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Abstract: Many modulated signals exhibit a cyclostationarity property, which can be exploited in
direction-of-arrival (DOA) estimation to effectively eliminate interference and noise. In this paper,
our aim is to integrate the cyclostationarity with the spatial domain and enable the algorithm to
estimate more sources than sensors. However, DOA estimation with a sparse array is performed
in the coarray domain and the holes within the coarray limit the usage of the complete coarray
information. In order to use the complete coarray information to increase the degrees-of-freedom
(DOFs), sparsity-aware-based methods and the difference coarray interpolation methods have been
proposed. In this paper, the coarray interpolation technique is further explored with cyclostationary
signals. Besides the difference coarray model and its corresponding Toeplitz completion formulation,
we build up a sum coarray model and formulate a Hankel completion problem. In order to further
improve the performance of the structured matrix completion, we define the spatial spectrum
sampling operations and the derivative (conjugate) correlation subspaces, which can be exploited to
construct orthogonal constraints for the autocorrelation vectors in the coarray interpolation problem.
Prior knowledge of the source interval can also be incorporated into the problem. Simulation results
demonstrate that the additional constraints contribute to a remarkable performance improvement.

Keywords: coarray interpolation; cyclostationarity; (conjugate) correlation subspaces; coprime array;
orthogonal constraint; Toeplitz completion; Hankel completion

1. Introduction

Direction-of-arrival (DOA) estimation has been a popular research field in array processing
for several decades. This problem aims at retrieving the directional information of sources from
the array of received signals, and plays an important role in a variety of practical scenarios [1–3].
Conventional DOA estimation methods such as multiple signal classification (MUSIC) [4] and
estimation of signal parameters via rotational invariance technique (ESPRIT) [5] basically rely on
the spatial properties of the signals impinging on the antenna array, while ignoring the temporal
and frequency properties. However, many modulated signals used in communication, radar, and
sonar systems exhibit a cyclostationarity property. These cyclostationary signals are not periodic with
respect to time, but their statistical characteristics vary periodically with time. This property can be
exploited to effectively eliminate interference and background noise [6–9]. The cyclostationarity-based
DOA estimation methods were started by Gardner in [6,7], and the proposed cyclic MUSIC and cyclic
ESPRIT algorithms used a cyclic correlation matrix (CCM) in place of the zero-lag covariance matrix.
An extended cyclic MUSIC was proposed in [10]; besides the CCM, an additional conjugate cyclic
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correlation matrix (CCCM) was also utilized to obtain an increase in degree-of-freedom from O(N)

to O(2N − 1). All the mentioned methods are proposed for uniform linear arrays (ULA), and fail to
estimate the DOAs when the number of sources is larger than the DOFs of the ULA. Therefore, the
main task in this paper is to integrate the cyclostationarity property with the spatial domain—which
means that the second-order statistics incorporated with the cyclic frequency and the time lags are
utilized, instead of the conventional covariance that only contains spatial information—and to improve
the performance of DOA estimation under the circumstance that the sources are much more numerous
than the sensors.

In order to estimate the DOAs of as many signals as possible under a given number of sensors,
many sparse linear array structures have been proposed. The traditional one is the minimum
redundancy array (MRA), which can generate consecutive virtual apertures by utilizing the coarray
information [11,12]. However, the sensor locations are determined by exhaustive searching and no
general expressions are available for the locations of the physical sensors in an MRA. This leads to an
intensive investigation of the sparse linear arrays, such as the (super) nested arrays [13,14] and the
(generalized) coprime arrays [15,16], which have a more concise and flexible geometry for sparse array
configuration. These sparse arrays, consisting of two uniform linear arrays with different interelement
spacing, open a new approach to array processing. They can resolve O(N2) sources from merely N
sensors. One distinctive advantage of the coprime array is that a negligible mutual coupling effect
is introduced because the interelement spacing of the coprime array is several times longer than the
half-wavelength, which makes it more attractive than the nested array. Intrinsically, these sparse arrays
all intend to generate consecutive virtual apertures by exploiting the difference coarray. The arrays
with a filled coarray are called fully augmentable arrays and when there are holes in their coarray, as in
the case of coprime arrays, they are called partially augmentable arrays [17]. Three kinds of algorithms
have been developed for these two types of augmentable arrays.

