched the
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effect of sea water on pinned joints of glass fiber composite materials, and found the failure distance of
pin displacement increased with the increase of immersing period. Liang et al. [4,10] used Piezoelectric
patch to monitor the load conditions of pin connections. Li et al. [5] applied wavelet transform to
monitor the health conditions under different load levels, and found that the energy of the transmitted
signal increased with the load on the pin connections. Obviously, these studies focused on monitoring
the load condition of pin connections. However, an effective real-time monitoring method, to quantify
the wear degree of pin connections and to set a criterion to judge whether severe wear occurs, is yet to
be developed.

In the past decades, real-time monitoring systems [11–17], especially in the area of structural health
monitoring (SHM) [18–21], have been developed. The commonly used methods in these real-time
monitoring systems include ultrasonic guided wave method [22,23], active thermography [23–25],
eddy current method [26,27], electromechanical impedance [28–30], and others [31,32]. Among these
methods, acoustic emission (AE) technique [33–36], a passive monitoring technique that detects the
damage by analyzing the elastic stress wave generated as a result of deformation and fracture in
materials, is appropriate to monitor the wear process of pin connections. Compared with other
nondestructive evaluation methods, it is more sensitive and less susceptible to complex structural
geometry [37], therefore, the AE technique has been widely used in different fields, including civil
engineering [38,39], especially bridge engineering [40,41], mechanical engineering [42–44], and rock
mechanics [45–47]. In civil engineering, Abouhussien et al. [48] exploited acoustic emission (AE)
monitoring to classify the stages of bond deterioration under pull-out tests, and proposed damage
classification charts based on the intensity analysis. Aldahdooh et al. [49] classified the types of cracks
(flexural or shear cracks) of several types of reinforced concrete (RC) beams subjected to four-point
bending by acoustic emission technique. In mechanical engineering, Kulandaivelu et al. [50] found the
AE technique was sensitive to wear signals above 200 KHz of a single point cutting tool in turning.
Benabdallah et al. [51] found the good relationship between RMS (Root Mean Square) and the friction
coefficient in the sliding contact. Hase et al. [52] confirmed that the frequency of adhesive wear is
larger than abrasive wear. Furthermore, taking its advantage of high sensitivity, researchers applied
the AE technique to investigate bubble formation during the boiling process [33,53].

To improve sensibility of the AE technique and extend its fields of application, various data
processing methods, such as wavelet packet transform [54,55], neural networks [56,57], genetic
algorithms [58], deep learning [59–61], and clustering methods [62,63], were proposed. In addition to
these methods, Kurz et al. [64] introduced Akaike information criterion (AIC) to the analysis of AE
signals for picking signals accurately, and Schechinger et al. [65] applied this method to monitoring
the deterioration progress of a reinforced concrete beam, under loading, with satisfactory results.

Compared with the above methods, the b-value method, which was developed by Gutenberg and
Richter [66] in 1944, is a simple [40,67] and an effective method to deal with AE data. Many researchers
applied this method to the study of the fracture mechanics of materials [68,69]. For example, Colombo
et al. [67] applied b-value to analyze AE signals from reinforced concrete failure in experiments.
Schumacher et al. [40] found that the minimum b-value analysis had the potential to estimate the load
levels on operating RC bridge girders.

This paper explores the feasibility of quantifying the wear degree of pin connections and setting a
criterion of severe wear. To facilitate the research, an experimental apparatus to accelerate wear test
of a pin connection was designed and fabricated, and accelerated wear tests of pin connections were
conducted. Signals were collected by AE sensors, which were mounted on the test apparatus in a
nondestructive way. Three parameter-based methods were used to analyze these AE signals: the max
logarithm of the cumulative energy (LAE) and the logarithm of the slope of cumulative energy (LSCE)
were used to quantify the wear degree of pin connections; the b-value method and the Ib-value method
were applied to distinguish the wear degree of pin connections; and fast Fourier transformation (FFT)
was used to analyze the wear frequency spectrum in the low frequency range of pin connections.
The experimental results showed that different values of the maximum of LAE and the maximum of
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LSCE reflected different wear degree. Based on which, experimental data were analyzed, and the four
specimens can be divided into three groups: the severe wear group, the moderate wear group, and
the slight wear group. Furthermore, the b-value method is an effective method to offer a criterion to
quickly judge if the wear status of a pin connection is severe or not. In addition, spectrum analysis of
AE signals demonstrated that the main wear frequency in the low frequency range decreases with the
increase wear degree.

