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Abstract: The Internet of Things (IoT) generates lots of high-dimensional sensor intelligent data.
The processing of high-dimensional data (e.g., data visualization and data classification) is very
difficult, so it requires excellent subspace learning algorithms to learn a latent subspace to preserve
the intrinsic structure of the high-dimensional data, and abandon the least useful information in the
subsequent processing. In this context, many subspace learning algorithms have been presented.
However, in the process of transforming the high-dimensional data into the low-dimensional space,
the huge difference between the sum of inter-class distance and the sum of intra-class distance
for distinct data may cause a bias problem. That means that the impact of intra-class distance is
overwhelmed. To address this problem, we propose a novel algorithm called Hierarchical Discriminant
Analysis (HDA). It minimizes the sum of intra-class distance first, and then maximizes the sum of
inter-class distance. This proposed method balances the bias from the inter-class and that from the
intra-class to achieve better performance. Extensive experiments are conducted on several benchmark
face datasets. The results reveal that HDA obtains better performance than other dimensionality
reduction algorithms.

Keywords: Internet of Things; intelligent data; subspace learning; marginal fisher analysis;
dimensionality reduction; discriminant neighborhood embedding

1. Introduction

In recent years, the high penetration rate of Internet of Things (IoT) in all activities of everyday
life is fostering the belief that for any kind of high-dimensional IoT data there is always a solution
able to successfully deal with it. The proposed solution is the dimensionality reduction algorithm.
It is well known that the high dimensionality of feature vectors is a critical problem in practical
pattern recognition. Naturally, dimensionality reduction technology has been shown to be of great
importance to data preprocessing, such as face recognition [1] and image retrieval [2]. It reduces the
computational complexity through reducing the dimension and improving the performance at the
same time. A general framework [3] for dimensionality reduction defines a general process according
to describing the different purposes of the dimensionality reduction algorithm that was proposed.
Among this general framework, the dimensionality reduction is divided into unsupervised algorithms
and supervised algorithms.

Unsupervised algorithms conduct datasets without labels, including principle component
analysis (PCA) [4], locality preserving projection (LPP) [5], neighborhood preserving embedding
(NPE) [6], etc. Supervised algorithms conduct datasets with labels that aim to present better
performance and low complexity. Linear discriminant analysis (LDA), local discriminant embedding
(LDE) [7], discriminant sparse neighborhood preserving embedding (DSNPE) [8], regularized coplanar
discriminant analysis (RCDA) [9], marginal Fisher analysis (MFA) [3,5,10], discriminant neighborhood
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embedding (DNE) [11], locality-based discriminant neighborhood embedding(LDNE) [12], and double
adjacency graphs-based discriminant neighborhood embedding (DAG-DNE) [13] are typical
supervised algorithms.

The unsupervised algorithm PCA [4] adopts linear transformation to achieve dimensional
reduction commendably. However, PCA shows a noneffective performance in handling manifold
data. Then, LLE [14] is proposed, which firstly uses linear coefficients to represent the local geometry
of a given point, then explores a low-dimensional embedding for reconstruction in the subspace.
However, LLE only defines mappings on the training data which means it is ill-defined in defining
mappings on the testing data. To remedy this problem, NPE [6], orthogonal neighborhood preserving
projection (ONPP) [15] and LPP are put on the table. They figure out the problem of LLE while
preserving the original structure. NPE and ONPP solve the generalized eigenvalue problem with
different constraint conditions. LPP [5] reserves the local structure by preferring an embedding
algorithm. This algorithm extends to new points easily. However, as an unsupervised dimensionality
reduction algorithm, LPP only shows good performance in datasets without labels.