The first kind used compressive sensing (CS)-inspired l1 norm minimization techniques [18–20]
by assuming a sparse representation of the incoming DOAs on a prespecified discrete spatial grid.
However, the CS-based methods suffer from basis mismatch effects since the true DOAs are unlikely
to lie on the prespecified grid, no matter how fine it is chosen to be [21]. The second techniques are
the spatial smoothing (SS) algorithms, which can construct a positive definite matrix in the difference
coarray domain that contains noise subspace information. Once the spatially smoothed matrix is
obtained as in [15,22] or by the direct coarray augmented method [23], the MUSIC method [22] and the
ESPRIT method [24] algorithms can be used to perform the DOA estimation. An additional version
of the smoothed matrix is proposed in [25], which is optimized through low-rank denoising to avoid
the estimation of source numbers. The main limitation of these SS algorithms is that they can only
utilize the consecutive virtual lags of the coarray; when there are holes as in the partially augmentable
arrays, the lags out of the consecutive part of the coarray are ignored. In order to utilize the full
coarray information, the Hermitian Toeplitz matrix completion-based array interpolation techniques
were proposed [17,26]. Benefitting from the development of matrix completion theory [27,28],
the simple nuclear norm minimization problem can be formulated to recover a low-rank matrix
with small set of entries. Thus, the holes in the coarray can be filled via matrix completion.
A few papers have taken into consideration the perturbation effect caused by the finite number of
snapshots—an uncertainty is modelled into the matrix completion problem when assigning the
existing values to their corresponding locations [29,30]. However, the error bound is set blindly and an
improper setting may deteriorate the performance of the matrix completion. Moreover, [29] solved
two sequential convex optimization problems, which was time-consuming and can be replaced by
a modern structured matrix completion algorithm [31], while [30] utilized the redundant sample
covariance to optimize the target low-rank matrix and did not make full use of the difference coarray
information, leaving more entries in the matrix to be filled.

In this paper, we explore the coarray interpolation techniques with cyclostationary signals.
Firstly, we use the cyclic correlation matrix and the conjugate cyclic correlation matrix as the



Sensors 2018, 18, 219 3 of 16

second-order statistics and build up the difference coarray and the sum coarray models. Then,
the spatial spectrum sampling operations and the derivative (conjugate) correlation subspaces
are defined, and we demonstrate that the vectorization of the CCM and the CCCM lie in the
correlation subspace and the conjugate correlation subspace, respectively. With the relationship
between the vectorization of the sampling correlation matrices (the CCM and the CCCM) and their
corresponding autocorrelation vectors in the coarray domains, we construct orthogonal constraints
for the autocorrelation vectors. Moreover, prior knowledge of the source interval can be incorporated
into the orthogonal constraints. Finally, we formulate a Toeplitz completion problem for the difference
coarray model and a Hankel completion problem for the sum coarray model, and integrate the
orthogonal constraints into the structured matrix completion problems. Numerical results demonstrate
the superior performance of the proposed algorithms.

The main contribution of this paper can be summarized as follows:

• We investigate the array interpolation techniques with the cyclostationary signals, building up the
difference coarray model and the sum coarray model by utilizing the structure of the CCM and
CCCM in a coprime array, and then formulate the array interpolation as a Toeplitz completion
problem and a Hankel completion problem.

• We define the spatial spectrum sampling operations, and prove that they can extract the entire
power spectrum associated with the CCM and the CCCM. After vectorization of the spatial
sampling operations, we show that the vectorization of the sampling correlation matrices lies in
the subspaces, which are called the (conjugate) correlation subspaces.

• We build orthogonal constraints for the autocorrelation vectors in the coarray domains according
to the (conjugate) correlation subspaces. Prior knowledge of the source interval can be
incorporated into the orthogonal constraints, which can help to improve the performance of
the structured matrix completion remarkably.

The rest of this paper is organized as follows. In Section 2, we introduce the cyclostationary
signal model and build up the difference coarray and sum coarray models based on the coprime array.
In Section 3, the spatial spectrum operations and the derivative (conjugate) correlation subspaces
are defined; then, the orthogonal constraints—which can incorporate the prior knowledge of the
source interval—are constructed and integrated into the structured matrix completion problems.
Section 4 presents the simulation results for comparison, and conclusions are drawn in Section 5.

Notation: Throughout this paper, scalars, vectors, matrices, and sets are denoted by lowercase
letters, lowercase letters in boldface, uppercase letters in boldface, and letters in blackboard,
respectively. The superscripts ∗, T, and H denote the complex conjugate, the transpose, and the
complex conjugate transpose. The Moore–Penrose pseudoinverse is denoted with superscript †. vec(·)
and E(·) represent the vectorization and expectation operations. The symbol ⊗ denotes the Kronecker
product. |A| denotes the cardinality of a set A. [A]i,j indicates the (i, j)th entry of A. The triangle
bracket 〈xS〉n represents the value corresponding to the support n ∈ S.

2. Cyclostationary Signal Model and the Coprime Coarray Model

In this section, we firstly introduce the cyclostationary signal model received by the coprime
linear array, and then construct the coarray models based on the structure of the CCM and the CCCM.

2.1. Cyclostationary Signal Model

For vector s(t) formed by D cyclostationary signals, the CCM Rα
ss(τ) and the CCCM Rα

ss∗(τ) are
defined as

Rα
ss(τ) =

〈
E[s(t + τ/2)sH(t− τ/2)]e−j2παt

〉
t

(1)

Rα
ss∗(τ) =

〈
E[s(t + τ/2)sT(t− τ/2)]e−j2παt

〉
t

(2)
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where 〈·〉t denotes infinite-time averaging with respect to t. Then, s(t)k (k = 1, 2, . . . D) is said to be
cyclostationary if [Rα

ss(τ)]k,k or [Rα
ss∗(τ)]k,k does not equal zero at frequency α for some lag parameter τ.