2. Materials and Methods

2.1. b-Value Method

In earthquake seismology, the numbers of events of larger magnitude is less than the events of
smaller magnitude; this phenomenon can be quantified by the Gutenberg–Richter relationship [66],
and the equation is as follows [67]:

log10 N = a− bM, (1)

where M is the Richter magnitude of earthquakes; N is incremental frequency (i.e., the number of
earthquake with magnitude greater than M); and a and b are coefficients [67]. There is a linear
relationship between the logarithm value of incremental frequency and the Richter magnitude of
earthquakes in the formula. Obviously, b is the slope, and reflects the proportion of low magnitude
earthquakes in all earthquakes. Therefore, b will decrease with the increase of the number of larger
magnitude earthquakes. The coefficient b is the b-value, whose intermediate increases firstly, and is
then followed by a decrease in the months to weeks before an earthquake [70,71].

Shiotani [68,69] and Rao [72] assumed the same principle could be applied to the AE to study the
cumulative frequency-magnitude relationship, and to reflect the damage characteristics during the
rock fracture process. They showed the b-value equation adapts to AE method as

log10 N = a− b(AdB/20), (2)

where N is the incremental frequency (i.e., the number of AE signal with amplitude greater than the
threshold); a and b are coefficients; and AdB is the amplitude of AE signals, which is the maximum AE
signal excursion during an AE hit, and is defined as

AdB = 20 log(Vmax/1µv)− P, (3)

where Vmax is the maximum voltage of an AE hit; and P is the preamplifier gain in dB. N and AdB can
be directly obtained from the AE device. Therefore, b-value can be calculated from AE parameters by
Equation (2). Furthermore, Shiotani proposed the improved b-value (Ib-value), which is defined as

Ib =
log10 N(µ− α1σ)− log10 N(µ− α2σ)

(α1 + α2)σ
, (4)

where µ is the mean amplitude; σ is the standard deviation; N is the incremental frequency (i.e., the
number of AE signal with amplitude greater than the threshold); α1 is the coefficient related to the
smaller amplitude; and α2 is related to the fracture level. The feasibility of applying the Ib-value
method to monitor wear degree of pin connections will be studied in the future. Following this, the
physical acoustics corporation (PAC) proposed Equation (5) to calculate the Ib-value:

Ib =
log10 N1 − log10 N2

a2 − a1
, (5)

a1 = µ− α1σ, (6)

a2 = µ + α2σ, (7)
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where N1 and N2 represent the lower amplitude limit and upper amplitude limit of each amplitude
distribution graph, respectively; µ is the mean amplitude; and σ is the standard deviation. Rao [72]
compared the results of the Ib-value (Shiotani) and the Ib-value (PAC) in rock fractures, and found
they have same tendency, however, the tendency of Ib-value (PAC) is closer to that of b-value when α1

= α2 = 1. Therefore, this paper calculates Ib-value by using Equations (5)–(7), and α1 = α2 = 1.

2.2. Test Equipment and Procedures

In this paper, research was performed by using the experimental setup as shown in Figure 1.
The experiment setup consists of a testing stand and an AE system. The core parts of the testing
stand include the U-shaped part, the circular part, and the pin. The circular part was connected to
bottom steel plate of the testing stand by stranded steel cable, and the U-shaped part was fixed by a
steel arm which was connected to top steel plate by a bolt. The U-shaped part and the circular part
were connected by a pin, and the connection between them has a tight fit. The lubricant used in the
experiment was No. 3 lithium base grease, which is made by lithium hydroxy fatty acid, medium
viscosity mineral lubricating oil, antioxidants, and others. It has been widely used as the lubricant
in many rotating machines, such as water pump, blowing machine, motor, and others. The material
of the core parts is high speed steel, and the chemical compositions of specimens are summarized in
Table 1. Four pins, as specimens, were used in this experiment, and the same tested condition was
used. A motor was used to rotate the pin to accelerate the wear of the pin connection in experiments.
To balance the authenticity of simulation and the speed of experiment, the rotational speed of the
motor was set to 30 rpm. The testing stand and the motor were fixed on a steel plate. The test duration
was controlled to around 10 h. However, when severe wear occurred, the friction between the pin and
the U-shaped part will dramatically increase and generate high-level noises. In addition, the increased
friction force will cause the U-shaped part to rotate with the pin, which may result in breaking the
stranded steel cable and damaging the experimental setup. To avoid such a situation, the test will be
stopped before the stranded cable breaks. Basically, by listening to the noise, which is closely related to
the AE, and observing the motion of the U-shaped part, we can judge the severity of the wear.
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Table 1. Material composition of specimens.

