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Abstract: Wireless communication is growing quickly and now allows technologies like the Internet
of Things (IoT). It is included in many smart sensors helping to reduce the installation and system
costs. These sensors increase flexibility, simplify deployment and address a new set of applications
that was previously impossible with a wired approach. In this work, a wireless temperature sensor
based on a nematic liquid crystal as variable capacitance is proposed as a proof of concept for potential
wearable applications. Performance analysis of the wireless temperature sensor has been carried out
and a simple equivalent circuit has been proposed. Sensor prototype has been successfully fabricated
and demonstrated as the beginning of new biomedical sensors.

Keywords: nematic liquid crystal; impedance analysis; temperature dependence; equivalent circuit;
capacitive sensor; simulation

1. Introduction

The large variety of commercial temperature sensors shows the importance of measuring this
parameter. Temperature changes are crucial in biological processes [1], manufacturing techniques [2]
or biomedical applications [3], among others. For this reason, commercial sensors should be able to
work in diversified operation conditions, as well as different temperature ranges. This is possible
by using different physical and/or chemical processes and materials as the basis of these sensors.
Thermocouplers use the thermo-electric effect in a metal-metal junction [4], while a resistor temperature
detector (RTD) is based on the temperature-dependent resistivity of a metallic wire [5]. An optical-fibre
temperature sensor [6] uses the spectral emission of an object as a function of its temperature following
the black-body radiation principle. Other examples are thermistors, integrated circuit (IC) temperature
sensors and so forth. These are just some of the long list of commercial devices.

Liquid crystals (LCs) can also be used in the design of temperature sensors. These media are
composed of nanometric elongated organic molecules producing an orientational order [7]. In addition,
LCs present a high thermo-optic coefficient [8,9], making them also the base of high-sensitivity
temperature sensors [10]. Not only the LC material but also geometrical and design parameters of the
device, such as the thickness of the cell or the initial alignment of the LC, are important to determine
the sensitivity of the sensor. For this reason, an electrical model has been developed in the past [11]
helping in the analysis and integration of this kind of sensors. While LC-based temperature sensors
require that the LC is in the anisotropic phase (e.g., nematic) which limits the operation range up the
clearing point [7], there are several formulations of LCs offering a very large range of temperatures,
from 35 ◦C of the well-known 5CB to higher than 170 ◦C in other kind of LCs [12].
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Although commercial temperature sensors with physical connections have a price advantage,
the sensor industry is dynamic and customers are seeking more flexible and reliable new applications
that are impossible with a wired approach. Additionally, the recent advances in the Internet of the
Things (IoT) are demanding novel sensors with new architectures [13]. Temperature sensors are also
strongly demanded in the e-medicine [14]. In both cases, one of the most important characteristics is the
wireless connection of these sensors. This also allows that sensors can work in harsh environments [15]
or may reduce the connection and power requirements in integrated complex systems, like on-board
sensors in airplanes or wearable biomedical applications.

Several works in the bibliography use resonant circuits to perform sensors with wireless
connection [16]. Pressure [17], humidity [18] and even temperature sensors [15,19] implementing
wireless communications have been already developed. However, for the best of our knowledge,
the use of a nematic LC cell as a wireless temperature sensor has not been demonstrated before.
Resonant circuits are one of the most extended ways to point-to-point communications without a
physical connection. A LC cell has a capacitive behaviour, which depends on the temperature, thus an
inductive-capacitive resonant circuit, including the LC cell, is an excellent alternative.

In this work, a wireless temperature sensor using the capacitance of a LC cell as sensing parameter
is proposed. In addition, this sensor has been included in an inductive-capacitive resonant circuit
to ensure wireless connection. The electric response of the complete system has been analysed and
an equivalent circuit model has been proposed. This makes possible to optimize the device taking
conscience of the influence of each parameter. Finally, the detailed theory to describe the behaviour of
the circuit has been validated through simulations and experimental measurements. This prototype is
conceived as the germ of a wearable temperature sensor for biomedical monitoring.

2. Design of the Sensor

The proposed wireless temperature sensor consists of a capacitive sensing element connected to
an inductor forming a resonant circuit. A remote reader antenna sending out an oscillating magnetic
field (Figure 1) electrically excites this. Any temperature change produces a variation of the capacitance
of the sensing element. The reader can detect this variation by monitoring the impedance because
capacitance changes produce resonant frequency shifts [20].
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Figure 1. Diagram of the proposed wireless temperature sensor.