The value of the cyclic frequency α is related to the carrier frequency and the baud rate of the signal—it
is usually integer multiples of the carrier frequency or the baud rate. Some cyclostationary signals may
contain both nonzero cyclic correlation and nonzero conjugate cyclic correlation.

Consider D narrowband sources, exhibiting second-order cyclostationarity with a common cycle α,
impinging on the antenna array, which contains P physical sensors with the pth sensor located at zpd,
where zp is an integer and d = λ/2 (λ being the carrier wavelength of the sources). The signal received
on the pth sensor is

xp(t) =
D

∑
k=1

sk(t)ej2π( fc/c)zpd sin θk + np(t) (3)

where sk(t) is the kth zero-mean desired signal from direction θk and np(t) is the zero-mean additive
Gaussian white noise at the pth sensor. There are two assumptions that must hold: (a) the impinging
sources are mutually cyclically uncorrelated, which means Rα

ss(τ) and Rα
ss∗(τ) are diagonal matrices;

and (b) the sources are uncorrelated with the noise. Under assumptions (a) and (b), the cyclic correlation
function and the conjugate cyclic correlation function between the pth and the qth sensor are given by

Rα
xpxq(τ) =

〈
E[xp(t + τ/2)x∗q (t− τ/2)]e−j2παt

〉
t
=

D

∑
k=1

Rα
sksk

(τ)ap(θk)a∗q(θk) (4)

Rα
xpx∗q (τ) =

〈
E[xp(t + τ/2)xq(t− τ/2)]e−j2παt

〉
t
=

D

∑
k=1

Rα
sks∗k

(τ)ap(θk)aq(θk) (5)

where α(θk) = [a1(θk), a2(θk), . . . aP(θk)] is the steering vector, whose pth element is defined as
ap(θk) = ej2π( fc/c)zpd sin(θk). Therefore, the P× P CCM and the CCCM can be constructed with the
elements for all indices p and q in Equations (4) and (5) as follows:

Rα
xx(τ) =

D

∑
k=1

Rα
sksk

(τ)α(θk)α
H(θk), (6)

Rα
xx∗(τ) =

D

∑
k=1

Rα
sks∗k

(τ)α(θk)α
T(θk). (7)

In practice, only a finite number of snapshots are available. Let x̃(t) denote the snapshots;
the sampling correlation matrices, namely, the CCM and the CCCM, are obtained by

R̃α
xx(τ) =

1
N

N

∑
n=1

x̃(tn + τ/2)x̃H(tn − τ/2)e−j2παt, (8)

R̃α
xx∗(τ) =

1
N

N

∑
n=1

x̃(tn + τ/2)x̃T(tn − τ/2)e−j2παt. (9)

2.2. Coprime Coarray Model

In order to generate the augmented array, we firstly define the difference coarray and the sum
coarray as the following:

Definition 1. Let S =
{

zp, 1 ≤ p ≤ P
}

denote the set of sensor positions of a sparse array (normalized with
respect to d); then, the difference coarray Cd and the sum coarray Cs are defined respectively as

Cd =
{

zp − zq
∣∣zp, zq ∈ S

}
, (10)
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Cs =
{

zp + zq
∣∣zp, zq ∈ S

}
. (11)

Then, a steering vector associated with the coarray can be formed using
[αCd(s)(θk)]m = ej2π( fc/c)zmd sin(θk), zm ∈ Cd(s). The autocorrelation vectors at lag set Cd(s)

can be represented by rCd(s) =
D
∑

k=1
Rα

sks(∗)k

(τ)αCd(s)(θk), and exhibit a linear relationship with the

vectorization of the CCM and the CCCM given by

JdrCd = vec(Rα
xx(τ)), (12)

JsrCs = vec(Rα
xx∗(τ)). (13)

Jd and Js are the transform matrices, which are defined as in [32]:

Definition 2. The binary matrices Jd(s) are of dimension
∣∣∣Cd(s)

∣∣∣ × ∣∣S2
∣∣. The columns of Jd(s) satisfy〈

Jd(s)

〉
:,m

= vec(I(m)) for m ∈ Cd(s) , where I(m) ∈ {0, 1}|S|×|S| is an indicator function given by

I(m)n1,n2 =


1, if n1− n2 = m for difference coarray
1, if n1 + n2 = m for sum coarray
0, otherwise.

(14)

Let rCd(s) be the signal received at a virtual sensor array with sensor positions given by Cd(s).
If a consecutive virtual aperture can be formed by using the difference coarray or the sum coarray
definition, we can resort to spatial smoothing techniques [15,23] to recover their ranks, due to the fact
that rCd(s) is a rank one vector. Otherwise, a partially augmentable array will be formed, and, in order
to utilize the full coarray information, we intend to fill the holes within the augmented uniform linear
arrays (ULA) Vd(s), defined as follows:

Definition 3. LetVd(s) be the smallest ULA containingCd(s) such thatVd(s) = {m|min(Cd(s)) ≤ m ≤ max(Cd(s))}.