Elements Proportion

C ≤0.07
Mn ≤2.00
P ≤0.035
S ≤0.030
Si ≤1.00
Cr 17.00~19.00
Ni 8.00~11.00

2.3. AE Test Equipment and Measurement Equipment

A PCI-2 8-channel AE system (from Physical Acoustic Corporation, Princeton, NJ, USA) was used
in this experiment. The AE sensor applied in the experiment was R6a, whose frequency is from 35 to
100 KHz, and whose resonance frequency is 55 KHz. The results of this experiment confirmed that AE
signals collected by R6a sensor can reflect the change of wear degree. Furthermore, the R6a sensor
has high sensibility in the low frequency range, and can be used to study the wear frequency in low
frequency ranges. Two AE sensors were used in this experiment, in a nondestructive way, to real-time
monitor the wear degree of pin connections. One was mounted on the upper surface of the U-shaped
part, and the other was mounted on the upper surface of the motor to collect the AE signals of motor,
as shown in Figure 1. Meanwhile, the pre-amplifier was type 2/4/6, and its gain was set to 40 dB. In
the wear process of pin connections, interference signal is mainly from background noise, motor noise,
and the noise caused by reflection of AE signals. For background noise, since its amplitude is low,
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setting a threshold can filter it out. Usually, the threshold is 45 dB, which means that only these AE
signals whose amplitude is over 45 dB can be collected by the PCI-2 system. For motor noise, a sensor
was mounted on the upper surface of motor for the measurement. Motor noise can be filtered out by
comparing the AE signals from the wear process of pins and that from motor. For the noise caused
by reflection of AE signals, front-end filters were used to reduce reflections by setting values of PDT
(peak definition time: ensures correct identification of the signal peak for risetime and peak amplitude
measurements), HDT (hit definition time: ensures that each AE signal from the structure is reported
as one and only one hit), and HLT (hit lockout time: inhibits the measurement of signals after the hit
stored to avoid measuring reflection). In this experiment, PDT, HDT, and HLT were set to 300, 600,
and 1000 µs. The connecting of the system is shown in Figure 1.

To verify the results of AE technique, the VHX-600E digital (from Keyence, Osaka, Japan)
microscope was applied to observe the worn surface of pins (as shown in Figure 2a), and the PGI
840 roughmeter (from Taylor Hobson, Leicester, UK) was applied to measure the surface roughness
of pins (as shown in Figure 2b). The detailed parameters of the microscope and the roughmeter are
summarized in Tables 2 and 3, respectively. Furthermore, in the process of measuring roughness,
a control specimen, in which no wear occurred, and four specimens, were measured. Since the
measurement range of roughmeter is a line, this experiment will measure 8 lines in wear areas of four
specimens, and the length of each line is 8 mm.

Table 2. Detailed parameters of VHX-600E digital microscope.

Parameters Range

Magnification 20× to 200×
Observation range 19.05–1.14 mm

Repeat position precision ±0.5 µm

Table 3. Detailed parameters of PGI 840 roughmeter.

