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Abstract: Ultra wideband (UWB) has been a popular technology for indoor positioning due to its
high accuracy. However, in many indoor application scenarios UWB measurements are influenced
by outliers under non-line of sight (NLOS) conditions. To detect and eliminate outlying UWB
observations, we propose a UWB/Inertial Measurement Unit (UWB/IMU) fusion filter based on a
Complementary Kalman Filter to track the errors of position, velocity and direction. By using the least
squares method, the positioning residual of the UWB observation is calculated, the robustness factor
of the observation is determined, and an observation weight is dynamically set. When the robustness
factor does not exceed a pre-defined threshold, the observed value is considered trusted, and adaptive
filtering is used to track the system state, while the abnormity of system state, which might be caused
by IMU data exceptions or unreasonable noise settings, is detected by using Mahalanobis distance
from the observation to the prior distribution. When the robustness factor exceeds the threshold, the
observed value is considered abnormal, and robust filtering is used, whereby the impact of UWB data
exceptions on the positioning results is reduced by exploiting Mahalanobis distance. Experimental
results show that the observation error can be effectively estimated, and the proposed algorithm
can achieve an improved positioning accuracy when affected by outlying system states of different
quantity as well as outlying observations of different proportion.

Keywords: UWB/IMU fusion; adaptively-robust filter; complementary Kalman filter; Mahalanobis
distance

1. Introduction

Indoor positioning technology is important in a variety of applications, ranging from supermarket
shopping to drone positioning and hospital patient tracking [1–3]. The ultra wideband (UWB)
positioning technology has been particularly popular since it can achieve decimeter-level positioning
accuracy under line of sight (LOS) conditions. However, in many practical scenarios such as warehouse
robot positioning and emergency response, UWB signal attenuation and even signal loss occurs due to
obstruction by personnel and cargo and multi-path effects, resulting in a sharp drop in UWB positioning
accuracy [4,5]. The UWB/IMU fusion is an effective way to achieve high-precision positioning under
non-line of sight (NLOS) conditions. However, long time positioning cannot be maintained due to the
susceptibility of IMU data to integral accumulation errors. In addition, when the motion state of the
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carrier changes drastically, such as during bumping and braking, the IMU data is easily disturbed by
abnormal measurements. Therefore, improving positioning accuracy of UWB data in NLOS conditions
and when IMU data is affected by abnormal values is a hot research topic.

Extensive research has been done on UWB/IMU fusion for positioning applications.
Sczyslo et al. [6,7] used loose coupling and tracked the pedestrian movement based on an Extended
Kalman Filter (EKF). Ascher et al. [8] presented a tightly coupled UWB/IMU system for indoor
applications, with IMUs mounted on pedestrians and moving cars. Blanco et al. [9] used a particle
filter algorithm to fuse UWB, IMU and odometer data, achieving improved positioning performance
under NLOS conditions. Xu et al. [10] developed a new approach using least squares support vector
machine and H∞ filter for IMU/wireless sensor network (WSN) integration and achieved a reduction
of positioning error by 14.8% compared with the UWB-only model. Wang et al. [11] designed a
tightly-coupled Global Positioning System (GPS)/UWB/IMU integrated system, achieving high
positioning accuracy in outdoor environments. Benini et al. [12] proposed a positioning method
based on the fusion of vision, IMU and UWB onboard on a flying drone, achieving two-dimensional
positioning accuracy of 10 cm.

In the existing UWB/IMU fusion methods, the effect of outliers is either ignored [13–15], or
it is mitigated by using zero velocity update (ZUPT) or pedestrian dead reckoning (PDR), which
are applicable to pedestrians only and cannot be used for moving platforms such as robots or
forklifts. Other methods use additional sensors such as vision, GPS and odometers to compensate
for the outliers in UWB/IMU data, which makes the positioning system less affordable and more
computationally expensive.

In this paper, we propose a method to minimize the effect of outliers in UWB/IMU fusion. In the
proposed method, the state error is estimated by using a Complementary Kalman Filter (CKF) [16–18],
and the error of position, velocity and direction as well as the bias of accelerometer and gyroscope
are contained in the state parameters. The observations are obtained from the difference between the
UWB ranging and the distance from the beacon to the position obtained by IMU integration at 2 Hz.
Each time the system state is updated, the position, velocity and direction errors contained in it are
directly fed back to the navigation equation to calculate the result of the error correction, and the bias
of the acceleration and the gyroscope are used to correct the original value of the accelerometer and
the gyroscope, respectively. The advantage of this approach is that it can be used for both vehicles
and pedestrian applications. In addition, the state error rather than the state itself is stored by the
algorithm, so that a smaller value is used for approximation when linearizing the system, resulting
in relatively more accurate results. Since the standard CKF algorithm is sensitive to non-Gaussian
noise [19,20], a Robust CKF is proposed to adjust the observation covariance thereby reducing the
influence of non-Gaussian noise on positioning accuracy.

The influence of abnormal observations is also eliminated by using the Robust CKF algorithm,
improving the positioning accuracy. However, only the prior information is used by the Robust
CKF algorithm to judge the reliability of UWB observations which will be invalid when there is a
problem in the system state. If the system state deviates from the true trajectory, the following correct
observations may be identified as outliers, making it difficult to drag back the system state to the
real trajectory by the constraint of the UWB measurements. Due to the bias of the system state, the
abnormal observations are misjudged as correct ones, while the correct observations present rather
small confidence since they deviate from the wrong system state. Compared with the Standard CKF
algorithm, it is more difficult for the Robust CKF algorithm to recover from the wrong state to the
correct one.

