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Abstract: In this paper, we study the problem of the joint detection and direction-of-arrival (DOA)
tracking of a single moving source which can randomly appear or disappear from the surveillance
volume. Firstly, the Bernoulli random finite set (RFS) is employed to characterize the randomness
of the state process, i.e., the dynamics of the source motion and the source appearance. To increase
the performance of the detection and DOA tracking in low signal-to-noise ratio (SNR) scenarios,
the measurements are obtained directly from an array of sensors and allow multiple snapshots.
A track-before-detect (TBD) Bernoulli filter is proposed for tracking a randomly on/off switching
single dynamic system. Secondly, since the variances of the stochastic signal and measurement
noise are unknown in practical applications, these nuisance parameters are marginalized by defining
an uninformative prior, and the likelihood function is compensated by using the information theoretic
criteria. The simulation results demonstrate the performance of the filter.

Keywords: DOA; Bernoulli filter; track before detect

1. Introduction

Detection and direction-of-arrival (DOA) estimation using an array of sensors are important
topics in signal processing and have many applications, such as in radar, sonar, communications and
acoustics [1–7]. Considering moving sources in a noisy environment [1,2], it is desirable to use both
the spatial and temporal information for better performance, since the DOAs between consecutive
time steps are highly correlated. In [7–10], recursive Bayesian approaches are proposed for tracking
the DOA of moving sources. However, most existing DOA tracking schemes assume that the number
of sources is known and fixed. This assumption is often violated in many practical situations, since
a source can appear or disappear from the surveillance volume during the observation interval.
Considering an unknown and time-varying number of sources, two frameworks have emerged for
tracking: track-after-detect (TAD) and track-before-detect (TBD).

In a TAD system, this task is always decomposed into separated modules. A pre-processing
module is applied to obtain a set of detected points. Afterwards, a multitarget tracking (MTT)
procedure is conducted on these detected points. These detected points are generated by the
thresholding stage, which could result in a loss of information. The performance degrades dramatically
under a low signal-to-noise ratio (SNR) or a small number of snapshots [11]. For the pre-processing
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module, there have been several methods developed for detecting and localizing sources using an array
of sensors. The conventional beamforming method and the minimum-variance-distortionless-response
(MVDR) method [12], which rely on picking peaks above a selected threshold, are the most widely used.
Maximum likelihood based DOA estimation algorithms are investigated in [13] coincide with Akaike
information criterion (AIC) and the minimum description length (MDL) for detection. The Bayesian
predictive densities (BPD) approach was developed in [14] using a prior probability density function.
Further, high-resolution subspace based methods have been studied in [15,16] with an unknown
number of sources.

A TBD system tracks targets directly using the raw data, without a pre-processing module.
Indeed, any detection is conducted after tracking. More information is reserved, which allows better
performance in the challenging environment. A TBD particle filter is firstly proposed in [10] for
DOA tracking, coupled with a reversible jump Monte Carlo Markov chain (RJMCMC) step to handle
fluctuations in the source number. This method can be only carried out using a single snapshot. Hence,
it is sensitive to incorrect model order initialization and degrades heavily when it comes to noise [17].

Recently, Mahler introduced the concept of random finite sets (RFS) to handle uncertainty in the
number of targets for tracking [18]. Since the implementation of the RFS formulation of the optimal
Bayes filter for multiple dynamic systems is computationally very demanding, some moment-based
approximations have emerged recently for multisource DOA tracking: the probability hypothesis
density (PHD) filter and cardinalized PHD (CPHD) filter. In [17], a PHD filter is investigated using
the separable observations. A CPHD filter is investigated in [19] with known variances of signal and
noise and only allows a single snapshot during recursion. In [20], a multi-Bernoulli filter for DOA
tracking is proposed, by using the multiple signal classification (MUSIC) pseudo-spectrum as the
likelihood function.

Usually, it is not known whether the target exists or not in a particular surveillance volume that is
of interest. Our aim is to determine, from the measurement, the existence of the target and its state.
The Bernoulli filter provides the optimal Bayes filter for a single dynamic system which randomly
switches on and off [21]. The main feature of the Bernoulli filter is that the underlying state is treated
as a set (which can be empty or singleton) instead of a vector augmented with the binary existence
variable. Since it has no analytic solution, particle filter implementation provides a solution to Bernoulli
recursions under non-linear/non-Gaussian cases, also known as the Bernoulli particle filter (BPF) [22].
The use of Bernoulli filter for TBD systems can be found in host of applications, such as multiple input
multiple output (MIMO) radar [23], acoustic or speech sources [24,25], and similar.