Parameters Range

Measurement length 120 mm

Movement speed 0.1/0.25/0.5/1.0/10.0 mm/s

Measurement speed 0.1/0.25/0.5 mm/s

Sampling interval in horizontal
0.15 µm/0.1–15 mm
0.25 µm/15–30 mm
1 µm/30–200 mm

Accuracy of main spindle ±(0.02 µm + 0.0003 µm)
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Figure 2. Measurement equipment: (a) VHX-600E digital microscope; (b) PGI 840 roughmeter.
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3. Experimental Results and AE Parameter-Based Analyses

3.1. Features of AE Parameters

Energy is one of the most important AE parameters, and it is the integral of the rectified voltage
signal over the duration of the AE hit (or waveform). Compared with amplitude (the maximum AE
signal excursion during an AE hit), energy has better sensitivity and a larger range. However, it is
difficult to judge whether the maximum energy value has been influenced by noise. To reduce these
interference factors, the average energy and the slope of cumulative energy will be used in this paper.
The average energy can also reduce the negative impact of different duration of four specimens by
dividing the duration. The related equations are as follows:

Q(Ti) =
n

∑
j=1

ej, (8)

S(Ti) =
Q(Ti+1)−Q(Ti)

Ti+1 − Ti
, (9)

M(Ti) =
Q(Ti)

Ti
, (10)

LSCE(Ti) = log10 S(Ti), (11)

LAE(Ti) = log10 M(Ti), (12)

where Q(Ti) is the cumulative energy in Ti s; ej is the jth hit; n is the number of hits in Ti s; S(Ti) is the
slope of cumulative energy at the Ti s; M(Ti) is the average energy in Ti s; LSCE(Ti) is the logarithm of
the slope of cumulative energy (LSCE) at the Ti s; and LAE(Ti) is the logarithm of the average energy
(LAE) at the Ti s. Furthermore, in this paper, since the number of data units from one experiment is
over 1000,000, to balance the computational time and the accuracy, the cumulative energy and the
slope of cumulative energy will be counted every 100 s, which means that, in Equation (11), the value
of denominator is 100. The detailed process is illustrated in Figure 3.
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Figure 3. The flow chart to calculate the average energy and the slope of cumulative energy.

Furthermore, the range of energy collected by PCI-2 equipment is from 0 to 65,535 aJ. Results
show that the energy values reach the maximum energy of system in this experiment, which means
that there may exist some AE signals whose energy value is larger than the max energy of system in
this experiment. However, the results of this paper confirm that the wear degree can be quantified in
the range of 0 to 65,535 aJ.

Figure 4 shows the average energy and the slope of cumulative energy, over time, of the four
specimens. Comparing the tendencies of the average energy in four specimens, it is obvious that the
first and the second specimens have similar tendency, and they both have one descent phase (the OA
phase), two slower rise phase (the AB phase and the CD phase) and two faster rise phases (the BC
phase and the DE phase). However, the third and the fourth specimens just have one descent phase
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(the OA phase), two slower rise phase (the AB phase and the CD phase), and one faster rise phase (the
BC phase). The tendencies of the third specimen and the fourth specimen are similar with the OBD
phases of the first and the second specimens. Furthermore, the descent phases in four specimens mean
the energy and the growth rate of energy in the initial stage of the experiment is low.

Sensors 2018, 18, x FOR PEER REVIEW  8 of 19 

 

first and the second specimens have similar tendency, and they both have one descent phase (the OA 

phase), two slower rise phase (the AB phase and the CD phase) and two faster rise phases (the BC 

phase and the DE phase). However, the third and the fourth specimens just have one descent phase 

(the OA phase), two slower rise phase (the AB phase and the CD phase), and one faster rise phase 

(the BC phase). The tendencies of the third specimen and the fourth specimen are similar with the 

OBD phases of the first and the second specimens. Furthermore, the descent phases in four specimens 

mean the energy and the growth rate of energy in the initial stage of the experiment is low. 

  
(a) (b) 

  
(c) (d) 

Figure 4. The cumulative energy and the slope of cumulative energy: (a) the first specimen; (b) the 

second specimen; (c) the third specimen; (d) the fourth specimen. 