To give an intuitive impression of these configurations of the coprime array, we give an example
by assuming a coprime array with physical sensor positions at S = {0, 3, 5, 6, 9, 10, 12, 15, 20, 25}.
The difference coarray and sum coarray are shown in Figure 1 with red circles and blue diamonds,
respectively. Holes within the coarrays are marked with crosses.
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3. (Conjugate) Correlation Subspaces and the Proposed Coarray Interpolation Algorithms

The coarray interpolation techniques are proposed on the basis of matrix completion theory,
and the Hermitian Toeplitz structure revealed in [23] is enforced on the matrix under estimation for
regulation. In order to further improve the performance of the coarray interpolation, we explore the
additional structure of the autocorrelation vectors, proposing definitions of spatial spectrum sampling
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operations and the derivative (conjugate) correlation subspaces, and then integrate the derivative
orthogonal constraints into the coarray interpolation algorithms.

3.1. (Conjugate) Correlation Subspaces

Inspired by the compressive covariance sensing [33] that the array covariance matrix has a sparse
representation in a dictionary constructed from the steering vectors, and the method for constructing
orthogonal constraints by utilizing the spatial feature [34–36], we consider constructing a subspace in
which the correlation matrix lies so that an orthogonal constraint can be constructed for the correlation
matrix. Firstly, we give the definitions of the spatial spectrum sampling operations.

Definition 4. For a linear array of P physical sensors, and D cyclostationary signals impinging on the antenna
array from directions θk , the spatial spectrum sampling operations for the CCM SS(Rα

xx(τ)) and the CCCM
CSS(Rα

xx∗(τ)) are defined respectively as follows:

SS(Rα
xx(τ)) =

∫
θi

α(θi)α
H(θi)

D

∑
k=1

Rα
sksk

(τ)α(θk)α
H(θk)α(θi)α

H(θi)dθi/P2, (15)

CSS(Rα
xx∗(τ)) =

∫
θi

α(θi)α
H(θi)

D

∑
k=1

Rα
sksk

(τ)α(θk)α
T(θk)α

∗(θi)α
T(θi)dθi/P2. (16)

We observe that for an ULA with P physical sensors, if P is large enough, the P-points averaged
inner product of the two steering vectors αH(θi)α(θk)/P (θi, θk ∈ [−π/2, π/2]) can be approximated
by a Kronecker delta function, i.e.,

αH(θi)α(θk)/P ≈ δi,k =

{
1, i = k
0, i 6= k

. (17)

Proof. See Appendix A

When the nonuniform linear array is a coprime array, the inner product αH(θi)α(θk)/P with
θi = θk is much larger than the other values when θi 6= θk, and we can still approximate it with a
Kronecker delta function. Thus, Equations (15) and (16) can be written as

SS(Rα
xx(τ)) =

D

∑
k=1

Rα
sksk

(τ)
∫

θi

α(θi)δi,kδk,iα
H(θi)dθi = Rα

xx(τ), (18)

CSS(Rα
xx∗(τ)) =

D

∑
k=1

Rα
sks∗k

(τ)
∫

θi

α(θi)δi,kδ∗k,iα
T(θi)dθi = Rα

xx∗(τ). (19)

It can be seen from (18) and (19) that the integral parts will be nonzero only when i = k, and the
final results of (18) and (19) will equal to Rα

xx(τ) and Rα
xx∗(τ), respectively, which means that the spatial

spectrum sampling operations can extract the entire power spectrum associated with the CCM and
the CCCM. With the observations of (18) and (19), we then vectorize (15) and (16), and utilize the
following property [37]:

vec(ABC) = (CT ⊗A)vec(B). (20)

We thus obtain the following equations:

vec(Rα
xx(τ)) = 1/P2

∫
θi

[α∗(θi)α
T(θi)]⊗ [α(θi)α

H(θi)]dθivec(Rα
xx(τ)), (21)
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vec(Rα
xx∗(τ)) = 1/P2

∫
θi

[α(θi)α
H(θi)]⊗ [α(θi)α

H(θi)]dθivec(Rα
xx∗(τ)). (22)

It can be seen from (21) and (22) that the vectors (vec(Rα
xx(τ)), vec(Rα

xx∗(τ))) are equal to
themselves after being multiplied by the matrix (not an identical matrix) constructed by the integral
with respect to θi. We can draw a conclusion that the vectorization of the correlation matrices is in the
column subspaces of these matrices. We refer to these matrices as the correlation subspace matrix MCS
and the conjugate correlation subspace matrix MCCS with the following definitions:

Definition 5. The correlation subspace matrix MCS and the conjugate correlation subspace matrix MCCS are
P2 × P2 matrices with

MCS =
∫

θi

[α∗(θi)α
T(θi)]⊗ [α(θi)α

H(θi)]dθi, (23)

MCCS =
∫

θi

[α(θi)α
H(θi)]⊗ [α(θi)α

H(θi)]dθi. (24)