In this paper, we propose a track-before-detect Bernoulli filter (TBD-Ber) for single source detecting
and DOA tracking based on information theoretic criteria. The novelty of this work is twofold. Firstly,
we consider an array of sensors measurement model, by using the measurements directly obtained
from the array elements’ raw data. Since more information is reserved, the performance of detection
and DOA tracking is improved in a noisy environment. Furthermore, it has no need of the probability
of miss-detect and false alarms, which are hard to obtain in passive radar/sonar applications. Secondly,
the variances of the stochastic signal and measurement noise are unknown in practical applications,
known as nuisance parameters. Both the signals and noise variances can be marginalized by defining
an uninformative prior. Since this is improper and unreliable for detection, we use information
theoretic criteria (AIC and MDL) to compensate for the likelihood function, resulting in a penalty term.
Simulation experiments are carried out and showcase the performance in challenging environments
where the SNR is low and the number of snapshots is small.

The paper is organized as follows. Section 2 introduces the measurement model using an array
and the formulation of Bayesian recursion based on Bernoulli RFS. Section 3 presents the derivation
of the update equations and the likelihood function based on information theoretic criteria. Particle
implementation is also presented. The performance metric and discussions are presented in Section 4.
Simulated experiments are organized in Section 5. Finally, conclusions and future works are discussed
in Section 6.
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2. Background

2.1. Measurement Model Using an Array of Sensors

Consider an array composed of M sensors with arbitrary locations and arbitrary directional
characteristics. Assume that a narrowband signal s(k), with a known center frequency ω0, is impinging
on the array from DOA θε(−90, 90], at discrete time k. For simplicity, assume that source and sensors
are located in the same plane and that the source is in the far-field of the array. The received signal
model for an array at time k can be written as

z(k) = a(θ)s(k) + n(k) (1)

where z(k) is a M × 1 received signal vector, n(k) is a M × 1 vector of additive noise, s(k) is a signal for

a single source at the reference point, a(θ) =
[
e−jω0τ1(θ), . . . , e−jω0τM(θ)

]T
is the M × 1 manifold vector,

τm(θ) is the propagation delay between the reference point and mth sensor to a wave front impinging
from direction θ. The superscript T represents transposition.

For a source located at the far-field that moves relatively slowly, the DOA parameter θ is
approximately stable during a small number of snapshots at each time step. At time k, N snapshots
are taken into account and the corresponding DOA is θk. The received data at time k with previous N
snapshots can be written by the following matrix notation:

Zk = [z(kN + 1), . . . , z(kN + N)] (2)

where the received data Zk is a M × N matrix. Then, Equation (1) can be written as:

Zk = a(θk)Sk + Nk (3)

where the source signal data is a 1 × N vector and additive noise data is M × N matrix, separately
written as:

Sk = [s(kN + 1), . . . , s(kN + N)] (4)

Nk = [n(kN + 1), . . . , n(kN + N)] (5)

Assume both the signal Sk and the noise Nk are independent, identically distributed (i.i.d.), with
a zero-mean and complex Gaussian process distributed. The source signal Sk ∼ CN

(
0, σ2

s
)

and
the noise Nk ∼ CN

(
0, σ2

nIM
)

are independent, where IM denotes a M × M identity matrix, σ2
s and

σ2
n are the real variances of signal and noise, respectively. The distribution of the received signal

also follows a zero-mean, complex Gaussian process Zk~CN(0,Rk), where the covariance matrix is
Rk = σ2

s a(θk)aH(θk) + σ2
nIM. The superscript H represents conjugate transposition. Since the true

covariance matrix Rk is not available in practice, the measurement model is the sample-covariance
matrix of received signal, given as:

R̂k =
1
N

ZkZH
k (6)

2.2. Bernoulli RFS Formulation

In practice, the source of interest can enter and exit the surveillance region at random instances.
Therefore, it is important to consider techniques that can jointly detect and track a source. Recently,
Mahler introduces finite set statistics (FISST) [18] that provides the tool for mathematical representation
and a convenient probabilistic model for the representation. The state of a time-varying number of
sources can be simply represented by a finite-set valued random variable, also known as a random
finite set (RFS).

The probability density function (PDF) of an RFS X =
{

x(1), · · · , x(n)
}

can be specified
by a cardinality distribution ρ(n) = P{|X| = n} and a family of symmetric joint distribution



Sensors 2018, 18, 3473 4 of 19

pn

(
x(1), · · · , x(n)

)
, where n ∈ N0 and x(1), · · · , x(n) ∈ ∅ ∪ χ denotes the distribution of its elements

over the state space χ, conditioned on cardinality n. The PDF of a RFS X is defined as

f ({x(1), · · · , x(n)}) = n!ρ(n)pn(x(1), · · · , x(n)) (7)

and its set integral is defined as

∫
f (X)δX = f (∅) +

∞

∑
n=1

1
n!