To address the problem that unsupervised algorithms cannot work well in classification
tasks, many supervised algorithms are proposed, such as linear discriminant analysis (LDA) [16],
which maximizes the inter-class scatter, minimizes the intra-class scatter simultaneously and finds
appropriate project directions for classification tasks. However, LDA still has some limitations.
For instance, LDA only considers the global Euclidean structure. Marginal Fisher analysis [10] is
proposed as an improved algorithm to surmount this problem. MFA constructs the penalty graph and
the intrinsic graph to hold the local structure thereby solving the limitation problem of LDA. Both LDA
and MFA can discover the projection directions that simultaneously maximize the inter-class scatter
and minimize the intra-class scatter. DAG-DNE compensates for the small inter-class scatter in the
subspace of DNE [11]. DAG-DNE constructs a homogeneous neighbor graph and heterogeneous
neighbor graph to maintain the original structure perfectly. It maximizes the margin between the
inter-class scatter and intra-class scatter so that points in the same class are compact and points in
the different classes become separable in the subspace at the same time. However, DAG-DNE and
all above dimensionality reduction algorithms, optimize intra-class and inter-class simultaneously.
The inter-class scatter is larger than the intra-class scatter, thus it will aim at inter-class but ignore the
intra-class. Thus, the huge difference between the sum of inter-class distance and the sum of intra-class
distance for distinct datasets may cause a bias problem, which means the impact of intra-class distance
is tiny in optimization tasks. Naturally, the separation optimization idea comes to mind.

In this paper, we proposed a novel supervised subspace learning algorithm to further increase the
performance, called hierarchical discriminant analysis. More concretely, we construct two adjacency
graphs by distinguishing homogeneous and heterogeneous neighbors in HDA. Then HDA optimizes
inter-class distance and intra-class distance independently. We minimize the intra-class distance first,
then maximize the inter-class distance. Because of the hierarchical work, the optimization of intra-class
distance and inter-class distance are detached. The process of optimization does not have to be biased
to the inter-class scatter. Both of them get the best results. Thus, the influence between classes can be
eliminated and we can find a good projection matrix.

The rest of this paper is structured as follows. In Section 2 we introduce the background on MFA,
LDNE and DAG-DNE.I. Section 3, we dedicate to introducing HDA and revealing its connections with
MFA, LDNE and DAG-DNE. In Section 4, several simulation experiments applying our algorithm are
presented to verify its effectiveness. This is followed by the conclusions in Section 5.

2. Backgroud

In this section we emphatically introduce three classical algorithms, MFA [10], LDNE [12] and
DAG-DNE [13], which are related to our research point.
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2.1. Marginal Fisher Analysis

MFA proposes a new criteria. It can conquer the limitation of LDA by characterizing the intra-class
compactness and inter-class separability. MFA algorithm follows the steps below:

(1) Construct the adjacency matrices. There are intrinsic graph characterizing the intra-class
compactness and penalty graph characterizing the inter-class separability. For each sample xi,
the intra-class matrix Sw is defined as:

Sw
ij =

{
1, xi ∈ NK1(xj) or xj ∈ NK1(xi)

0, otherwise
(1)

where NK1(xi) represents the index set of the K1 nearest neighbors of node xi in the same class.

For each sample xi, the inter-class matrix Sb is defined as:

Sb
ij =

{
1, xi ∈ PK2(xj) or xj ∈ PK2(xi)

0, otherwise
(2)

where PK2(xi) expresses the set of the K2 nearest neighbors of point xi that are in the different classes.
(2) Marginal Fisher Analysis Criterion. Find the optimal projection direction by minimizing the

intra-class compactness and maximizing the inter-class separability at the same time.

min
P

tr
(
PTX (Dw−Sw)XTP

)
tr
(
PTX

(
Db−Sb

)
XTP

) (3)

tr(·) is the trace of a matrix, Dw
ii = ∑j Sw

ij , Db
ii = ∑j Sb

ij, and P is composed of the optimal
r projection vectors, X is the set of samples.