The integral interval can be [−π/2, π/2] or can be set according to prior knowledge about the
sources. The vectorization of the CCM and the CCCM is in the column subspaces of MCS and MCCS,
respectively. Since MCS and MCCS are low-rank matrices, we can simplify the representations of
the subspaces by using the eigenvectors associated with the positive eigenvalues, denoted by QCS
and QCCS. These subspaces are dependent on the array configuration and prior knowledge about
the sources. The dimensions of these subspaces are determined by the positive numbers of the
eigenvalues of the (conjugate) correlation matrices. The eigenvalues of the (conjugate) correlation
matrices are shown in Figure 2. We take the coprime array with the configuration illustrated in Figure 1
as an example.
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As shown in Figure 2, when we have no prior knowledge about the sources and the integral
interval is set to [−π/2, π/2], the numbers of the positive eigenvalues of the correlation subspace
matrix and the conjugate correlation subspace matrix are 43 and 35, respectively, which coincide with
|Cd| and |Cs|. When a shorter source interval is available, we can use less eigenvectors to construct the
subspaces, but the exact dimension can only be determined by numerical tests.

After the subspaces are specified, we can construct constraints for the sampling correlation
matrices according to the fact that the vectorization of the (conjugate) correlation matrices is orthogonal
to the complementary subspaces of QCS and QCCS, so we have

(I−QCSQ†
CS)vec(Rα

xx(τ)) = 0, (25)

(I−QCCSQ†
CCS)vec(Rα

xx∗(τ)) = 0, (26)
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where I − QCSQ†
CS and I − QCCSQ†

CCS are the projection matrices on the orthogonal subspaces.
According to (25) and (26), the denoised correlation matrices can be obtained by projecting the
sampling correlation matrices to their individual subspaces such that the estimation error caused by
the finite length of the snapshots can be eliminated. Here, we emphasis the construction of constraints
for the structured matrix completion problems rather than the operations for sampling correlation
matrix denoising. Thus, we transform these constraints into the coarray domains according to the
relationship between the autocorrelation vectors and the vectorization of the (conjugate) correlation
matrices shown in (12) and (13), obtaining

(I−QCSQ†
CS)JdrCd = 0, (27)

(I−QCCSQ†
CCS)JsrCs = 0. (28)

3.2. Coarray Interpolation Algorithms

For the coprime array, the increased DOFs are achieved by utilizing the coarray information.
When there are holes in the coarray, the lags out of the consecutive part of the coarray cannot be
involved in implementing the DOA estimation. In order to reduce the estimation error and increase
the DOFs, coarray interpolation algorithms are proposed which can utilize all the coarray information.
It is based on the results of the direct coarray augmentation [23] method, which can obtain the same
noise subspace as the spatial smoothing method [15,22] by rearranging the autocorrelation vector to
form a Hermitian Toeplitz matrix. As to the holes in the coarray Cd(s), they can be filled based on the
property that the matrix to be recovered has low-rank terms, related to the signal components. It is the
typical form of matrix completion, which can recover a low-rank matrix via solving a nuclear norm
minimization problem.

In the context of coarray interpolation for cyclostationary signals, we can formulate a Toeplitz
completion problem for the difference coarray model according to the fact that the CCM has a Toeplitz
structure, as shown in (6). We do not require it to be a Hermitian matrix due to the finite snapshot
effect with the cyclostationary signals. The autocorrelation vector on the uniform grid Vd is denoted
by rVd, which can be considered the antidiagonal elements of the Toeplitz matrix (denoted by T (rVd)).
The sampling autocorrelation vector on the nonuniform grid Cd is denoted by r̃Cd, which is obtained
from J†

dvec(R̃α
xx(τ)) according to Equation (12). In order to integrate the orthogonal constraint (27) into

the Toeplitz completion problem, we start with the autocorrelation vector denoising problem:

min ‖〈rVd〉Cd − r̃Cd‖2

s.t. (I−QCSQ†
CS)Jd〈rVd〉Cd = 0.

(29)

Then, we relax the minimization term with 〈rVd〉Cd − r̃Cd
= ε, where ε is the error term.

Equation (29) is equivalent to

min ‖ε‖2

s.t. 〈rVd〉Cd − r̃Cd = ε

(I−QCSQ†
CS)Jd〈rVd〉Cd = 0.

(30)

Finally, we incorporate (30) into the nuclear norm minimization problem, which results in

min ‖T (rVd)‖∗ + τ‖ε‖2

s.t. 〈rVd〉Cd − r̃Cd = ε

(I−QCSQ†
CS)Jd〈rVd〉Cd = 0

(31)

where ‖·‖∗ is the nuclear norm, and τ‖ε‖2 can be considered the error-penalizing term with penalty
parameter τ. The aim of (31) is to recover a low-rank Toeplitz matrix with the values 〈rVd〉Cd, which is
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close to r̃Cd and is orthogonal to a subspace constructed using QCS and Jd. The main drawback of other
coarray interpolation algorithms is that the error bound is set blindly when assigning r̃Cd to 〈rVd〉Cd;
the error may vary a lot according to the environment, and improper setting may deteriorate the matrix
completion performance. Our algorithm avoids this problem by estimating the error automatically, and
the existence of the error also allows 〈rVd〉Cd to satisfy the orthogonal constraint, which is constructed
by exploring the additional structure of 〈rVd〉Cd and enables our algorithm to obtain a more accurate
estimate. The penalty parameter τ can tradeoff the influence of the low-rank term and the error term,
which can be set empirically according to the environment: When the signal to noise ratio (SNR) is
high and the number of snapshots is large enough, we can set a large τ to penalize the error term;
otherwise, a small value is set for τ in pursuit of a solution with a smaller nuclear norm. However, τ is
set in a short interval in the simulations as it is not very sensitive to the environment.