In order to suppress the influence of abnormal system state and observations on positioning
accuracy, an Adaptive-Robust filtering method based on Mahalanobis distance and robustness
factor is designed in this paper. The positioning residual is optimized by UWB to determine the
robustness factor and identify the abnormal UWB observations. When the observations are credible,
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the Adaptive-Robust filtering algorithm is executed; when the observations are abnormal, only the
robust part of the Adaptive-Robust filtering algorithm is executed.

The remainder of the paper is organized as follows: in Section 2, the UWB/IMU fusion algorithm
based on CKF is discussed, and the motion model and observation model of the algorithm are
introduced. The principle of the Adaptive-Robust algorithm based on Mahalanobis distance is
presented in Section 3, including a description of the calculation of the robustness factor of the
observation. Several experiments are conducted and the results are analyzed in Section 4. Finally,
conclusions are drawn in Section 5.

2. The UWB/IMU Fusion Filter

An overview of the proposed UWB/IMU fusion method is shown in Figure 1. As illustrated,
the method is based on the CKF algorithm, and the Adaptive-Robust filtering is conducted on the
abnormal system state or abnormal observations according to the robustness factor of the observations.
Then, the state error obtained by filtering is fed back to the Navigation Equations to calculate the
position, velocity and direction. The core of the algorithm is divided into four parts and discussed in
this section.
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2.1. IMU Navigation Equations

Following the method in [21], the state in the CKF algorithm is defined as: X = [δpn δvn ε bgba],
where δpn is the position error, δvn is the velocity error, ε is direction error, bg is the gyroscope bias,
and ba is the acceleration bias. X is a 15-dimensional vector. The first three navigation state vectors are
defined in navigation frame (n-frame), and the last two bias vectors are in body frame (b-frame).

By integrating the gyroscope and acceleration data, the position, velocity and direction data in
n-frame can be obtained. The IMU navigation equation in continuous-time state is defined as:

.
pn

= vn (1)

.
vn

= Cn
b f b + gn (2)

.
C

n
b = Cn

b [ω
b×] (3)

Cn
b represents the transformation from b-frame to n-frame.

.
pn,

.
vn,

.
C

n
b represent the first derivative

of position, velocity and attitude, respectively. gn is the gravity vector under n-frame, f b is the
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acceleration vector under b-frame, and ωb =
[
ωb

x, ωb
y, ωb

z

]
is the angular velocity in b-frame. [ωb×] is

the skew-symmetric matrix of angular velocity, defined as follows:
For the acceleration and the gyroscope observations at moment k, their biases ba and bg, which

are estimated as the state parameters of the CKF algorithm, must be firstly removed as follows:

[ωb×] =

 0 −ωb
z ωb

y
ωb

z 0 −ωb
x

−ωb
y ωb

x 0

 (4)

f̂ b
k = f̃ b

k − ba (5)

ω̂b
k = ω̃b

k − bg (6)

f̃ b
k and ω̃b

k represent the observations of the original acceleration and angular velocity, respectively,
and f̂ b

k and ω̂b
k are the values after the biases are compensated. The acceleration transformation from

moment k to moment (k + 1) is:

f̂ n
k+1 = Cn

b ( f̂ b
k + 0.5(ω̂b

k dt
⊗

f̂ b
k ))− gn (7)

⊗
denotes vector cross product, representing the rotation correction on the acceleration by the

angular velocity change.
The velocity transformation from moment k to moment (k + 1) is:

vn
k+1 = vn

k + f̂ n
k+1dt − δvn

k (8)

δvn
k represents the velocity error at moment k, which is estimated as the state parameter of the

CKF algorithm.
The position transformation from moment k to moment (k + 1) is:

pn
k+1 = pn

k + 0.5(vn
k + vn

k+1)dt − δpn
k (9)

δpn
k represents the position error at moment k, which is estimated as the state parameter of the

CKF algorithm.
The attitude transformation from moment k to moment (k + 1) is:

Cn
b,k+1

′ = (I − [ε×])Cn
b,k (10)

Cn
b,k+1 = Cn

b,k+1
′
(

I +
[
ω̂b

k dt×
])

(11)

Firstly, the correction of direction error is conducted on the attitude change matrix Cn
b,k at moment

k, and Cn
b,k+1

′ is obtained, wherein the direction error ε is cyclically calculated by the CKF algorithm.
Then, the compensated rotation from moment k to moment (k + 1) is conducted on Cn

b,k+1
′, and Cn

b,k+1,
the rotation matrix at moment (k + 1) is obtained. In order to improve the system stability, the value of
Cn

b,k+1 should be periodically normalized, otherwise the matrix Cn
b,k+1 might become singular.

2.2. State Transformation Model

In order to track the five state parameters in the state model of the CKF algorithm, the state
transformation model must be derived. The differential equation of the system dynamic model under
continuous-time is defined as follows: .

X = FX + W (12)
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where F is the state transformation matrix of the system, and W is the system noise. Since the inputs of
the IMU and UWB are discretized data, Equation (12) is discretized as:

Xk+1 = ∅kXk + Wk (13)

∅k = eFkdt (14)

In order to determine Fk, the transformation formula of state X = [δpn δvn ε bg ba] must be
derived, which consists of the following steps.