2.2. Locality-Based Discriminant Neighborhood Embedding

LDNE uses a weight function instead of 1 or 0 to adopt the adjacency graph. It maximizes the
difference between the inter-class scatter and the intra-class scatter to capture the top projection matrix.
The LDNE algorithm is done by the following steps:

(1) Use K-nearest neighbors to construct the adjacency. The adjacency weight matrix S is declared as:

Sij =


− exp(

−||xi−xj ||2
β ), xi ∈ Sw

K (xj) or xj ∈ Sw
K (xi)

+ exp(
−||xi−xj ||2

β ), xi ∈ Sb
K(xj) or xj ∈ Sb

K(xi)

0, otherwise

(4)

where Sω(xi) denotes the intra-class neighbors of each sample point xi, Sb(xi) denotes the
inter-class neighbors of xi, and the parameter β is a regulator.

(2) Feature mapping: Optimize the following objective function:{
max

P
tr{PTXHXTP}

s.t. PTP = I
(5)

where H = D− S, and D is a diagonal matrix with Dii = ∑j Sij. Function (5) can be considered
as a generalized eigen-decomposition problem:

XHXTP = λP (6)

The optimal projection P consists of r eigenvectors corresponding to the r largest eigenvalues.
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2.3. Double Adjacency Graphs-Based Discriminant Neighborhood Embedding

DAG-DNE is a linear manifold learning algorithm based on DNE, which constructs homogeneous
and heterogeneous neighbor adjacency graphs. This algorithm follows the steps below:

(1) Construct two adjacency graphs. Let Aw and Ab be the intra-class and inter-class adjacency
matrices. xi is the sample point. The intra-class adjacency matrix Aw is defined as

Aw
ij =

{
1, xi ∈ Sw

K (xj) or xj ∈ Sw
K (xi)

0, otherwise
(7)

The inter-class adjacency matrix Ab is defined as

Ab
ij =

{
1, xi ∈ Sb

K(xj) or xj ∈ Sb
K(xi)

0, otherwise
(8)

(2) Optimize the following objective function by finding a projection P.{
max

P
tr{PTXGXTP}

s.t. PTP = I
(9)

where G = Db −Ab −Dw + Aw, and Db and Dw are diagonal matrices with Db
ii = ∑j Ab

ij and
Dw

ii = ∑j Aw
ij . The projection matrix P can be solved through the generalized eigenvalue problem

as follows:
XGXTP = λP (10)

The optimal projection P consists of r eigenvectors corresponding to the r largest eigenvalues.

From optimizing the equation of the related work we can see that the optimization work is
achieved through maximizing the distance of inter-class minus the distance of the intra-class or
maximizing the distance inter-class divided by the intra-class. Thus, the inter-class and intra-class are
simultaneously optimized. Our hierarchical discriminant analysis separates the inter-class and the
intra-class. This method avoids the interference between the inter-class and the intra-class. The detail
of our algorithm will be presented in the next part.

3. Hierarchical Discriminant Analysis

This section discusses a novel dimensional reduction algorithm called hierarchical discriminant
analysis. In MFA and DAG-DNE, two adjacency matrices for a node’s homogenous neighbors and
heterogeneous neighbors are optimized simultaneously. The huge difference between the sum of
inter-class distance and the sum of intra-class distance for distinct data may cause a bias problem,
which is too weak for intra-class scatter to play a fundamental role. HDA considers the adjacency
graphs respectively, which optimizes the sum of distances between each node and its neighbors of the
same class firstly, and then optimizes the sum of distances between the nodes of different classes.

3.1. HDA

Suppose {(xi, yi)}N
i=1 is the set of training points, where N is the number of training points,

xi ∈ RD, yi ∈ {1, 2, . . . , c}, yi is the class label of xi, d is the dimensionality of points, and c is classes’
number. For these unclassified training sets, we come up with a potential manifold subspace. We use
matrix transformation to project the original high-dimensional data into a low-dimensional space.
By doing so, homogeneous samples are compacted and the heterogeneous samples are scattered in
low-dimensional data. Consequently, the computational complexity and classification performance
are improved.
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Similar to DAG-DNE [13], HDA constructs two adjacency matrices respectively, the intra-class
and inter-class adjacency matrices. Given a sample xi, we suppose the set of its k homogenous and
heterogeneous neighbors are π+

k (xi) and π−k (xi). We construct the intra-class adjacency matrix Fw

and the inter-class adjacency matrix Fb.