The novelty of this work lies on the capacitive element. This is performed using a liquid crystal
cell. In particular, the chosen liquid crystal is a nematic one (NLC 6290, Merck, Darmstadt, Germany).
This NLC has a positive dielectric anisotropy (∆ε) around 10 at low frequencies and a clearing point of
104 ◦C. NLC is sandwiched in a cell composed of two glass plates with an area A = 1 cm2, both covered
with a conductive film. In this case, the film is made of ITO (indium-tin-oxide). This structure behaves
as a flat parallel-plate capacitor, in which NLC acts as dielectric.

The capacitance of this kind of capacitors can be expressed as:

C =
(
ε0·ε′A

)
/d (1)
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where ε0 is the dielectric permittivity of the vacuum, ε′ is the effective relative permittivity of the
dielectric, A is the effective area of the electrodes and d is the cell gap. Therefore, capacitance strongly
depends on the gap between both plates. In this work, this gap is fixed to 1.5 µm using spacers
located along the perimeter of the plate area, as it is shown in Figure 2. This particular value has
been selected because we experimentally observed, in a previous work [11], that these geometrical
conditions provides a high temperature sensitivity. In that previous work, we also obtained, from
experimental measurements and using a cell with a thickness of 6.3 µm, that the dielectric constant of
the NLC 6290 is (ε′‖, ε′′ ‖) = (13.86, 0.78) and (ε′⊥, ε′′⊥) = (4.05, 0.02) at 10 kHz. These values may differ
from those of the bulk material due to voltage shielding effect from alignment layers, as was described
in Reference [21]. This should be taken into account for further improved designs. In particular, we will
show the differences between these values and those of the present work below.
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Figure 2. (a) Schematic illustration of homeotropic alignment in a nematic liquid crystal cell with no
applied external voltage (VBIAS = 0 V). (b) Picture of an experimental NLC cell used in the wireless
temperature sensor.

In the same way, the alignment of the LC into the cell is homeotropic [22] instead of homogenous
because of its larger sensitivity to temperature changes [10]. This is due to the different temperature
dependence of the two effective dielectric permittivities (ε′⊥, and ε′‖) of the LC in its anisotropic
phase (liquid-crystal phase). A convenient alignment of the molecules inside the manufactured
device provides the dominance of one of them or a combination of both. Because the stronger
temperature dependence of the relative permittivity in the direction parallel to the long molecular axis,
a homeotropic alignment has been used in the device to increase the sensor sensitivity to temperature
changes. Once the material changes to the liquid phase (isotropic phase), the NLC behaves like a
conventional liquid with a single effective dielectric permittivity that remains almost constant with the
temperature. In this work, the operation temperature range has been constrained between 10 ◦C to
80 ◦C, according with a biomedical application. This is a narrow but practical range for a large variety
of other applications and it allows that the maximum temperature is well below the clearing point of
NLC, therefore, the material remains in the anisotropic phase. This range can be extended close to the
clearing point, or even more by choosing other LCs.

Experimental samples of NLC have been characterized to determine their capacitance at different
temperatures. In this sense, the complex impedance has been measured with an impedance analyser
(SOLARTRON 1260) using a sinusoidal voltage signal of 100 mVRMS and a frequency sweeping
in a range from 100 Hz to 10 MHz. Temperature control has been made using a programmable
environmental chamber (DICOMETAL CCK-40/180). In this experiment, temperature takes values
from 10 ◦C to 80 ◦C with steps of 10 ◦C. Results of the impedance, both magnitude and phase,
are displayed in Figure 3. The frequency range at which the impedance phase is −90◦ corresponds
to a pure capacitive behaviour, in which we are interested. In this case, this frequency range spreads
from 1 kHz to 20 kHz, in the considered temperature range. The low limit of the range is restricted by
the appearance of certain anomalies in experimental measurements of the impedance, both modulus
and phase, at low frequencies (hundreds of Hz). These are probably related with the ionic effects of
the NLC [23]. Again, this range can be tuned by using a different LC material. The present work is
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shown as proof-of-concept. For this reason, an operative prototype is characterized, although it is
not optimum.Sensors 2018, 18, x FOR PEER REVIEW  4 of 9 
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Figure 3. Magnitude (a) and phase (b) of the impedance of a nematic liquid crystal cell (NCL) as a
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3. Methods

An interesting way to control and fully understand the behaviour of the proposed sensor is by
means of an electric equivalent circuit (EEC). This provides a simple electric circuit with discrete
elements. This section is devoted to proposing an EEC of both the sensing element and the complete
sensor, including the wireless connection.