(1) Equation of acceleration bias and gyroscope bias

The measurement equations for acceleration and gyroscope are as follows:

f̃ b = f b + ba + na (15)

ω̃b = ωb + bg + ng (16)

where f̃ b and ω̃b are the measurements of the acceleration and the angular velocity respectively; f b and
ωb are the true values of the acceleration and the angular velocity respectively. n is the measurement
noise which obeys the Gaussian distribution, and its covariance is defined as Na and Ng, respectively
for acceleration and angular velocity. b is the drift bias, which is a time-dependent first-order Markov
process, defined for acceleration and angular velocity as:

.
ba = −ta

−1ba + µa (17)

.
bg = −tg

−1 bg + µg (18)

µ is the offset noise which obeys the Gaussian distribution. The covariance of the acceleration and
the gyroscope is defined as Ua and Ug, respectively.

(2) Equation of direction error

The direction error ε is caused by the gyroscope bias and is defined as:

.
ε = Cn

b δωb (19)

It indicates the transformation of δωb, the measured gyroscope bias, from b-frame to n-frame. δωb

is caused by the drift bias and noise of the gyroscope.

δωb = bg + ng (20)

(3) Equation of velocity error and position error

The velocity error is caused by the acceleration error. Since the direction error can result in
acceleration error, which will further result in velocity error, the velocity error is defined as:

δ
.
vn

= [ f n×]ε + Cn
b δ f b (21)

where [ f n×]ε represents the influence of the direction error on the acceleration, and δ f b is the
measurement error caused by the drift bias and noise of the acceleration, defined as:

δ f b = ba + na (22)

The position error is defined as:
δ

.
pn

= δvn (23)
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Based on the state transformation equation of the five parameters in X = [δpn δvn ε bg ba], the
state transformation matrix F of the system is derived as:

F =


0
0
0
0
0

I
0
0
0
0

0
[ f n×]

0
0
0

0
0
−Cn

b
diag

(
−tg

−1)
0

0
Cn

b
0
0

diag
(
−ta

−1)

 (24)

where 0 and I represent a 3 × 3 null matrix and a 3 × 3 identity matrix, respectively. The system noise
W is:

W =


0

Cn
b na

−Cn
b ng

µa

µg

 (25)

The covariance matrix Q of the system noise W is:

Q =


Na

0
0
0

0
Ng

0
0

0
0

Ua

0

0
0
0

Ug

 (26)

where N and U represent 3 × 3 diagonal matrices, and the noise transformation matrix is defined as:

G =


0

Cn
b

0
0
0

0
0
−Cn

b
0
0

0
0
0
I
0

0
0
0
0
I

 (27)

We discretize the noise covariance matrix Q to get Qk as follows:

Qk =
1
2
(
∅kGQG′ + GQG′∅k

′) (28)

By now, ∅k and Qk in the CKF algorithm has been defined. Zk,Hk, Rk and other matrices will be
defined in Section 2.3.

2.3. Observation Model

Given the known coordinates of n beacons denoted as Si =
(
Sx,i, Sy,i, Sz,i

)
, i ∈ (1, n), the

observation function is defined as:

h(δ p̂n
k ) =

 ‖S1 −
(
δ p̂n

k + p̂ins,k
)
‖ − ‖S1 − p̂ins,k‖

...
‖Sn −

(
δ p̂n

k + p̂ins,k
)
‖ − ‖Sn − p̂ins,k‖

 (29)

where p̂ins,k = (x̂k, ŷk, ẑk) is the position coordinate calculated by the IMU; δ p̂n
k = (δx̂k, δŷk, δẑk) is

the priori position error calculated by the state transformation equation; ‖.‖ represents the Euclidean
distance. Equation (29) represents the difference between two ranging values: the first ranging value is
from the beacon to the IMU integration position including the position error; the second ranging value
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is from the beacon to the IMU integration position excluding the position error. The Jacobian matrix of
the observation equation is defined as:

Hk =
δ(h(δ p̂n

k ))
δ(δ p̂n

k )

=


Sx,1−(x̂k+δx̂k)

‖S1−(δ p̂n
k+ p̂ins,k)‖

Sy,1−(ŷk+δŷk)

‖S1−(δ p̂n
k+ p̂ins,k)‖

Sz,1−(ẑk+δẑk)

‖S1−(δ p̂n
k+ p̂ins,k)‖

01×12

...
...

...
...

Sx,n−(x̂k+δx̂k)

‖Sn−(δ p̂n
k+ p̂ins,k)‖

Sy,n−(ŷk+δŷk)

‖Sn−(δ p̂n
k+ p̂ins,k)‖

Sz,n−(ẑk+δẑk)

‖Sn−(δ p̂n
k+ p̂ins,k)‖

01×12


(30)

The observation is defined as:

Zk,i = rk,i − ‖Si − p̂ins,k‖ (31)

where rk is the ranging data of UWB. Equation (31) represents the difference between the UWB ranging
and the distance from the beacon to the position obtained by IMU integration.

The observation equation is defined as:

Zk = HkXk + Vk (32)

where Vk is the measurement noise matrix, and Vk ∼ N(0, Rk). Rk is the covariance matrix.

3. Adaptive-Robust Filtering Strategy

The accuracy of UWB sensor observations is affected by ambient temperature, power supply
stability, fixed obstacles, and even people or objects moving in the environment. Therefore, the
confidence of UWB observations must be estimated. A calculation method based on robustness factor
is designed in this paper. The robustness factor is used to adjust the effect of the observation error on
the system. The observation error here refers to the error within a certain range, and the observation
with particularly large error is defined as abnormal value (outliers) which is processed by the method
based on Mahalanobis distance.