Figure 5 shows the max LAE and the max LSCE in four specimens. According to the value of the 

max LAE, the four specimens can be divided into three groups based on different values of the max 

LAE. The first group includes the first specimen and the second specimen, and their max LAE are 

similar (4.56 and 4.45, respectively). The second group includes the third specimens, whose max LAE 

is 3.68. The third group includes the fourth specimen, and its max LAE is 2.88, which is the minimum 

in four specimens. Meanwhile, similar to the max LAE, the results of four specimens can also be 

divided into three groups, according to different values of the max LSCE. The first group includes 

the first and the second specimens whose values are around 5, and the second group includes the 

third specimen whose value is 4.178. The third group includes the fourth specimen whose value is 

3.476. It is obvious that the tendencies of the max LAE and the max LSCE are decreasing from the 

first specimen to the fourth specimen. This result may mean that the wear degree of four specimens 

gradually becomes severe from the fourth specimen to the first specimen, which will be discussed in 

Sections 3.2 and 4. Furthermore, it can be summarized that when its max LAE is above 4, and its max 

LSCE is above 5, it belongs to first group; when its max LAE is between 3 and 4, and its max LSCE is 

between 4 and 5, it belongs to second group; when its max LAE is below 3 and its max LSCE is below 

4, it belongs to third group. 

O

Amplification

A

B

C

D

E

Amplification

O

A
B

C

D

E

Amplification

O

A

B

C D

O

A B

C
D

Figure 4. The cumulative energy and the slope of cumulative energy: (a) the first specimen; (b) the
second specimen; (c) the third specimen; (d) the fourth specimen.

Figure 5 shows the max LAE and the max LSCE in four specimens. According to the value of the
max LAE, the four specimens can be divided into three groups based on different values of the max
LAE. The first group includes the first specimen and the second specimen, and their max LAE are
similar (4.56 and 4.45, respectively). The second group includes the third specimens, whose max LAE
is 3.68. The third group includes the fourth specimen, and its max LAE is 2.88, which is the minimum
in four specimens. Meanwhile, similar to the max LAE, the results of four specimens can also be
divided into three groups, according to different values of the max LSCE. The first group includes
the first and the second specimens whose values are around 5, and the second group includes the
third specimen whose value is 4.178. The third group includes the fourth specimen whose value is
3.476. It is obvious that the tendencies of the max LAE and the max LSCE are decreasing from the
first specimen to the fourth specimen. This result may mean that the wear degree of four specimens
gradually becomes severe from the fourth specimen to the first specimen, which will be discussed in
Sections 3.2 and 4. Furthermore, it can be summarized that when its max LAE is above 4, and its max
LSCE is above 5, it belongs to first group; when its max LAE is between 3 and 4, and its max LSCE is
between 4 and 5, it belongs to second group; when its max LAE is below 3 and its max LSCE is below
4, it belongs to third group.
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Figure 5. The results of the max LAE (logarithm of the average energy) and the max LSCE (logarithm
of the slope of cumulative energy) in four specimens.

3.2. Analyses Based on Micrographs and Surface Roughness

Figure 6 shows the micrographs of specimens after the tests. It is obvious that third and the fourth
specimens both have one conspicuous groove and some shallow scratches, which means abrasive wear
occurs on the surface [73], however, the number of shallow scratches of the third specimen is more than
that in the fourth specimen (as shown in the black rectangle in Figure 6c,d). By contrast, the conspicuous
grooves of the first and the second specimens are more than 1, and the first specimen has the most
numbers of grooves in all four specimens. In addition, the trails of transfer particles adhering to the
surface of the first and the second specimens can be seen, which means adhesive wear occurs on the
surface [73]. According to Ref. [74], the adhesive wear is more severe than the abrasive wear, therefore, the
wear degree of the first and the second specimens is more severe than the third and the fourth specimens.
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Furthermore, the surface roughness in wear area of four pins (the areas are enclosed by red lines
in Figure 6) are shown in Table 4, and it can be found that the maximum roughness and the average
roughness of four specimens are larger than that of the control specimens, which means wear occurred
in the surface of four specimens. Compared the roughness of four specimens, it is obvious that the
maximum roughness and the average roughness gradually increases from the fourth specimen to the
first specimen, which is in good agreement with the tendency of the LAE and the LSCE. Obviously,
the wear degree of four specimens gradually becomes severe from the fourth specimen to the first
specimen, and the wear degree of the first specimen is the most severe among the four specimens,
which confirms the speculation in Section 3.1. Therefore, the values of the max LAE and the max
LSCE can reflect the wear degree of pin connections, and different values of the max LAE and the max
LSCE represent different wear degrees. Larger values of the max LAE and the max LSCE mean more
severe wear.