Fw
ij =

{
+1, xi ∈ π+

k
(
xj
)

or xj ∈ π+
k (xi)

0 otherwise
(11)

Fb
ij =

{
+1, xi ∈ π−k

(
xj
)

or xj ∈ π−k (xi)

0 otherwise
(12)

And the local intra-class scatter is defined as:

Φ (P1) = ∑
xi∈π+

k (xj)
∑

xj∈π+
k (xi)

∥∥∥P1
Txi − P1

Txj

∥∥∥2
Fw

ij

= ∑
xi∈π+

k (xj)
∑

xj∈π+
k (xi)

{P1
T(xi − xj)(xi − xj)

TP1}Fw
ij

= ∑
xi∈π+

k (xj)
∑

xj∈π+
k (xi)

{P1
Txixi

TP1 − P1
Txixj

TP1 − P1
Txjxi

TP1 + P1
Txjxj

TP1}

= 2 ∑
xi∈π+

k (xj)

{P1
Txixi

TP1}Dw
ii − 2 ∑

xi∈π+
k (xj)

∑
xj∈π+

k (xi)

{P1
Txixj

TP1}Fw
ij

= 2{{P1
T( ∑

xi∈π+
k (xj)

xiDw
ii xi

T)P1} − {P1
T( ∑

xi∈π+
k (xj)

∑
xj∈π+

k (xi)

xiFw
ij xj

T)P1}}

= 2P1
TX (Dw − Fw)XTP1

(13)

where Dw is a diagonal matrix and its entries are column sum of Fw, i.e., Dw
ii = ∑j Fw

ij . First, we minimize
the intra-class scatter, which means: {

min Φ (P1)

s.t.P1
TP1 = I

(14)

The objective function can be rewritten by some algebraic steps:

Φ (P1) = 2tr
{

P1
TX (Dw − Fw)XTP1

}
= 2tr

{
P1

TXSXTP1

} (15)

where S =Dw−Fw. Therefore, the form of trace optimization function can be rewritten as{
min

P1
tr{P1

TXSXTP1}

s.t.P1
TP1 = I

(16)

While the local inter-class scatter is defined as:

Ψ (P) = ∑
xi∈π−k (xj)

∑
xj∈π−k (xi)

∥∥∥PTxi − PTxj

∥∥∥2

= 2PTX
(

Db − Fb
)

XTP

(17)

where Db is a diagonal matrix and its entries are the column sum of Fb, i.e., Db
ii = ∑j Fb

ij.
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Now, we maximize the inter-class scatter:{
max Ψ (P)
s.t.PTP = I

(18)

It is worth noting that the training set has changed since first minimization, and we rewrite this
function as:

Ψ (P) = 2tr
{

PTXnew

(
Db − Fb

)
XT

newP
}

= 2tr
{

PTXnewMXT
newP

} (19)

where Xnew = XP1.
So that the optimization problem as shown below:{

max
P

tr
{

PTXnewMXT
newP

}
s.t.PTP = I

(20)

Since S and M are real symmetric matrices, the optimization scatters (17) and (20) are same as the
eigen-decomposition problem of the matrices XSXT and XMXT . The two projection matrices P are
composed of the egienvetors that corresponding to the egienvalues of XSXT and XMXT . The optimal
solutions P1 and P have the form P = [p1, . . . , pr].

Therefore, the image of any point xi can be represented as vi = PTxi. The details about HDA are
given below (Algorithm 1).

Algorithm 1 Hierarchical Discriminant Analysis

Input: A training set {(xi, yi)}N
i=1, and the dimensionality of discriminant subspace r.

Output: Projection matrix P.

1: Compute the intra-class adjacency graph Fw

Fw
ij =

{
+1, xi ∈ π+

k
(
xj
)

or xj ∈ π+
k (xi)0 otherwise

and the inter-class adjacency matrix Fb.