3.1. Calculation of Robustness Factor

To simplify the description, assume that three beacons are adopted. In the planar positioning, the
ith UWB beacon is denoted as Beaconi, and the corresponding coordinates are (xi, yi). The UWB tag
used for positioning is denoted as Tag, and its coordinates are (x, y). The true distance between the
Tag and Beaconi is denoted as ri, and its corresponding measurement is denoted as r′i . As shown in
Figure 2, ideally, r′i = ri, the three circles will intersect at a unique point, and its coordinates indicate
the position of the tag under the current observation data. To solve this intersection point, an error
function is defined and the coordinate of Tag is obtained by minimizing the error function. A feasible
error function is:

E(x, y) =
n

∑
i

∣∣∣∣∣
(√(

(x− xi)
2 + (y− yi)

2
)
− r′i

)∣∣∣∣∣ (33)

In Equation (33), |.| represents absolute value function. The estimated coordinates of the tag
(x′, y′), can be obtained by minimizing E(x, y):(

x′, y′
)
= argmin(x,y)E(x, y) (34)

Ideally, the minimum value of E(x, y) is zero. However, in practice, the measurements contain
error. Assume that ri still represents the true distance, and its corresponding error is denoted as ∆ri.
At this time, the measurement of the corresponding Beaconi is r′i = ri + ∆ri.
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Figure 2. Position estimation by trilateration without measurement error.

The partial trilateration diagram is shown in Figure 3, showing the intersection of the circles
corresponding to the measurements of the three Beacons around the Tag. Obviously, when the
measurements contain error, the three circles will intersect each other rather than intersect at one point.
In this case, (x′, y′), the estimated value of the Tag coordinate, is still obtained by minimizing E(x, y).
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The robustness factor of the UWB data is defined as:

Cui =

{
e|∆ri | Cui < Cu_max

Cu_max Cui ≥ Cu_max
(35)

e|∆ri | ∈ [1,+∞], i ∈ [1, n]. The larger |∆ri| is, the less trustworthy the data is. Cu_max has two
functions: firstly, the value of Cui must be limited within a certain range, otherwise it will lead to matrix
singularity when Cui is used to modify Rk; secondly, it is used as the threshold of the observation error,
and the observation error larger than it is treated as outliers and processed by the method based on
the Mahalanobis distance. The value of Cu_max is determined by the UWB ranging error within the
environment. Generally, the ranging error will increase with increasing distance. Following [9], the
UWB ranging error is defined as:

f (d) = 0.4
(

1.10− e−0.17d
)

(36)
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where f (d) represents the ranging error at range d. Figure 4 shows the error distribution when d is
within 20 m. Assume that the ranging error obeys the Gaussian distribution, that is, 97% of the ranging
errors are within f (d)± 3σ, and the value of the ranging error greater than f (d) + 3σ is regarded as an
outlier. Thus, Cu_max is defined as:

Cu_max = e f (d)+3σ (37)
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Figure 5 shows the Cu_max for distance d within 20 m. In the experiment environment described
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Finally, Rk is defined as:

Rk =


σ2

s1Cu1 0 0 0
0 σ2

s2Cu2 0 0
0 0 σ2

s3Cu3 0
0 0 0 σ2

s4Cu4

 (38)

σ2
si represents the covariance of the ranging from the ith UWB beacon to the tag. If the number of

range measurements is less than 3, e.g., due to occlusion, an effective residual value cannot be obtained,
in which case we set Cu to 1.

3.2. Adaptive-Robust Filtering Based on Mahalanobis Distance

In general, the noise of the UWB measurement under LOS (Line of Sight) condition obeys the
Gaussian distribution, and the observation covariance can be well adjusted by the robustness factor
mentioned above, so that the quality of the ranging value can be quantitatively evaluated. However,
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in the NLOS environment, due to the influence of refraction, obstacles and other factors, the noise
model is often difficult to estimate and abnormal observations might appear. To solve this problem,
the Mahalanobis distance is used to determine the observation covariance.

Suppose that the noise of the system observation Zk,i obeys the Gaussian distribution, that is,
the observation Zk,i obeys the Gaussian distribution with the mean of Hk,iXk and the variance of
HXk ,iP−k HT

Xk ,i − Rk,i. The subscript i here is associated with the specific beacon, and P−k is the a priori
covariance of the system. γk,i, the square of the Mahalanobis Distance from Zk,i to Hk,iXk obeys the χ2

distribution [22]:

γk,i = (Zk,i − Hk,iXk)
T
(

Hk,iP−k HT
k,i + Rk,i

)−1
(Zk,i − Hk,iXk) ∼ χ2

1 (39)

where χ2
1 represents a χ2 distribution with the degree of freedom of 1. For the significance level α,

we have:
Pr
(

γk,i < χ2
1,α

)
= 1− α (40)

where Pr() is the probability of a random event, and χ2
1,α is the α-quantile of the χ2 distribution with

the degree of freedom of 1. An observation that does not pass this test is considered outlier and
its covariance is increased to weaken its effect on the posteriori estimation. The new matrix of the
observation covariance can be updated according to the following equation:

R′k,i =


Rki γk,i < χ2

1,α(
γk,i
χ2

1,α

)
× Rk,i γk,i ≥ χ2

1,α
(41)

where γk,i
χ2

1,α
represents the ratio of the Mahalanobis distance to the threshold at the current observation.