Now we turn to the sum coarray model for interpolation, the CCCM of the ULA possesses a
Hankel structure according the expression in (7), which means that each ascending skew-diagonal from
left to right is constant. The autocorrelation vector on the uniform gird Vs is denoted by rVs, which
can be considered as the diagonal elements of the Hankel matrix (denoted asH(rVs)). The sampling
autocorrelation vector on the nonuniform grid Cs is obtained by r̃Cs = J†

s vec(R̃α
xx∗(τ)) according to

Equation (13). The sum coarray interpolation problem is similar to the difference coarray interpolation
case, and can be formulated as

min ‖H(rVs)‖∗ + τ‖ε‖2

s.t. 〈rVs〉Cs − r̃Cs = ε

(I−QCCSQ†
CCS)Js〈rVs〉Cs = 0.

(32)

The minimization functions and the constraints in problems (31) and (32) are convex, so we resort
to the cvx toolbox [38] to solve the constrained minimization problems. After T (rVd) or H(rVs) is
obtained, the singular value decomposition (SVD) is then implemented to obtain the noise subspace,
and subspace-based methods can be used to estimate the DOAs.

Remarks:

1. Even though the recovered matrices T (rVd) and H(rVs) can be considered as the correlation
matrices of a ULA with N = (|V| + 1)/2 sensors, the DOFs cannot achieve N − 1 due to
the fact that the filled lags do not provide additional information on the sources. The actual
freedom is governed by the nonuniform grid Cd(s). For the coprime array illustrated in Figure 1,
the numbers of the nonuniform grids for the difference coarray and the sum coarray are
|Cd| = 43 and |Cs| = 35, respectively. Thus, for a modulated signal that has both the
cyclostationarity and the conjugate cyclostationarity property, the difference coarray model-based
Toeplitz completion algorithm can resolve more sources than the sum coarray model-based
Hankel completion algorithm.

2. The dimensions of the (conjugate) correlation subspaces need to be set carefully. When there is no
prior knowledge of the sources, we set the angle interval to [−π/2, π/2], the dimension of the
correlation subspace is chosen as |Cd|, and |Cs| is set as the dimension of the conjugate correlation
subspace. When we have prior knowledge of the sources, we can implement the eigenvalue
decomposition (EVD) of the (conjugate) correlation subspace matrices, and the dimensions are
set according to the numbers of the resultant positive eigenvalues.

3. The proposed coarray interpolation algorithms are not only suitable for the coprime array, but
are also suitable for other partial augmentable arrays as it satisfies the recovery condition of
structured matrix completion revealed in [31].
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4. The correlation subspace matrix (23) and the conjugate correlation subspace matrix (24) cannot
be calculated analytically due to the fact they are unintegrable with respect to θi. For a symmetric
source interval [−β/2, β/2], the following numerical approximations are used instead:

MCS =
(N−1)β/2N

∑
l=−(N−1)β/2N

[α∗(l)αT(l)]⊗ [α(l)αH(l)]/N, (33)

MCCS =
(N−1)β/2N

∑
l=−(N−1)β/2N

[α(l)αH(l)]⊗ [α(l)αH(l)]/N, (34)

where the number of discrete samples is set to N = 1001 in the simulation. Even though we
use all possible spatial grids to construct the (conjugate) correlation subspaces, this doesn’t
affect the fact that our algorithms can resolve gridless sources, which is the advantage over the
sparsity-aware algorithms.

The entire process of the proposed algorithms is summarized in Algorithm 1.

Algorithm 1. The proposed improved coarray interpolation algorithms with cyclostationary signals.