∫
f ({x(1), · · · , x(n)})dx(1) . . . dx(n) (8)

It is straightforward to show that f (X) integrates to one (as it should, being a PDF).
In this paper, the Bernoulli RFS X is employed to model the state of a source using a probability

q to be a singleton distributed according to the ‘spatial’ PDF s(x) over the state space χ, given as
X = {q, s(x)}. Thus, the probability of being empty is equal to 1 − q. Consider that a source with DOA θ

is moving with velocity
.
θ (in degree/s), the state vector is constructed by x = [θ,

.
θ]. The posterior PDF,

at time step k, can be represented by a Bernoulli RFS with PDF

pk(Xk|z1:k) =


1− qk if Xk = ∅

qk · sk(xk) if Xk = {xk}
0 otherwise

(9)

Considering the dynamics of source presence and absence, the dynamic model fk|k−1(Xk|Xk−1)

is modeled as a Bernoulli Markov process. Conditional upon Xk−1 = ∅, the target can re-enter the
scene with probability pR,k and occupy a kinematic state xk with PDF fR,k(xk), or remain absent from
the scene with probability 1 − pR,k. Conditional upon Xk−1 = {xk−1}, the source can survive to the
next time step with probability pS,k(xk−1) and transition to xk with PDF fk(xk|xk−1), or disappear with
probability 1− pS,k(xk−1). The dynamic model can be expressed as

fk|k−1(Xk|Xk−1) =


1− pR,k if Xk−1 = ∅, Xk = ∅

pR,k · fR,k(xk) if Xk−1 = ∅, Xk = {xk}
1− pS,k(xk−1) if Xk−1 = {x′}, Xk = ∅

pS,k(xk−1) · fk|k−1(xk|xk−1) if Xk−1 = {x′}, Xk = {xk}

(10)

where the fk|k−1(xk|xk−1) is the traditional transition density when the source survives. In this paper,
the constant velocity (CV) model is employed to model the source motion when the source survives
and given as

xk = Fxk−1 + Gvk (11)

where the coefficient matrix F and G are defined by

F =

[
1 ∆T
0 1

]
; G =

[
∆T2/2

∆T

]
(12)

where ∆T represents the time period in seconds between the previous and current time step, and
vk ∼ N

(
0, σ2

v
)

is a zero-mean real Gaussian process used to model the turbulence on the source
velocity. Such a constant velocity model has been widely used for DOA tracking problems [7,8,26].
For more complicated trajectories and faster moving sources, a constant acceleration model is used to
model the source dynamics [27].

It is worthy of mention that the measurements of TBD filters are different from the standard
multi-target tracking algorithms (i.e., TAD filters) which are the standard (points) measurements.
The non-standard (intensity) measurement Zk is a matrix that always exists within a fixed dimension
given by (2). Hence, the likelihood function is defined as
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gk(Zk|Xk) =


gk(Zk|∅) if Xk = ∅
gk(Zk|xk) if Xk = {xk}

0 otherwise
(13)

where gk(Zk|∅) denotes that the received signal is pure noise. Assuming the posterior PDF of the
source state at the time step k− 1 is known, this is given as pk−1(Xk−1|Z1:k−1) . The predict and update
equations based on Bernoulli RFS modeling become the following

• Prediction

pk|k−1(Xk|Z1:k−1) =
∫

fk|k−1(Xk|Xk−1)pk−1(Xk−1|Z1:k−1)δXk−1 (14)

• Update

pk(Xk|Z1:k) =
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫
gk(Zk|X)pk|k−1(X|Z1:k−1)δX

(15)

In the predict equation, fk|k−1(Xk|Xk−1) is the transition density defined by (10), and
pk|k−1(Xk|Z1:k−1) is the prior distribution for the current time step. Consequently, the current distribution
of the state can be obtained recursively by using this Bayesian recursion.

3. Bernoulli Filtering

3.1. Bernoulli Filter

Following from (10), the predicted PDF can also be written in the form of Bernoulli RFS, given as

pk|k−1(Xk|Z1:k−1) =


1− qk|k−1 if X = ∅

qk|k−1 · sk|k−1(xk) if X = {xk}
0 otherwise

(16)

where the predicted probability of the existence and predicted ‘spatial’ PDF are:

qk|k−1 = pR,k · (1− qk−1) + qk−1 · pS,k (17)

sk|k−1(xk) =
(1− qk−1) · pR,k · fR,k(xk) + pS,k · qk−1 ·

∫
pk|k−1(xk|x) · sk−1(x)dx

(1− qk−1) · pR,k + pS,kqk−1
(18)

Following from (15), the posterior probability of the existence and posterior ‘spatial’ PDF of the
posterior PDF pk(Xk|Z1:k) are given as

qk =
qk|k−1 ·

∫
gk(Zk|x)sk|k−1(x)dx(

1− qk|k−1

)
gk(Zk|∅) + qk|k−1

∫
gk(Zk|x)sk|k−1(x)dx

(19)

sk(x) =
gk(Zk|xk) · sk|k−1(xk)∫

gk(Zk|x)sk|k−1(x)dx
(20)

3.2. Likelihood Function Based on Information Theoretic Criteria

Related to the measurement model, the measurement noise process is assumed to be Gaussian.
Conditional upon Xk = {xk}, the likelihood function can be written as

gk(Zk|xk) =
1

det(πRk)
N exp

(
− 1

N

kN+N

∑
i=kN+1

zH(i)R−1
k z(i)