In this paper, the significance level α is set to 0.001, and the corresponding value of χ2
1,α is 6.2 according

to the Chi-Square Distribution Table.
On the other hand, if the observations are correct while the system state is abnormal, the method

based on the Mahalanobis distance can also be used to correct the state. An abnormal system state is
caused by two reasons: one is the error introduced to the system model due to sudden variation of the
state or some unknown biases; the other is the error caused by the incorrect knowledge of the statistics
of the process or measurement noises, such as the introduction of unreasonable covariance matrix or
an assumed Gaussian distribution perturbed by other distributions. Once an abnormal system state is
detected, a fading factor is introduced to inflate the covariance matrix of the state prediction so as to
make the filter adaptive. Updating can be conducted according to the following equation:

P−′k =


P−k γk,i < χ2

1,α(
γk,i
χ2

1,α

)
× P−k γk,i ≥ χ2

1,α
(42)

It should be noted that when the correct observation is used to correct the system error, a certain
time delay will be introduced, that is, since the occurrence of the abnormal system state, the state
error cannot be corrected until the next correct observation comes in. This is slightly different from
the abnormal observations that can be corrected in real time. To suppress the effects of the delayed
correction, Rauch-Tung-Striebel (RTS) smoothing can be adopted to reverse-process the data from
the occurrence of the abnormal system state to the next time the correct observation is received. The
algorithm of the proposed Adaptive-Robust CKF is as follows Algorithm 1.



Sensors 2018, 18, 3435 11 of 21

Algorithm 1. ARCKF

Filtering: for k = 1, 2, . . .
1. State prediction
2. For each measurement
3. if (Cui < Cu_max)
4. while γk,i ≥ χ2

1,α

5. Pk =

(
γk,i
χ2

1,α

)
× Pk

6. else
7. while γk,i ≥ χ2

1,α

8. Rk,i =

(
γk,i
χ2

1,α

)
× Rk,i

9. end
10. end
11. State update

Line 1 is the state prediction stage of the standard CKF algorithm. From Line 2 to Line 10, the
robustness factor is calculated for each received observation. The robustness factor, not only adjusts
the UWB ranging error, but also distinguishes whether the positioning error is caused by the abnormal
system state or the abnormal observation, so as to make a targeted adjustment. If the system state
error and the observation error occur at the same time, the latter will be prioritized by the proposed
algorithm and the system state error can only be corrected when a reliable observation is received.
Line 11 is the state update of the standard CKF algorithm.

4. Experiments

For the evaluation of the proposed UWB/IMU fusion positioning method a test site was
established in the underground garage of the University of Melbourne as shown in Figure 6.
Four selected UWB beacons were placed on four brackets, forming a rectangular area of approximately
10 m × 5 m. The DWM1000 of Decawave Company (Burlingame, CA, USA) was adopted as the UWB
tag/beacon, and was attached to a trolley. The X-IMU of the British company X-IO (London, UK)
was selected as the IMU device, and was fixed 5 cm below the UWB tag, as shown in Figure 7. It is
55 × 35 × 18 mm (L × W × H) in size and almost 50 g in weight. Its host of on-board sensors,
algorithms and configurable 8-channel auxiliary port make the x-IMU both a powerful sensor and
controller. Communication is enabled via USB or Bluetooth for wireless applications. Its key technical
specifications are shown in Table 1. The notebook on the trolley received the ranging data from the
IMU and UWB at the same time, marking the same timestamp for the IMU data and UWB data. The
trolley maintained a constant speed during its movement.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 21 

 

10 m × 5 m. The DWM1000 of Decawave Company (Burlingame, CA, USA) was adopted as the UWB 
tag/beacon, and was attached to a trolley. The X-IMU of the British company X-IO (London, UK) was 
selected as the IMU device, and was fixed 5 cm below the UWB tag, as shown in Figure 7. It is  
55 × 35 × 18 mm (L × W × H) in size and almost 50 g in weight. Its host of on-board sensors, algorithms 
and configurable 8-channel auxiliary port make the x-IMU both a powerful sensor and controller. 
Communication is enabled via USB or Bluetooth for wireless applications. Its key technical 
specifications are shown in Table 1. The notebook on the trolley received the ranging data from the 
IMU and UWB at the same time, marking the same timestamp for the IMU data and UWB data. The 
trolley maintained a constant speed during its movement. 

 
Figure 6. Test site in the underground garage. 

 
Figure 7. UWB tag and IMU. 

Table 1. Key specifications of the IMU. 

Instrument Sensitivity Zero-Point Offset Noise Density Max Range 
Accelerometer 0.9~4.3 mg/bit ±50 mg 218 μg/√HZ ±8 g 

Gyroscope 32.8~131 LSB/(°/s) ±20°/s 0.01°/s/√HZ ±2000°/s 
Magnetometer 0.3 μT/LSB N/A N/A ±8 G 

For IMU, the acceleration bias and the gyroscope bias were both dynamically estimated by CKF 
algorithm, and were used to correct observed values in real time. Axis misalignments error and scale 
factor error had already been corrected in the IMU calibration process. The other covariance 
parameters related to noise were set as follows in Table 2: 
  

Figure 6. Test site in the underground garage.