Input The received signal vector x̃(t), cyclic frequency α, sources prior
Output The optimized low-rank (conjugate) correlation matrix
Step 1 Compute the sampling (conjugate) correlation matrix R̃α

xx(∗) (τ)

Step 2 Generate the transform matrix Jd(s) and reshape R̃α
xx(∗) (τ) to get r̃Cd(s)

Step 3 Construct the (conjugate) correlation subspace QCS or QCCS

Step 4 Optimize (31) for the difference coarray or (32) for the sum coarray

4. Simulation Results

In our simulations, the coprime array was a sparse array with ten sensors located at
S = {0, 3, 5, 6, 9, 10, 12, 15, 20, 25}, which is illustrated in Figure 1. After the holes are filled, the partial
augmentable array can be considered as a ULA with N = 26 elements for both the difference coarray
model and the sum coarray model. The performance of the proposed coarray interpolation algorithms
for the difference coarray model (CI-DC) and the sum coarray model (CI-SC) were compared with
several modern algorithms exploiting the coprime array, including the spatial smoothing MUSIC
(SS-MUSIC) [22] and the sparsity-aware algorithms for the difference coarray model (SA-DC) and
the sum coarray model (SA-SA) [20]. The root mean squared error (RMSE) was used to measure

the performance, and is defined as RMSE = (∑I
i=1 ∑D

k=1 (θ̂k − θk)
2
/ID)

1/2
, where θ̂k denotes the

estimated DOA of the kth source and I = 200 is the number of independent repetitions. The sources
were binary phase shift keying (BPSK)-modulated including the signals of interest (SOIs) with a 4 Mb/s
bit rate and interference with a 3.2 Mb/s bit rate. The proposed algorithms and the sparsity-aware
algorithms exploiting cyclic statistics were under the optimal parameters (τ = 0.125 µs, α = 4 MHz).
Cyclic MUSIC [9] was utilized in our algorithms after the low-rank (conjugate) correlation matrices
were obtained.

In the first experiment, we tested the interference elimination capacity and the increased DOFs
of the proposed algorithms. In the first scenario, D = 17 equal-power signals including 13 SOIs and
4 interference sources impinged on the array. All the sources were uniformly distributed between−60◦

and 60◦. The interferences arrived from {θ2, θ4, θ14, θ16}. The true DOAs, including the SOIs and the
interference sources, are illustrated by the vertical dashed lines in Figure 3a–d. Two thousand snapshots
were sampled at the frequency of 32 MHz. The signal-to-noise ratio and the interference-to-noise ratio
were 0 dB. The source angle interval was set to [−π/2, π/2]. The eigenvalues of MCS and MCCS are
presented in Figure 2. We did not take the sparsity-aware algorithm into account due to its similar
performance with our algorithm. Figure 3a–c demonstrate the performance in terms of the spatial
spectrum of the SS-MUSIC, CI-DC, and CI-SC algorithms in the first scenario. It should be mentioned
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that the consecutive range of the difference coarray was from −17 to 17, indicating that the maximal
DOF for the SS-MUSIC is 17 under the array configuration of S. It can be seen from Figure 3a that the
SS-MUSIC method does not have the signal-selective capacity because it forms peaks at the angles of
the interference sources and it has large pointing errors at θ1 and θ2. The proposed CI-DC in Figure 3b
and the CI-SC in Figure 3c, as expected, can null out the four DOAs of the interference sources and have
correctly determined all the true DOAs of SOIs. In the second scenario, we increased the number of
SOIs from D = 13 to D = 19. The sources were uniformly distributed between −60◦ and 60◦. The SNR
was 10 dB and 2000 snapshots are sampled. We tested the increased DOF of the proposed CI-DC
algorithm shown in Figure 3d. The reason why we choose CI-DC is that the difference-coarray-based
algorithm has more nonuniform grids than the sum coarray model; thus, it can resolve more sources
than CI-SC. Figure 3d shows that the CI-DC algorithm can correctly estimate all the 19 SOIs and the
achieved DOF is beyond the limit of SS-MUSIC, which can only utilize the consecutive part of the
difference coarray.
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Figure 3. Spatial spectrum of the proposed algorithms and the SS-MUSIC algorithm. Subfigures (a–c)
depict the performance in the first scenario with 13 signals of interest (SOIs) and 4 interference sources;
subfigure (d) depicts the performance in the second scenario with 19 SOIs. (a) SS-MUSIC; (b) CI-DC;
(c) CI-SC; (d) CI-DC.

In the second experiment, we compared the RMSE versus the number of snapshots and SNR
with the difference coarray model between our CI-DC algorithm (including two different source
interval conditions and without the orthogonal constraint condition) and the SA-DC algorithm.
Both algorithms utilize the CCM as the second-order statistics and have interference elimination
capability. The prespecified grids for SA-DC are from [−90◦, 90◦] with a sampling interval of 0.1◦.
The regularization parameter for SA-DC was empirically chosen to be 0.4, and the penalty parameter
τ in our algorithm was set to 24 when the number of snapshots is less than 1000 in Figure 4a or the
SNR is less than 12 dB in Figure 4b; otherwise, τ was set to 26. Five equal-power BPSK SOIs uniformly
distributed between −9◦ and 9◦ impinged on the array. In Figure 4a, the SNR is fixed at 0 dB, and
the number of snapshots is fixed at 400 in Figure 4b. The other settings were the same as those in
the first experiment. As can be seen from Figure 4a,b, even though the SA-DC algorithm can utilize
the whole difference coarray information, its performance is inferior to the proposed algorithm due
to the basis mismatch caused by the prespecified grids. The proposed CI-DC algorithm with source
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interval [−10◦, 10◦] outperforms the condition with source interval [−90◦, 90◦] and the case without
the orthogonal constraint, especially when the SNR is low and the snapshots are limited; this indicates
that a smaller source interval helps to improve the performance remarkably. When the number of
snapshots is larger than 1000 in Figure 4a and the SNR is larger than 16 dB in Figure 4b, the RMSE of
the proposed algorithm with different constraint conditions is similar.
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Figure 4. Root mean squared error (RMSE) performance comparison with the difference coarray
model. (a) RMSE versus the number of snapshots with SNR = 0 dB; (b) RMSE versus SNR with
400 available snapshots.