Fb
ij =

{
+1, xi ∈ π−k

(
xj
)

or xj ∈ π−k (xi)0 otherwise

2: Minimize the intra-class distance by decomposing the matrix XSXT , where S =Dw−Fw.
Let egienvalues be λi, i = 1, . . . , d and their corresponding egienvectors be λ1 ≤ λ2 ≤ · · · ≤ λd.

3: Choose the first r smallest egienvalues so that return P1 = [p1, . . . , pr].

4: Compute the new input Xnew = XP1.

5: Maximize the inter-class distance by decomposing the matrix XMXT , where S =Db−Fb.
Let egienvalues be λi, i = 1, . . . , d and their corresponding egienvectors be λ1 ≥ λ2 ≥ · · · ≥ λd.

6: Choose the first r largest egienvalues so that return P = [p1, . . . , pr].

3.2. Comparisons with MFA, LDNE and DAG-DNE

HDA, LDNE and DAG-DNE are all dimensionality reduction algorithms. In this section, we will
probe into the relationships between HDA and the other three algorithms.

3.2.1. HDA vs. MFA

These two algorithms both build an intrinsic(intra-class) graph and penalty(inter-class) graph to
keep the original structure of the given data. MFA designs two graphs to find the projection matrix
which characterizes the intra-class closely and inter-class separately. However, MFA chooses the
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dimensionality of the discriminant subspace by experience, which causes some important information
to be lost. HDA maximizes the distance of the inter-class and minimizes the distance of the intra-class
hierarchically. It uses this method to find the projection matrix to estimate the dimension of the
discriminant subspace.

3.2.2. HDA vs. LDNE

Both HDA and LDNE are supervised subspace learning algorithms and build two adjacency
graphs to keep the original structure of the given data. LDNE assigns different weights to intra-class
neighbors and inter-class neighbors of a given point. It follows the ‘locality’ idea of LPP, and produces
balanced links through the set up connection between each point and its heterogeneous neighbors.
By analyzing the experimental result, we get an effectiveness result on the subspace.

3.2.3. HDA vs. DAG-DNE

DAG-DNE algorithm maintains balanced links by constructing two adjacency graphs.
Through this method, samples in the same class are compact and samples in different classes are
separable in the discriminant subspace. However, DAG-DNE optimizes the heterogeneous neighbors
and homogeneous neighbors simultaneously. By doing this, the distance of inter-class scatter is
not wide enough in the subspace. The HDA algorithm also constructs two graphs, and separately
minimizes the within-class distance first, then maximizes the inter-class distance. Because of the
hierarchical work, the optimization of intra-class distance and inter-class distance are detached.
The process of optimization is not biased to the inter-class scatter. As a consequence, the intra-class is
compact while the inter-class is separated in the subspace.

4. Experiments

We illustrate a set of experiments to confirm the performance of HDA on image classification in
this part. Several benchmark datasets are used, i.e., Yale, Olivetti Research Lab (ORL) and UMIST.
The samples from three datasets are shown in Figures 1–3. We compare HDA with other representative
dimensional reduction algorithms, including LPP, MFA and DAG-DNE.W. Then we choose the nearest
neighbor parameter K for those algorithms when constructing the adjacency graphs. We exhibited the
results in the form of mean recognition rate.

Figure 1. Samples from the Yale face dataset.
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Figure 2. Samples from the ORL face dataset.

Figure 3. Samples from the UMIST face dataset.

4.1. Yale Dataset

The Yale datset is constructed by the Yale Center for Computational Vision and Control. It contains
165 gray scale images of 15 individuals. These images display variations in lighting condition and
facial expression (normal, happy, sad, sleepy, surprised and wink). Each image is 32 × 32 dimension.

We choose 60% from the dataset as training samples, and the rest of the samples for testing.
The nearest neighbor parameter K can be taken as 1, 3 and 5. Figure 4 shows the average accuracy rate
of K = 1 after running the four algorithms 10 times. Figure 5 with K = 3 and Figure 6 with K = 5 also
obtain similar results like Figure 4 after being run 10 times. From these three figures, we can see that
HDA has a higher accuracy rate than other three algorithms and we can gain the best performance.
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Figure 4. Accuracy vs. Number of Projection Vectors on the Yale dataset under K = 1.
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Figure 5. Accuracy vs. Number of Projection Vectors on the Yale dataset under K = 3.
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Figure 6. Accuracy vs. Number of Projection Vectors on the Yale dataset under K = 5.