Sensors 2018, 18, 3435 12 of 21

Sensors 2018, 18, x FOR PEER REVIEW  11 of 21 

 

10 m × 5 m. The DWM1000 of Decawave Company (Burlingame, CA, USA) was adopted as the UWB 
tag/beacon, and was attached to a trolley. The X-IMU of the British company X-IO (London, UK) was 
selected as the IMU device, and was fixed 5 cm below the UWB tag, as shown in Figure 7. It is  
55 × 35 × 18 mm (L × W × H) in size and almost 50 g in weight. Its host of on-board sensors, algorithms 
and configurable 8-channel auxiliary port make the x-IMU both a powerful sensor and controller. 
Communication is enabled via USB or Bluetooth for wireless applications. Its key technical 
specifications are shown in Table 1. The notebook on the trolley received the ranging data from the 
IMU and UWB at the same time, marking the same timestamp for the IMU data and UWB data. The 
trolley maintained a constant speed during its movement. 

 
Figure 6. Test site in the underground garage. 

 
Figure 7. UWB tag and IMU. 

Table 1. Key specifications of the IMU. 

Instrument Sensitivity Zero-Point Offset Noise Density Max Range 
Accelerometer 0.9~4.3 mg/bit ±50 mg 218 μg/√HZ ±8 g 

Gyroscope 32.8~131 LSB/(°/s) ±20°/s 0.01°/s/√HZ ±2000°/s 
Magnetometer 0.3 μT/LSB N/A N/A ±8 G 

For IMU, the acceleration bias and the gyroscope bias were both dynamically estimated by CKF 
algorithm, and were used to correct observed values in real time. Axis misalignments error and scale 
factor error had already been corrected in the IMU calibration process. The other covariance 
parameters related to noise were set as follows in Table 2: 
  

Figure 7. UWB tag and IMU.

Table 1. Key specifications of the IMU.

Instrument Sensitivity Zero-Point Offset Noise Density Max Range

Accelerometer 0.9~4.3 mg/bit ±50 mg 218 µg/
√

HZ ±8 g
Gyroscope 32.8~131 LSB/(◦/s) ±20◦/s 0.01◦/s/

√
HZ ±2000◦/s

Magnetometer 0.3 µT/LSB N/A N/A ±8 G

For IMU, the acceleration bias and the gyroscope bias were both dynamically estimated by CKF
algorithm, and were used to correct observed values in real time. Axis misalignments error and
scale factor error had already been corrected in the IMU calibration process. The other covariance
parameters related to noise were set as follows in Table 2.

Table 2. Parameter list of IMU noise.

Name Symbol Value

Accelerometer noise covariance Na (0.1 g)2

Gyroscope noise covariance Ng (0.2 rad/s)2

Accel bias drift noise covariance Ua (0.01 g)2

Gyro bias drift noise covariance Ug (0.02 rad/s)2

Two routes were established for the experiments: Route 1 is a rectangular route with fewer turns
and Route 2 is an 8-shaped route with more turns, as shown in Figure 8. Each route includes two laps,
with both the starting point and the end point located in the lower left corner of the routes. The two red
circles in the figure represent two large stone columns in the underground garage, and the rectangular
red dots indicate the four beacons. The beacon coordinates and the ground truth trajectories were
measured by a laser range finder. In the following, Route 1 is used for adaptivity analysis, and Route 2
is used for robustness analysis.

Sensors 2018, 18, x FOR PEER REVIEW  12 of 21 

 

Table 2. Parameter list of IMU noise. 

Name Symbol Value 
Accelerometer noise covariance ௔ܰ (0.1 g)2 

Gyroscope noise covariance ௚ܰ (0.2 rad/s)2 
Accel bias drift noise covariance ܷ௔ (0.01 g)2 
Gyro bias drift noise covariance ௚ܷ (0.02 rad/s)2 

Two routes were established for the experiments: Route 1 is a rectangular route with fewer turns 
and Route 2 is an 8-shaped route with more turns, as shown in Figure 8. Each route includes two laps, 
with both the starting point and the end point located in the lower left corner of the routes. The two 
red circles in the figure represent two large stone columns in the underground garage, and the 
rectangular red dots indicate the four beacons. The beacon coordinates and the ground truth 
trajectories were measured by a laser range finder. In the following, Route 1 is used for adaptivity 
analysis, and Route 2 is used for robustness analysis. 

  
(a) (b) 

Figure 8. Map of the experiment setup and the reference trajectory. (a) Route 1; (b) Route 2. 

In the experimental analysis, the positioning result of the UWB, the UWB/IMU fusion algorithm 
based on standard CKF, and the proposed Adaptive-Robust CKF algorithm are denoted as UWB, 
CKF, and ARCKF, respectively. 

4.1. Adaptivity Analysis 

To simulate the effect of abnormal observations, the acceleration data recorded along Route 1 
was contaminated with white Gaussian noise with an intensity of 50 dBW at three points, resulting 
in sudden changes of velocity. The comparison of velocity with and without the introduced 
abnormity is shown in Figures 9 and 10, respectively. It can be seen that the sudden change of 
acceleration gives rise to the sudden change of velocity, further resulting in the abnormity of the 
estimated trajectory. 

Figure 8. Map of the experiment setup and the reference trajectory. (a) Route 1; (b) Route 2.



Sensors 2018, 18, 3435 13 of 21

In the experimental analysis, the positioning result of the UWB, the UWB/IMU fusion algorithm
based on standard CKF, and the proposed Adaptive-Robust CKF algorithm are denoted as UWB, CKF,
and ARCKF, respectively.