Table 4. The surface roughness of four specimens.

Specimens The Average Surface
Roughness (µm)

The Maximum Surface
Roughness (µm)

The control specimen 0.8473 1.1247
The first specimen 6.5552 8.4731

The second specimen 5.1232 6.9239
The third specimen 4.6801 5.6099

The fourth specimen 4.7704 5.2681

3.3. Features of b-Value Method and Ib-Value Method

In this paper, the total number of AE signals in a chronological order {S1, S2, S3 · · · Sn−1, Sn}, and
2000 AE signals, were divided into groups which are defined as G1, G2, . . . , Gn (as shown in Figure 7).
The b-value bn and the Ib-value Ibn of the group, Gn, can be calculated by using Equation (2) and
Equations (5)–(7). In the group Gn, the signal Sn has its own occurring time Tn, and this paper chose
the occurring time {T999+2000k, k = n− 1} of {S999+2000k, k = n− 1} to represent the occurring time of
the group Gn. This occurring time {T999+2000k, k = n− 1} is defined as tn. Therefore, the coordinate of
the group Gn in Figure 8 is (tn, bn) and (tn, Ibn). The detailed process is illustrated in Figures 7 and 9.
The results have been plotted in Figure 8. The blue lines represent b-value curves, the green lines
represent Ib-value curves, and the red lines represent the value of one. Comparing the b-value curves
of four specimens, it can be found that the curves in the first and the second specimens fluctuate in the
range of −1 to 3, and that in the third and the fourth specimens fluctuate around 1 and 2 (as illustrated
in Table 5), respectively. By contrast, the b-value curve of the fourth specimen is not only smoother, but
also higher than the red line. In addition, at the second half of b-value curves in the first and the second
specimens, the b-value is much lower than the red line. The b-value curve of the third specimen is like
a transitional curve: a small section is slightly lower than the red line at the beginning, however, it is
higher than the red line in other sections. Meanwhile, the range of Ib-value curves of four specimens
are 0 to 1, and the curves of four specimens are steadier than the b-value curves, which makes it be
difficult to distinguish the wear degree of four specimens. Therefore, compared with Ib-value method,
the b-value method is preferable to distinguish the wear degree of pin connections.
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Table 5. The statistic of b-value distribution.

Specimens The Number of Data Whose
b-Value Is Lower than 1 Total Number of Data Proportion

The first specimen 307 863 35.57%
The second specimen 415 415 26.98%
The third specimen 53 2176 2.44%

The fourth specimen 18 2943 0.61%
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Figure 9. The flow chart of frequency-based analysis.

3.4. Frequency Spectrum of Wear

Results of the wear micrographs of four specimens reveal that severe wear occurred in the first
and the second specimens, therefore, waveforms of the first and the second specimens can be used to
analyze the frequency spectrum of severe wear. It can be found that when severe wear happens, the
energy value of specimens is larger than 10,000 aJ. Therefore, this paper analyzes the frequency spectra
of AE signals whose energy value is larger than 10,000 aJ in the first and the second specimens.

Figure 10a is a waveform diagram of one hit, and the energy is the integral of the rectified voltage
signal over the duration of the AE hit (or waveform). Using the time domain waveforms, the frequency
information can be obtained by the FFT method. Figure 10b is the spectrogram of the hit, and the main
frequency can be obtained from the figure. Comparing the energy and the main frequency of hits, the
wear frequency can be found. The detailed analysis process is shown in Figure 10. The results are
shown in Figures 11 and 12. It is obvious that the wear frequency spectra in the low frequency range
of the first and the second specimens mainly distribute in the range of 0.01 to 0.02 MHz. More detailed
information of the wear frequency spectra is shown in Figures 13 and 14, which clearly reveal that the
main frequencies in the first and the second specimens are different. In the first specimen, the main
frequency in the low frequency range is around 0.0127 MHz, however, this is around 0.0166 MHz in
the second specimen. The results of wear photos show that the wear degree of the first specimen is
more severe than that in the second specimen, therefore, the main wear frequency may decrease with
the increase in wear degree in the low frequency range for the pin connections.
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Figure 10. The waveform diagram and the spectrogram diagram of one hit: (a) the waveform diagram;
(b) the spectrogram diagram.
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(b) proportion of different frequency.
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4. Discussion