)
(21)
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If we have the priors of the variances of the source signal and noise, the likelihood function
is straightforward. However, these parameters are always unknown in many radar/sonar
applications. In order to marginalize these nuisance parameters, the measurement is split into the
two complementary subspaces [13,28]. The signal subspace is spanned by the columns of matrix a(θ),
and the orthogonal space is referred to as the noise subspace. According to this decomposition, the
measurement vector z is the split into two subspace vectors by

z = G(θ)

[
zs

zn

]
(22)

where zs is the source signal subspace scalar and zn is the (M − 1) × 1 noise subspace vector. Note
that G(θ) = [us(θ) Un(θ)] denotes an M ×M unitary coordinate transformation matrix. According to
these definitions we have

Pa(θ) = a(θ)
(
aH(θ)a(θ)

)−1aH(θ)

= us(θ)uH
s (θ)

(23)

and
P⊥a(θ) = IM − Pa(θ) = Un(θ)UH

n (θ) (24)

where us(θ) is the M × 1 vector and Un(θ) is the M × (M − 1) matrix, denoting orthogonal vectors
that span the source signal and noise subspaces, respectively. Pa(θ) and P⊥a(θ) denote the orthogonal
projection on the source signal subspace and noise subspace, respectively. Since the transformation (22)
is linear, the total likelihood function can be modified using:

gk(Zk|xk) =
gk(Zs,k|xk)·gk(Zn,k|xk)

J(zs ,zn ;z)
= gk(Zs,k

∣∣xk) · gk(Zn,k
∣∣xk)

(25)

where Zs,k = [zs(kN + 1), . . . , zs(kN + N)] and Zn,k = [zn(kN + 1), . . . , zn(kN + N)], J(zs, zn; z) is the
Jacobian of the transformation Equation (25) and is equal to 1. Since source signal and noise are
independent zero mean complex Gaussian processes, their likelihood functions are given as

gk(Zs,k
∣∣xk) = 1

|πRss |N
exp

(
− 1

Rss

kN+N
∑

i=kN+1
zs(i)z∗s (i)

)
= 1
|πRss |N

exp
(
−NR̂ss

Rss

) (26)

and
gk(Zn,k

∣∣xk) = 1
(πσ2IM−1)

N exp
(
− 1

σ2 tr
[
∑kN+N

i=kN+1 zn(i)zH
n (i)

])
= 1

|πσ2IM−1|N
exp

(
−Ntr(R̂nn)

σ2

) (27)

where tr( ) denotes a trace of a matrix, superscript ∗ represents a conjugate, NR̂ss = ∑kN+N
i=kN+1 zs(i)z∗s (i)

and NR̂nn = ∑kN+N
i=kN+1 zn(i)zH

n (i).
Intuitively, the maximum likelihood estimators of the variances of source signal and noise

subspace components are Rss = R̂ss and σ2 = σ̂2 = 1
M−1 tr(R̂nn), respectively. If we do not have

strong prior beliefs about nuisance parameter, noninformative prior proportional to arbitrary constants
is a convenient way to reflect our ignorance for the nuisance parameter. However, such arbitrary
constants are improper and unreliable for detection [29]. The information theoretic criteria have been
introduced by Akaike [30], Schwartz and Rissanen [31] to compensate the arbitrary resulting penalty
function of the criterion. Akaike proposed Akaike information theoretic criteria (AIC), which give the
minimum AIC. Schwartz and Rissanen proposed a minimum description length (MDL), which yields
the minimum code length. The idea of using the information theoretic criteria with Bernoulli Filter
was first presented in [32] for sensor control.
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Given a set of N observations Z = {z(1), · · · , z(N)} and a family of the model defined by PDF
f (Z

∣∣Θ̂ ), the generalized likelihood function can be written in the form of a penalized logarithmic,
given as

AIC = −2 log f (Z
∣∣Θ̂ ) + 2k (28)

MDL = − log f (Z
∣∣Θ̂ ) +

1
2

k log N (29)

where Θ̂ is the maximum likelihood estimate of the nuisance parameter vector Θ =
{

Rss, σ2}, and k
is the number of free adjusted parameters in Θ. Substituting the MDL criterion, the log-likelihood
functions of the source signal and noise components are

gMDL,k(Zs,k
∣∣xk) = −N log

∣∣R̂ss
∣∣− N − 1

2
log N (30)

and
gMDL,k(Zn,k

∣∣xk) = −N log
∣∣R̂nn

∣∣− N(M− 1)− 1
2

log N (31)

Summing up (30) and (31), the total generalized likelihood function based on MDL is given as

gMDL,k(Zk|xk) = −N log (|R̂ss||R̂nn|)− log N −MN (32)

Following from the transformation (22), we have

Pa(θk)
R̂kPa(θk)

= G(θk)

[
R̂ss 0
0 0

]
GH(θk) (33)

where R̂k is the sample-covariance matrix given by (6), and also

P⊥a(θk)
R̂kP⊥a(θk)

= G(θk)

[
0 0
0 σ̂2IM−1

]
GH(θk) (34)