4.1. Adaptivity Analysis

To simulate the effect of abnormal observations, the acceleration data recorded along Route 1
was contaminated with white Gaussian noise with an intensity of 50 dBW at three points, resulting in
sudden changes of velocity. The comparison of velocity with and without the introduced abnormity is
shown in Figures 9 and 10, respectively. It can be seen that the sudden change of acceleration gives
rise to the sudden change of velocity, further resulting in the abnormity of the estimated trajectory.Sensors 2018, 18, x FOR PEER REVIEW  13 of 21 
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Figure 11 shows the positioning result for Route 1. The red trajectory is the positioning result
using the UWB data without any abnormity, and the blue trajectory is the positioning result of the
UWB/IMU fusion with abnormal acceleration at 3 points.

Figure 11a shows the positioning result of the standard CKF algorithm, in which large deviations
can be seen in the overall trajectory. Figure 11b shows the positioning result of the ARCKF algorithm.
Although the trajectory estimated by the ARCKF contains some fluctuations, it is significantly improved
as compared with the standard CKF.
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Figure 11. Positioning result for Route 1: (a) the standard CKF; (b) the proposed ARCKF.

In Figure 11b, the ARCKF algorithm can identify whether the positioning error is caused by
the outlying system state or the outlying observation. Compared with the outlying observation, the
system error caused by the outlying acceleration is more difficult to correct, because once the outlying
system state occurs, the state error can be corrected only after the next observation is received. Thus,
the accumulation of system errors during this period is inevitable. Furthermore, if the subsequent
observation is still outlier, its suppression capability on system error is very limited, resulting in a
continuously expanding error. This also explains the phenomenon seen in Figure 11b, that is, the
influence of the outlying system state on the positioning result can only be suppressed to a certain
extent, but cannot be completely eliminated.

Figure 12 shows the values of γk for the four beacons computed along Route 1. As it can be seen,
values that are greater than the threshold are present in the γk corresponding to the four beacons,
indicating an abnormal system state. The covariance of the system state is adjusted by γk, and the
influence of the abnormal system state on the positioning result is reduced, so that the positioning
result is closer to the observation result. Additionally, after receiving the correct observations, the
backward RTS smoothing can be applied until the data point which makes the system state abnormal,
smoothing the system cumulative error during this period.
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Figure 13 shows the residual values ∆ri corresponding to the four UWB beacons for Route 1. The
optimized residual values are unevenly distributed, but on the whole they have a relatively small
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range, with a maximum optimized residual of about 0.6 m. There are two reasons for the uneven
distribution of residuals: first, the values at some time points jump when the ranging value is blocked
by the column or interfered by the pedestrian; second, with the increase of the distance, the UWB
ranging error will also increase relatively, and the corresponding residuals will increase accordingly. By
analyzing the proportion of the optimized residuals, the robustness factor is dynamically determined
to obtain the weight of the observation covariance for all beacons.Sensors 2018, 18, x FOR PEER REVIEW  15 of 21 
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Table 4 illustrates the root mean square (RMS) positioning error of the proposed ARCKF 
algorithm compared to the standard CKF when artificial outliers are introduced in the acceleration 
data. The positioning accuracy of the CKF algorithm decreases rapidly with the increase of the number 
of outliers; the ARCKF algorithm is also affected by the outliers, however its error is only about half of 
the error of the CKF algorithm, demonstrating good adaptability to outlying measurements. 
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4.2. Robustness Analysis 

Figure 13. Distributions of residual values for the four Beacons for Route 1.

Figure 14 shows the distribution of robustness factors calculated from residuals ∆ri. Table 3 lists
the number of times the robustness factor reaches the thresholds for each beacon. It can be seen that
most data are below Cu_max, with only one time reaching the threshold at Beacon 1 and 2, respectively,
indicating that the data are basically reliable. The larger the ∆ri, the larger the corresponding robustness
factor is, so that the observation covariance can be dynamically increased to reduce the influence of the
ranging error on the fusion algorithm, improving the accuracy and robustness of the fusion algorithm.
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Table 4 illustrates the root mean square (RMS) positioning error of the proposed ARCKF algorithm
compared to the standard CKF when artificial outliers are introduced in the acceleration data. The
positioning accuracy of the CKF algorithm decreases rapidly with the increase of the number of outliers;
the ARCKF algorithm is also affected by the outliers, however its error is only about half of the error of
the CKF algorithm, demonstrating good adaptability to outlying measurements.

Table 4. RMSE of positioning with artificial outliers (m).

Route 1 RMSE (m)

Number of injecting noise 1 2 3 4
CKF 0.87 1.26 1.56 2.27

ARCKF 0.49 0.58 0.79 1.02

4.2. Robustness Analysis

To evaluate robustness, the UWB data recorded along Route 2 were contaminated with white
Gaussian noise with an intensity of 20 dBW for Beacon 2 and Beacon 4. The noisy data account for 10%
of the total distance measurements. Figure 15 shows the distance measurements for the four UWB
beacons without noise.
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Figure 16 shows the distance measurements for the four UWB beacons with noise. The positioning
results for Route 2 are shown in Figure 17. The red trajectory is the positioning result of the UWB,
where 10% of data from Beacon 2 and Beacon 4 contain white Gaussian noise randomly added. The
blue trajectory is the positioning result of fusing original acceleration data and UWB data. As shown
in Figure 17a, the positioning accuracy of standard CKF is severely disturbed by the observation noise,
and many points with large deviations from the reference trajectory can be seen. This is because the
CKF algorithm sets a fixed covariance for the measurements, which is used to estimate the maximum
posterior distribution of the system state. Thus, abnormal UWB measurements have a serious impact
to the estimation of the posterior distribution.