The severe wear occurring on the surface of pin connections may result in severe damage in
structure, however, the wear process of pin connections is complicated, and can be influenced by
various factors, such as loads, roughness of surface, lubrication condition, and others. This paper
explores the feasibility of quantifying the wear degree of pin connections and setting a criterion to
detect severe wear. The analysis of Sections 3.1 and 3.2 have demonstrated that the wear degree
can be reflected by the max LAE and the max LSCE. Referring to the results of four specimens that
were divided into three groups based on different values of the max LAE and the max LSCE in the
Section 3.1, it is obvious that three groups represent different wear degrees: the first group represents
severe wear; the second group represents moderate wear; and the third group represents slight wear.
Therefore, the wear degree of pin connections can be quantified by the values of max LAE and the max
LSCE: when its max LAE is above 4 and its max LSCE is above 5, it is severe wear; when its max LAE
is between 3 and 4 and its max LSCE is between 4 and 5, it is moderate wear; when its max LAE is
below 3 and its max LSCE is below 4, it is slight wear, as shown in Figure 15.
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Figure 15. Quantification of wear degree in four specimens.

Furthermore, to confirm the prior predictions in the end of the Section 3.4, the proportions
of different frequencies in 0.01 to 0.02 MHz, in the third and the fourth specimens, are counted in
Figures 16 and 17. Since the number of AE signals—whose energy value is large—is small, to balance
the energy value of AE signals and the number of AE signals, the energy values of AE signals, which
were selected for spectrum analysis, are larger than 1600 aJ and 200 aJ, in the third and the fourth
specimens, respectively. It can be found that the main frequency of the third and the fourth specimens
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are the same, which is 0.0176 MHz. The tendency of the main frequency between 0.01 to 0.02 MHz,
from the first specimen to the fourth specimen, is rising, which is opposite of the tendency of the wear
degree from the first specimen to the fourth specimen. This verifies the prior prediction: the main
wear frequency decreases with the increase of the wear degree in the low frequency range for the pin
connection studied in this paper.
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On the other hand, literature studies [40,75,76] have proposed that the value “1” can be as the
criterion to judge whether severe damage occurs in concrete beams. When the b-value is lower than 1,
severe damage occurs in a structure. This paper applied this criterion to detect severe wear occurring
on the surface of pin connections. The results show that severe wear occurred in the first and the
second specimens according to this criterion, which is consistent with the results of the results of
Section 3.2. Therefore, the value “1” can used be as the criterion to detect severe wear. The above
analysis verifies that the value “1” can be used as a criterion to detect severe wear in pin connections.

5. Conclusions

The lack of a simple and reliable method in the detecting of the wear degree of pin connections
motivated this research work. In this paper, using the max LAE and the max LSCE method, and the
Sb-value method, to quantify the wear degree of pin connections based on AE signals, was proposed.
An apparatus to conduct the accelerated pin connections’ wear test was designed and fabricated. The
AE sensor was mounted on the test apparatus in a nondestructive way, and was capable of real-time
monitoring. The experimental results show that the wear degree of pin connections can be divided into
three wear degrees by different values of the max LAE and the max LSCE, as shown in Figure 15. The
results of the b-value method and the Ib-value method indicate that the b-value method is preferable to
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distinguish the wear degree of pin connections, and the b-value method reveals that the value “1” can
be applied as a criterion to classify the wear as severe for a pin connection. Furthermore, this research
confirms that the wear frequency spectrum in the low frequency range mainly concentrates in the
range of 0.01 to 0.02 MHz for the type of pin connections studied in this paper. Further analyses of
this wear frequency spectrum found that the main wear frequency decreases with the increase of the
wear degree in the low frequency range for the pin connection. In summary, the research demonstrates
that the wear degree can be quantified by the max LAE and the max LSCE method, and the state of
severe wear can be judged by the b-value method, all using AE signals. Further research will involve
the use of the improved b-value relationship and the study of relationship between the roughness of
wear surface and the AE signals. In future, we will also explore the modeling of AE signals generated
from a pin connection during its wear process by using the fractal contact theory [77,78].
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