Taking the trace of both sides, we have

σ̂2 =
1

M− 1
tr
(

P⊥a(θk)
R̂k

)
(35)

Summing up (33) and (34), taking the determinant of both sides, we have∣∣R̂ss
∣∣∣∣R̂nn

∣∣ =
∣∣∣Pa(θk)

R̂kPa(θk)
+ P⊥a(θk)

R̂kP⊥a(θk)

∣∣∣
=
∣∣∣Pa(θk)

R̂kPa(θk)
+ P⊥a(θk)

σ̂2
∣∣∣

=
∣∣∣Pa(θk)

R̂kPa(θk)
+ 1

M−1 P⊥a(θk)
tr
(

P⊥a(θk)
R̂k

)∣∣∣
(36)

Substituting into (32) and ignoring the constant MN, the log-likelihood function based on MDL
can thus be written as

gMDL,k(Zk|Xk)

=


−N log

∣∣∣ 1
M tr

(
R̂k
)
IM

∣∣∣− 1
2 log N if Xk = ∅

−N log
∣∣∣Pa(θk)

R̂kPa(θk)
+ 1

M−1 P⊥a(θk)
tr
(

P⊥a(θk)
R̂k

)∣∣∣− log N if Xk = {xk}
0 otherwise

(37)

where the log-likelihood function conditional upon Xk = ∅ can also be obtained using MDL criterion.
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Substituting AIC criterion and separating by a factor of 2, the log-likelihood function based AIC
is straightforward, given as

gAIC,k(Zk|Xk)

=


−N log

∣∣∣ 1
M tr

(
R̂k
)
IM

∣∣∣− 1 if Xk = ∅

−N log
∣∣∣Pa(θk)

R̂kPa(θk)
+ 1

M−1 P⊥a(θk)
tr
(

P⊥a(θk)
R̂k

)∣∣∣− 2 if Xk = {xk}
0 otherwise

(38)

By using the log-likelihood function based on either criterion, the variances of source signal and
noise can consequently be neglected.

3.3. Particle Implementation

The particle filter provides a general framework for the implementation for the Bernoulli
filter [21,22]. At time step k − 1, the posterior PDF can be approximated by the qk − 1 and L number

of weighted particles
{

w(j)
k−1, x(j)

k−1

}J

j=1
, where x(j)

k−1 =

[
θ
(j)
k−1,

.
θ
(j)
k−1

]
is the state vector of particle j and

w(j)
k−1 is its weight. Thus, the posterior PDF is given as:

sk−1(xk−1) ≈
J

∑
j=1

w(j)
k−1δ

x(j)
k−1

(x) (39)

where δa(x) is the Dirac delta function concentrated at a. Then, the predicted probability of existence
qk|k − 1 can be computed using Equation (17). The predicted ‘spatial’ PDF sk|k−1(xk) involves two terms.
Assuming the probability of survival, pS,k(xk−1) = pS is a constant, and the surviving source can be
represented by drawing particles j = 1, . . . , J, given as

x(j)
S,k ∼ fk|k−1(xk|xk−1) (40)

w(j)
S,k|k−1 =

pS · qk−1
J

(41)

Assuming the probability of re-entering, pR,k = pR is a constant, and the re-enter source can be
represented by drawing particles j = 1, . . . , B, given as

x(j)
R,k ∼ fR,k(xk) (42)

w(j)
R,k|k−1 =

pR · (1− qk−1)

B
(43)

Since there is no prior knowledge of the re-enter source, the predicted DOA θ is a uniform
distribution in the state space χ, represents a source that can appear anywhere in the surveillance area.

After the union of two terms, the predicted ‘spatial’ PDF can be approximated by

sk|k−1(xk) ≈
J+B

∑
j=1

w(j)
k|k−1δ

x(j)
k
(x) (44)

Subsequently, the posterior probability of existence qk|k and ‘spatial’ PDF sk|k(xk) can be obtained
using (19) and (20), given as

qk =
qk|k−1 · Ik(

1− qk|k−1

)
gk(Zk|∅) + qk|k−1 Ik

(45)
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and

w(j)
k =

gk

(
Zk

∣∣∣x(j)
k

)
· w(j)

k|k−1

Ik
(46)

where Ik is the integral, given as

Ik =
∫

gk(Zk|x)sk|k−1(x)dx ≈∑J+B
j=1 gk

(
Zk

∣∣∣x(j)
k

)
· w(j)

k|k−1 (47)

where gk(Zk|∅) and gk

(
Zk

∣∣∣x(j)
k

)
are computed by the log-likelihood functions related to Equations (37)

or (38) based on either MDL (MDL-TBD-Ber) or AIC (AIC-TBD-Ber) criterion.
Considering a low SNR and small number of snapshots scenarios, the mainlobe of the distribution

of likelihood function is usually flat and spread. In order to enhance the high-likelihood area,
we exponentially weight the penalised log-likelihood function using a constant value r to enhance
performance, given as

gk

(
Zk

∣∣∣X(j)
)
=

(
gk

(
Zk

∣∣∣X(j)
)
−min

X(j)
gk

(
Zk

∣∣∣X(j)
))r

(48)

for all X(0) = ∅ and X(j) =
{

x(j)
}J+B

j=1
. Thus, the likelihood function becomes more peaky and

amenable to our problem. The choice of weighting factor r can be determined based on simulations in
Section 4. Finally, the particles are resampled J times and weights are equals to 1/J. If the posterior
probability of existence follows qk > 0.5, a source exists, and the corresponding posterior DOA is
equal to

θ̂k =
J

∑
j=1

θ
(j)
k (49)

The pseudo-code of the proposed BPF is presented in Algorithm 1.