In comparison, the accuracy of the ARCKF algorithm shown in Figure 17b is much higher. Most of
the deviations caused by abnormal UWB observations are eliminated, presenting a smoother trajectory.
This is because when the residual of an observation is very large, that is, Cui ≥ Cu_max, the covariance
of this observation is amplified by the method based on Mahalanobis distance, thereby reducing its
effect on the system state. When Cui < Cu_max, the observation error is adjusted by the robustness
factor to improve the overall positioning accuracy.
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Figure 19 shows the residual values Δݎ௜ corresponding to the four UWB beacons for Route 2. 
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Figure 17. Positioning result for Route 2: (a) the standard CKF; (b) the proposed ARCKF.

Figure 18 shows the values of γk for the four beacons computed along Route 2. As it can be
seen, for Beacon 2 and Beacon 4, there are multiple values that are much larger than the threshold of
6.2, indicating that there are abnormal observations; whereas the γk for Beacon 1 and Beacon 3 are
all less than 6.2, which is consistent with the experiment as these two beacons did not contain any
abnormal values.
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Figure 19 shows the residual values ∆ri corresponding to the four UWB beacons for Route 2. Since
the data of Beacon 2 and Beacon 4 contain outliers, the optimized residuals are significantly larger
with a maximum optimized residual of about 8 m. Although the data of Beacon 1 and Beacon 3 are not
contaminated with noise, their optimized residuals are correspondingly increased due to the influence
of the data of Beacon 2 and Beacon 4.
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As shown in Figure 20 and Table 5, the robustness factor of the four beacons reaches the threshold
Cu_max multiple times, indicating the presence of abnormal ranging data. The proposed method based
on Mahalanobis distance can dynamically increase the observation covariance, reducing the impact of
these abnormal ranging data on the fusion algorithm.
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Table 5. The number of times the robustness factor reaches the threshold Cu_max.

Route 2 RMSE (m)

Beacon 1 2 3 4
times 18 23 18 22

Table 6 illustrates the root mean square (RMS) positioning error of the proposed ARCKF as
compared to standard CKF when artificial outliers are introduced in the UWB range measurements.
With the increasing percentage of added noise, the positioning accuracy of the CKF algorithm decreases
rapidly, whereas the accuracy of the ARCKF algorithm is relatively stable. When 10% of ranging data is
noisy, the ARCKF algorithm still maintains a positioning accuracy of 0.59 m, demonstrating robustness
to the added noise.
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Table 6. RMSE of positioning with noise added to UWB range measurements.

Route 2 RMSE (m)

Percentage of added noise 3% 5% 7% 10%
CKF 0.67 1.06 1.36 1.67

ARCKF 0.39 0.45 0.52 0.59

The lower bounds of positioning error is estimated by CRLB (Cramer-Rao Lower Bounds). In
the application of Bayesian filter, the method based on iteration is usually adopted to estimate the
posterior CRLB, so as to update the CRLB in each step. The CRLB at Moment k could be defined as:

CRLB = J−1
k (43)

where, Jk represented the Fisher information matrix of system state Xk.According to [23], the Fisher
information matrix Jk+1 could be calculated based on the Fisher information Matrix at Moment k, the
system transform matrix Fk+1 and the measurement matrix Hk+1.

It can be shown that:

Jk = HT
k+1R−1

k+1Hk+1 +
(

Qk + Fk J−1
k FT

k

)−1
(44)

where Qk and Rk+1 are represented the covariance matrix of state transaction function at Moment k
and the covariance matrix of measurements at Moment k + 1. For Route 2, when injected with 10%
UWB ranging noise, the calculated CRLB is shown in Figure 21.Sensors 2018, 18, x FOR PEER REVIEW  19 of 21 
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4.3. Positioning Result of Different Number of Beacons

In order to verify the positioning accuracy of the fusion algorithm under different numbers of
beacons, the positioning trajectories of 2, 3 and 4 beacons were given, as shown in Figure 22a–c,
respectively. Figure 22a shows that the trajectory was seriously distorted. Since the accumulative error
of IMU integral increased rapidly along with the time, the distance measurement value from only 2
beacons at the left diagonal line could not restrain the whole trajectory effectively. Figure 22b shows
that under the restraint of 3 beacons, the positioning accuracy was better than that of 2 beacons, but
there were still some deviations in the trajectory of Y-axis. Figure 22c shows that under the restraint of
4 beacons, the trajectory was roughly the same to the reference trajectory. Theoretically, the more the
beacons, the stronger the restraint of IMU integral results would be. However, in actual application,
the positioning area covered by four beacons could satisfy the requirement of positioning accuracy to
some extent.
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5. Conclusions

In this paper, a UWB/IMU fusion method for indoor positioning based on Adaptive-Robust CKF
is presented. The Mahalanobis distance between the observation and the system state is calculated
in the algorithm to update the covariance of the observation or system state, thereby reducing the
effect of the abnormal observations or system state on the positioning result. In addition, a method for
calculating the robustness factor when the observation error is smaller than a threshold is proposed
in this paper, which guides the algorithm to appropriately apply robust filtering or adaptive-robust
filtering. The experimental results show that the proposed method presents a strong error recovery
capability. When affected by abnormal data, it can achieve a positioning accuracy much higher than
that of the standard CKF algorithm. Future improvements could include the following: the trolley
used in our experiments moved relatively stably. For more complex movement patterns, such as rapid
acceleration and emergency stop, a better motion state model is required to fit the tested movement
pattern. In addition, fusion with other types of data such as geomagnetic data could further improve
the positioning accuracy and deserves further investigation.
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