3.1. Electric Equivalent Circuit of the Sensing Elements

The equivalent circuit of the LC cell was deduced using the previous complex impedance
measurements. Figure 4 shows that the NLC samples has an EEC consisting on an ideal capacitor
with two resistors: one in series, Rs and one in parallel, Rp. This is the typical representation of any
LC cell [24] in a wide range of frequencies. The capacitive behaviour can be clearly observed from
Figure 3. In particular, this capacitive behaviour is dominant in the frequency range in which the phase
is constant and equal to −90◦ (1 kHz–20 kHz). The resistive effect is intrinsic to any real circuit. In this
case, we identify two main sources: the resistance due to the connecting wires (Rs) and that of the
conductive layers (Rp). Their value can be estimated from experimental measurements.

In the high-frequency range (~MHz), the behaviour of the capacitor (CCL) becomes comparable
to a short-circuit because the small value of the impedance magnitude, as it can be seen in Figure 3a.
Then, the impedance of the device can be considered equal to only Rs. On the other hand, at low
frequencies, the capacitor presents a large impedance. Consequently, it behaves like an open-circuit.
Under this assumption, the electric model can be simplified to the effect of Rs and Rp in series.

Sensors 2018, 18, x FOR PEER REVIEW  4 of 9 

 

102 103 104 105 106 107

Frequency (Hz)

101

102

103

104

105

106

Im
pe

da
nc

e
M

od
ul

us
( Ω

)

Temperature
10 ºC
20 ºC
30 ºC
40 ºC
50 ºC
60 ºC
70 ºC
80 ºC

 
Figure 3. Magnitude (a) and phase (b) of the impedance of a nematic liquid crystal cell (NCL) as a 
function of the frequency of the external voltage signal for several temperatures of the environment. 

3. Methods 

An interesting way to control and fully understand the behaviour of the proposed sensor is by 
means of an electric equivalent circuit (EEC). This provides a simple electric circuit with discrete 
elements. This section is devoted to proposing an EEC of both the sensing element and the complete 
sensor, including the wireless connection.  

3.1. Electric Equivalent Circuit of the Sensing Elements 

The equivalent circuit of the LC cell was deduced using the previous complex impedance 
measurements. Figure 4 shows that the NLC samples has an EEC consisting on an ideal capacitor with 
two resistors: one in series, Rs and one in parallel, Rp. This is the typical representation of any LC cell 
[24] in a wide range of frequencies. The capacitive behaviour can be clearly observed from Figure 3. In 
particular, this capacitive behaviour is dominant in the frequency range in which the phase is 
constant and equal to −90° (1 kHz–20 kHz). The resistive effect is intrinsic to any real circuit. In this 
case, we identify two main sources: the resistance due to the connecting wires (Rs) and that of the 
conductive layers (Rp). Their value can be estimated from experimental measurements.  

In the high-frequency range (~MHz), the behaviour of the capacitor (CCL) becomes comparable 
to a short-circuit because the small value of the impedance magnitude, as it can be seen in Figure 3a. 
Then, the impedance of the device can be considered equal to only Rs. On the other hand, at low 
frequencies, the capacitor presents a large impedance. Consequently, it behaves like an open-circuit. 
Under this assumption, the electric model can be simplified to the effect of Rs and Rp in series. 

 
Figure 4. Electric equivalent circuit of NLC device. 

From the previous results, the effective capacitance of the NLC cell as a function of the 
temperature was deduced and plotted in Figure 5 at a frequency of 10 kHz. This curve shows a 
decreasing monotonous tendency of NLC cell capacitance with a slope of −30 pF/°C. From this 

Figure 4. Electric equivalent circuit of NLC device.



Sensors 2018, 18, 3436 5 of 9

From the previous results, the effective capacitance of the NLC cell as a function of the temperature
was deduced and plotted in Figure 5 at a frequency of 10 kHz. This curve shows a decreasing
monotonous tendency of NLC cell capacitance with a slope of −30 pF/◦C. From this capacitance
and using Equation (1), we can estimate the value of ε′‖~11.3 at room temperature. It can be seen
that the thin thickness of the considered cell strongly influences on these value, as commented in
Reference [21].
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3.2. Electric Equivalent Circuit of the Whole Sensor