Algorithm 1. Bernoulli filter for detection and DOA tracking

Input: qk−1,
{

w(j)
k−1, x(j)

k−1

}J

j=1
,

1: Compute qk|k−1 using (17)

2: Draw surviving source particles: x(j)
S,k ∼ fk|k−1(xk|xk−1) with weights w(j)

S,k|k−1 for j = 1, . . . , J

3: Draw re-entering source particles: x(j)
R,k ∼ fR,k(xk) with weights w(j)

R,k|k−1 for j = 1, . . . , B

4: Union of weighted particles:
{

w(j)
k|k−1, x(j)

k

}J+B

j=1
=
{

w(j)
S,k|k−1, x(j)

S,k

}J

j=1
∪
{

w(j)
R,k|k−1, x(j)

R,k

}B

j=1

5: Compute likelihood function according to (37) or (38) for j = 1, . . . , J + B
6: Normalize and exponential likelihood function using (48)

7: Compute qk and w(j)
k using (45) and (46)

8: Resample J times to obtain J particles

Output: qk,
{

w(j)
k , x(j)

k

}J

j=1

4. Discussions

4.1. Performance Metric

In order to evaluate the detection and DOA tracking performance simultaneously, a metric should
be chosen that not only computes the error between the estimated and true angles, but also can
quantify penalties when a source that is present is missed or a source that does not exist is falsely
detected. In this section, we use the optimal sub-pattern assignment (OSPA) error metric [33] to
evaluate performances. A penalty value is employed in OSPA to transfer the cardinality error into the
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state error and then OSPA is able to present the performance on source number estimation as well as
source DOA estimation.

For joint detection and DOA tracking, the construction of the OSPA distance d(c)OSPA(X, Y) between
two finite sets X and Y with a cardinality of at most one is as follows

d(c)OSPA(∅,∅) = 0 (50)

d(c)OSPA({x},∅) = d(c)OSPA(∅, {y}) = c (51)

d(c)OSPA({x}, {y}) = min(‖x− y‖, c) (52)

The cut-off parameter c determines the relative weighting of the penalties assigned to cardinality
and localization errors and a moderate cut-off value c = 10 will be employed in our paper.

4.2. Computational Complexity

The complexity of TBD-Ber filters are generally similar to that of the standard particle filter which
can be found in [34,35]. Each particle is drawn, updated and resampled, in a similar manner. The main
difference lies in the computation of the likelihood for each particle and the existence probability.
From (37) and (38), the computation of the likelihood requires O

(
(J + B + 1)M2) evaluations of

the particles.
For comparison, we choose the following classical array signal processing methods. Firstly,

the MVDR method is selected due to its popularity and simplicity. According to the MVDR
criterion, a spatial spectrum is generated and a set of detectors is obtained by picking peaks above
a selected threshold. Since it relies on estimating and inverting a covariance matrix, it requires
O
(

M3). Intuitively, the computation load severely increases when the number of elements M increases.
Comparatively, grid searching is avoided for the TBD-Ber filters by drawing state samples randomly
over the state-space.

Secondly, a maximum likelihood (ML) estimator coinciding with AIC or MDL criteria is selected.
More specifically, it requires computing ML estimates for a series of nested models and selecting
the one that best fits the underlying criteria. Usually, an alternating maximization (AM) technique
is employed to transform such multi-dimensional optimization problems into a sequence of much
simpler one-dimensional optimization problems that are iterated until convergence. However, it still
has high computational complexity since it requires ML estimates for all candidate models.

4.3. Weighting Factor r

In our algorithm, the likelihood function is enhanced by exponentially weighting via a factor r in
(26). Figure 1 shows the average OSPA error for TBD-Ber approaches (AIC-TBD-Ber and MDL-TBD-Ber)
versus different weighting factors r = [1, 3, 4, 5, 7, 9, 15] over 100 Monte Carlo runs. The detailed
simulation setup is provided in Section 5. As we can see, both TBD-Ber approaches have better
performances when r is set around 3. It is worth mentioning that slightly larger or smaller than 3 will
not lead to a significant difference.
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Figure 1. Optimal sub-pattern assignment (OSPA) error averaged over time steps (100 Monte Carlo
runs) versus different weighting factors r = [1, 3, 4, 5, 7, 9, 15]. Akaike information criterion
track-before-detect Bernoulli filter (AIC-TBD-Ber); minimum description length track-before-detect
Bernoulli filter (MDL-TBD-Ber); signal-to-noise ratio (SNR).