4.2. UMIST Dataset

The UMIST dataset consists of 564 images of 20 individuals. The dataset takes race, sex and
appearance into account. Each individual takes several poses from profile to frontal views. The original
size of each image is 112 × 92 pixels. In our experiments, the whole dataset is resized to 32 × 32 pixels.

Similar to applying the Yale dataset, we use UMIST dataset to test the recognition rate of the
proposed algorithm and the other three algorithms. We select 20% from the UMIST dataset as training
samples and use others as testing samples. Figures 7–9 show the average accuracy rate of different K
after running the four algorithms 10 times. As shown in these figures, our algorithm reaches the top
and presents the best recognition accuracy compare to the other three algorithms.
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Figure 7. Accuracy vs. Number of Projection Vectors on the UMIST dataset under K = 1.
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Figure 8. Accuracy vs. Number of Projection Vectors on the UMIST dataset under K = 3.
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Figure 9. Accuracy vs. Number of Projection Vectors on the UMIST dataset under K = 5.
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4.3. ORL Dataset

The Olivetti Research Lab dataset is composed of 40 distinct objects. Each of them contains 10 different
images. The ORL dataset contains images in different conditions, such us light conditions,
facial expressions, etc. All of the images were taken under a dark homogenous background in
an upright and frontal position. The size of each image is 112 × 92 pixels, with 256 gray levels per
pixel. Similarly, we resize those image to 32 × 32.

Similarly, we choose the nearest neighbor parameter K be 1, 3 and 5. Take 60% training samples
from the original dataset, and the other 40% as testing samples. As shown in Figures 10–12,
HDA presents the best accuracy rate compared to the other algorithms after 10 runs and HDA
is almost the best one under a different number of projection vectors.
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Figure 10. Accuracy vs. Number of Projection Vectors on the Olivetti Research Lab (ORL) dataset
under K = 1.
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Figure 11. Accuracy vs. Number of Projection Vectors on the ORL dataset under K = 3.
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Figure 12. Accuracy vs. Number of Projection Vectors on the ORL dataset under K = 5.

Table 1 shows the comparison of average recognition accuracy for different algorithms and
different K values. HDA has higher recognition accuracy than the other three algorithms. It improves
the classification performance through a dimensional reduction method.

Table 1. Performance comparison of the algorithms on three datasets with different numbers of K.

Algorithm/Result
Yale ORL UMIST

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

8-10 LDNE 0.7733 0.7600 0.7067 0.9208 0.9146 0.9208 0.7369 0.7480 0.7775
MFA 0.7600 0.7378 0.7244 0.8937 0.9042 0.9229 0.8034 0.7701 0.7627

DAG-DNE 0.8000 0.7911 0.7378 0.9500 0.9437 0.9521 0.8869 0.8699 0.8655
HDA 0.8444 0.8400 0.8178 0.9542 0.9708 0.9583 0.8973 0.9106 0.9061

5. Conclusions

The collection of a huge amount of high-dimensional sensor intelligent data from the Internet of
Things (IoT) causes an information overload problem, so the importance of this research is even more
prominent. In this paper, a novel algorithm named hierarchical discriminant analysis is proposed,
which aims to find a good latent subspace and preserves the intrinsic structure of the high-dimensional
intelligent data. Our proposed algorithm constructs two adjacency graphs to preserve the local
structure and deal with optimization problems separately. The experimental results show that HDA
is more effective than MFA, LDNE and DAG-DNE on three real image datasets. In other words,
hierarchical discriminant analysis can generate a good discriminant subspace. However, HDA is
still a linear algorithm, so future work will focus on extending it to be nonlinear to improve the
classification performance in cloud computing environments [17–19].
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