As before, a complete analysis of the electric response of the circuit, including also the antenna,
has been performed. Figures 6–8 show the schemes of the evolution from the real to a total electric
equivalent circuit. Figure 6 corresponds to the real circuit. In this one, the sensor’s inductor and the
reader’s antenna has been modelled as a real transformer. In a real transformer, there is a mutual
inductance M simulating the inductive link. M could express the coupling. U1, U2, i1 and i2 are
respectively the primary and secondary voltages and the primary and secondary current. Taking
advantage of the previous model, in the considered frequency range, the NLC sample is equivalent
to a resistor and capacitor in series. This means that the sensor is working in the frequency range in
which the NLC cell has a predominant capacitive behaviour.
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An evolution of the previous circuit is that considering the detail of the transformer. Consequently,
Figure 7 includes the equivalent circuit of the proposed transformer. This is composed of an ideal
transformer and two different inductances. The coupling coefficient, k, gives idea about the linking
capability between the primary and secondary windings (L1 and L2). This is one of the dominating
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factors in the wireless communication determining the readout distance. Additionally, n is the turns
ratio of the ideal transformer. The coupling coefficient k and the inductances of the windings of the
real transformer depend on this value. The values of model parameters (k, n, L) have been obtained by
matching with real circuit parameters (L1, L2 and M). A detailed explanation is included below.
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The primary and the secondary voltages in the real circuit (Figure 6) can be written as a function
of Laplace variable (s) as follows:

U1 = L1·s·i1 + M·s·i2 (2)

U2 = M·s·i1 + L2·s·i2 (3)

These voltages in the circuit with the model of transformer (Figure 7) are:

U1 =
(

1− k2
)
·L·s·i1 + k2·L·s·i0 → U1 = L·s·i1 + k2·L·s·i2/n (4)

U2 = U′1/n =
(

k2/n
)
·L·s·i0 → U2 =

(
k2/n

)
·L·s·i1 + (k/n)2·L·s·i2 (5)

By matching these expressions, the relationships between the effective parameters of the modelled
transformer and the real circuit are

M = k2·L/n (6)

L = L1 (7)

k = M/
√

L1·L2 (8)

Using these relationships, the simplified electric circuit is shown in Figure 8. This simple circuit is
able to reproduce the electric behaviour of the considered sensor, including the wireless connection.
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Using the LC resonator model in Figure 8, the resonant frequency (f ) can be easily obtained
as follows:

f = 1/2·π·
√

k2·L1·CCL/n2 (9)
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4. Results and Discussion

To provide a wireless communication, two-spiral inductors have been fabricated. These antennas
have a radius of 6 cm and 332 turns of a wire with a diameter of 0.1 mm (see inset of Figure 9). These
characteristics produce an effective inductance of 55.888 mH. In this case, both antennas, the emitter
and the receiver, have been considered equal for simplicity. The previous NLC device connected
to the transmission antenna forming a resonant circuit provides a resonant frequency of 10 kHz,
approximately. In particular, Figure 9 shows the RF response of the complete circuit over the full range
of temperatures considered (10 ◦C–80 ◦C). With a nominal capacitance value of 6.45 nF at T = 30 ◦C,
the resonant frequency is 8274 Hz. As the temperature changes, the dielectric properties of the LC
material change, resulting in variation of the electric capacitance and a shift of the resonant frequency.
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Figure 9. Impedance magnitude of the LC circuit as a function of the frequency for several temperatures.
Inset: Prototype of the emitter and receiver antennas.

Figure 10 shows the resonant frequency as a function of the external temperature. This figure
shows a nonlinear response of the sensor with a sensitivity around to 24.8 Hz/◦C and a nonlinearity of
18.35%. In addition, the proposed EEC has been tested. In the experiment both antennas are equal
and close one to the other, with an inductance of L = 55.888 mH. For this reason, both k and n are
equal to 1 in the circuit of Figure 8. By means of the characterization of the NLC, the capacitance at
different temperatures can be obtained. Using these values, the simulated resonant frequency was
calculated and plotted as a function of the temperature in Figure 10. As it can be seen, there is a
relevant agreement between the experiment and the proposed model. This provides a powerful tool to
analyse temperature sensors based on LC cells.
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5. Conclusions

Although there are several alternatives in the state of the art to perform a wireless temperature
sensor, we propose a new one based on the temperature-dependent capacitance of a liquid crystal
cell. The combination of a simple RF antenna and the proposed sensor produces a LC circuit with
a characteristic resonant frequency. As the capacitance of the LC cell changes with the temperature,
the resonant frequency shifts with it. Then, a temperature monitoring can be carried out without
physical connection or power supplies in the sensor circuit. In addition, the electric behaviour
of the complete circuit has been analysed and modelled. In this sense, a simple and accurate
electric equivalent circuit has been proposed. This allows a simple analysis of the sensing system
by using equivalent discrete elements. This equivalent model has been tested by fabricating an
experimental proof-of-concept. The agreement between experimental and simulated results is almost
complete, successfully verifying the proposed model. The low cost of LC cells, the high sensitivity
of LC-based temperature sensor and the correct operation of the wireless connectivity make this
prototype useful in several potential applications like our target of a wearable temperature sensor for
biomedical monitorization.
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