5. Simulations

In this section, several simulations are organized to investigate the performance of the proposed
algorithm developed in this paper. Considering an unknown and time-varying number of sources, the
performance is demonstrated by a single run and a Monte Carlo simulation in different experimental
environments. Note that the RJMCMC method [10] can only be carried out using a single snapshot
and completely fails in low SNR. In order to make a fair comparison with the proposed method which
tracks the DOAs in time rather than just detect in each time step, we post-process the detections of
MVDR and AIC/MDL based ML estimator using a standard Bernoulli-particle filter [21], resulting in
MVDR-TAD-Ber, AIC-TAD-Ber, and MDL-TAD-Ber.

The array is a standard uniformly linear array with a spacing of d = 1.5 m using M = 6 sensors.
A single narrowband source signal is generated with frequency f = 500 Hz. Noise variance σ2

n = 1 is
assumed to be unknown and fixed. SNR is computed as 10 log

(
σ2

s /σ2
n
)
. The exponentially weighting

factor is r = 5 which has been studied in Section 4.3. The following simulations assume there is no
source present from time step 1 to time step 15, one source appears from time step 16 to time step 40
and disappears from time step 41 to time step 50. The initial DOA of the source is θ = −30◦. The DOA
velocity is around

.
θ = 2◦/s with variance σ2

θ = 0.1.
The parameters for the TBD-Ber approaches are as follows: number of particles J = 1000, B = 200

and pS = 0.95, pR = 0.05. Since we have no prior of the source, the initial DOA is assumed to be
uniformly distributed over θ0 ∼ U (−90, 90], and the initial probability of existence is q0 = 0.5.

The parameters for the TAD-Ber approaches are as follows: number of particles J = 1000, B = 200
and pS = 0.95 pR = 0.05, the probability of detection is pD = 0.6 due to low SNR simulations and the
variance of the measurement noise equal to 1. The birth model is also a uniform distribution from
−90◦ to 90◦.

The MVDR-TAD-Ber detection threshold is a selected factor times the median MVDR power over
DOA. The searching step in the pre-processing module of TAD-Ber approaches is 0.5◦. It is worth
mentioning that it is not easy to determine the clutter rate (number of false detectors) in practical
applications. We simulated several times to find a better choice of clutter rate: MVDR-TAD-Ber equals
0.1, AIC-TAD-Ber equals 1.5, and MDL-TAD-Ber equals 0.8.
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5.1. Single Runs

This section gives the detection and tracking results by one trail comparing with different methods.
Figure 2 presents the DOA tracking results with SNR = −8 dB and snapshots N = 50. Red dots are the
true source localizations and the blue circles are the tracking results. Black ‘x’s are the detections of the
TAD-Ber filters which correspond to the input of a standard BPF. Intuitively, without tracking procedure,
the black ‘x’s are unsatisfactory by using classical array signal processing algorithms. Although the
clutter rate is carefully selected, the performance of TAD-Ber filters are still affected by the false detectors
as a consequence. For the TBD-Ber filters, they not only reduce the false detectors, but also are able
to detect and localize the source correctly when a source exists. It is more clear in Figure 3d,e that the
probability of source existence qk remains low when the source does not exist. After 16th step, qk rapidly
rises close to 1.0 when the source appears and remains close to 1.0 to time step 40.
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Figure 2. Direction-of-arrival (DOA) tracking results with signal to noise ratio (SNR) = −8 dB and
snapshots N = 50. (a) minimum-variance-distortionless-response (MVDR)-TAD-Ber; (b) AIC-track-
after-detect (TAD)-Ber; (c) MDL-TAD-Ber; (d) AIC-TBD-Ber; (e) MDL-TBD-Ber.
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Figures 4 and 5 consider a more severe environment where SNR = −14 dB and snapshots
N = 200. Accompanied with the decrease of SNR, the measurements are seriously distorted by the
noise. Intuitively, the performance of TAD-Ber filters is seriously affected by the noise environment.
MDL-TBD-Ber suffers from underestimation, and hence miss detects many points at the start of the
trajectory. However, AIC-TBD-Ber is able to localize the DOA accurately and consistently lock on the
trajectory when source exist. The better performance of qk can be seen in Figure 5.
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5.2. Monte Carlo Runs

This section presents the average performance via Monte Carlo simulations. Figures 6 and 7
show the detection results for different methods under different environments. Note that the y-axis
denotes the probability of detection among 100 trails. Since there is no source from time step 1 to 15
and time step 41 to 50, the y-axis denotes the probability of false alarm pF. Since the source exists from
time step 16 to 40, the y-axis denotes the probability of correct detection pD. TBD-Ber filters reduce
the probability of false alarm pF compared to TAD-Ber filters. MDL-TBD-Ber performance is affected
by underestimation errors under low SNR and small number of snapshots, and thus results in an
attendant loss in detection sensitivity (pD is very low). AIC-TBD-Ber demonstrates better performance
in all simulated scenarios.
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Figure 4. DOA tracking results with SNR = −14 dB and snapshots 𝑁 = 200. (a) MVDR-TAD-Ber; 

(b) AIC-TAD-Ber; (c) MDL-TAD-Ber; (d) AIC-TBD-Ber; (e) MDL-TBD-Ber. 
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Figure 4. DOA tracking results with SNR = −14 dB and snapshots N = 200. (a) MVDR-TAD-Ber;
(b) AIC-TAD-Ber; (c) MDL-TAD-Ber; (d) AIC-TBD-Ber; (e) MDL-TBD-Ber.



Sensors 2018, 18, 3473 15 of 19

Sensors 2018, 18, x 14 of 19 

 

  
(b) (c) 

  
(d) (e) 

Figure 4. DOA tracking results with SNR = −14 dB and snapshots 𝑁 = 200. (a) MVDR-TAD-Ber; 

(b) AIC-TAD-Ber; (c) MDL-TAD-Ber; (d) AIC-TBD-Ber; (e) MDL-TBD-Ber. 

 
(a) 

  
(b) (c) 

Sensors 2018, 18, x 15 of 19 

 

  
(d) (e) 

Figure 5. Detection results with SNR = −14 dB and snapshots 𝑁 = 200. (a) MVDR-TAD-Ber; (b) 

AIC-TAD-Ber; (c) MDL-TAD-Ber; (d) AIC-TBD-Ber; (e) MDL-TBD-Ber. 

5.2. Monte Carlo Runs 

This section presents the average performance via Monte Carlo simulations. Figures 6 and 7 

show the detection results for different methods under different environments. Note that the y-axis 

denotes the probability of detection among 100 trails. Since there is no source from time step 1 to 15 

and time step 41 to 50, the y-axis denotes the probability of false alarm 𝑝F. Since the source exists 

from time step 16 to 40, the y-axis denotes the probability of correct detection 𝑝D. TBD-Ber filters 

reduce the probability of false alarm 𝑝F compared to TAD-Ber filters. MDL-TBD-Ber performance is 

affected by underestimation errors under low SNR and small number of snapshots, and thus results 

in an attendant loss in detection sensitivity (𝑝D  is very low). AIC-TBD-Ber demonstrates better 

performance in all simulated scenarios. 

 

Figure 6. Detection performance for different methods (100 Monte Carlo runs) when SNR = −8 dB 

and number of snapshots 𝑁 = 50, 100, 200. 

Figure 5. Detection results with SNR = −14 dB and snapshots N = 200. (a) MVDR-TAD-Ber;
(b) AIC-TAD-Ber; (c) MDL-TAD-Ber; (d) AIC-TBD-Ber; (e) MDL-TBD-Ber.

Figure 8 shows the average OSPA error versus different SNR via 100 trails. OSPA errors are
averaged over time steps and 100 trails. It presents the superior performance of TBD-Ber filters
compared to TAD-Ber filters. In the high SNR region, MVDR-TAD-Ber show a comparable performance
when SNR is 8 dB since the detections become so accurate that the accuracy could catch up with
TBD-Ber filters. MDL-TBD-Ber gives better performance when SNR > −10 dB. The performance
of AIC-TBD-Ber is affected by overestimation errors and slightly worse than MDL-TBD-Ber. In the
low SNR region, the performance of MDL-TBD-Ber degrades rapidly due to low SNR and small
snapshots, while AIC-TBD-Ber retains better performance compared to other filters. Simulations verify
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the proposed track-before-detect Bernoulli filter is a more robust detection and tracking of a single
source in comparison if the TAD approaches especially in noisy condition.

The comparison of computational time for 50 time steps over 100 Monte Carlo simulations is
given in Table 1. The simulations are carried out on a computer with an i5 processor and 8 GB of RAM,
and all programs were coded and run in MATLAB.
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Table 1. Computation time of different algorithms per iteration.

Algorithm Mean Duration ± Standard Deviation

MVDR-TAD-Ber 0.078± 0.0002
AIC-TBD-Ber 0.037± 0.0010

MDL-TBD-Ber 0.042± 0.0014
AIC-TAD-Ber 0.102± 0.0023

MDL-TAD-Ber 0.094± 0.0018

6. Conclusions

In this paper, the authors focus on solving the problem of joint detection and DOA tracking
using an array of sensors. For this problem, we propose the use of measurements obtained from array
elements’ raw data. We implemented the Bernoulli filter, which emerged from the RFS framework.
Since more information is reserved, the performance of detection and DOA tracking is improved
by using these TBD measurements. The performances of TBD-Ber and TAD-Ber approaches are
evaluated based on simulations which verify the robustness of the proposed TBD-Ber filters compared
to TAD-Ber filters.

Our future work will focus on more complicated situations, such as propagation path loss,
or a moving source that might move to near-field from the array, etc.
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