In the third experiment, we compared the RMSE versus the number of snapshots and the SNR
with the sum coarray model between our algorithm with three different constraint conditions and the
SA-SC algorithm. The sources and the parameters in both algorithms were the same as those in the
second experiment. It can be seen from Figure 5 that the CI-SC with a small source interval performs
the best, which indicates that the orthogonal constraint incorporated with a smaller source interval
helps to regulate the estimate toward a more accurate solution. This observation coincides with the
result in the second experiment.
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In the last experiment, we intended to resolve more sources than a single coarray interpolation
scheme by utilizing both the obtained T (rVd) and H(rVs). We used the extended cyclic MUSIC
method [10] and simply constructed the extended cyclic correlation matrix as follows:

RCE =

[
T (rVd) H(rVs)

H∗(rVs) T ∗(rVd)

]
. (35)

Then, the SVD of RCE was implemented to obtain the noise subspace Un, and the spatial spectrum
of the extended cyclic MUSIC method was given by

P(θ) =
1

αH(θ)Un1UH
n1α

H(θ)− ‖αT(θ)Un2UH
n1α

H(θ)‖
(36)

where Un = [Un1; Un2] is the noise subspace, and Un1 and Un2 are two submatrices of the same
dimension. The spectrum searching scheme was utilized to find all the peaks. Twenty-one equal-power
BPSK SOIs uniformly distributed between −70◦ and 70◦ impinged on the same coprime array as
specified in Figure 1. The SNR was set to 20 dB and the number of snapshots was 2000. The other
parameters were set to be the same as those in the first experiment. After the CI-DC and CI-SC
algorithms were completed, the SVD of RCE was implemented to obtain the noise subspace and the
spatial spectrum was calculated based on (36). The spatial spectrum of the extended cyclic MUSIC
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method is illustrated in Figure 6. It can be seen that all the 21 SOIs were correctly determined using the
extended cyclic MUSIC method; this result validates the hypothesis that the extended cyclic MUSIC
method, utilizing the solutions from the structured matrix completion, can achieve more DOFs than
the single coarray interpolation scheme. However, rather than simply constructing the extended
cyclic matrix with the respective solutions from Toeplitz completion and Hankel completion, there is
potential to resolve more sources by directly solving the extended cyclic correlation matrix completion
problem with structure as in (35).
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5. Conclusions

In this paper, improved coarray interpolation algorithms were proposed for cyclostationary
signals. We integrate the cyclostationarity with the spatial domain and performed DOA estimation
under the circumstance that the sources are more numerous than the sensors. By exploring the
structure of the CCM and the CCCM in a coprime array, we built up the difference coarray and
sum coarray models and formulated the coarray interpolation as a Toeplitz completion problem
and a Hankel completion problem. In order to further improve the performance of the coarray
interpolation, we defined the spatial spectrum sampling operators and the derivative (conjugate)
correlation subspaces, then constructed orthogonal constraints for the autocorrelation vectors in the
structured matrix completion problems. Prior knowledge of the source intervals was also incorporated
into the problem, which helped to improve the performance significantly. Numerical results validated
the effectiveness of the proposed algorithms and demonstrated their superiority in terms of interference
elimination capacity, increased DOFs, and estimation accuracy.
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Appendix A

In this appendix, we prove that for a ULA with P physical sensors, the P-points averaged inner
product of the two steering vectors αH(θi)α(θk)/P (θi, θk ∈ [−π/2, π/2]) can be approximated by
a Kronecker delta function when P is large enough. The steering vector of a ULA with P physical
sensors can be expressed as

α(θ) = [1, ejπ sin θ , . . . ejπ(P−1) sin θ ]
T

. (A1)
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Then the P-points averaged inner product of the two steering vectors is given by

f (θi, θk) =
1
P
αH(θi)α(θk) =

1
P

P−1

∑
n=0

ejnπ(sin θk−sin θi). (A2)

Let x = P
2 (sin θk − sin θi), then (A2) can be rewritten as f (x) = 1

P ∑P−1
n=0 ej(2π/P)nx, and f (x) can be

seen as a time-domain signal corresponding to a P-points discrete rectangular function in the frequency
domain. Thus, we can obtain

f (x) =
1
P

sin(πx)
sin(πx/P)

ej( P−1
P )πx. (A3)

When P is large enough, f (x) will be approximated as

f (x) ≈ δi,k =

{
1, i = k
0, i 6= k

. (A4)

Consequently, we can draw the conclusion that f (θ, θ0) will approximate a Kronecker delta
function when P is large enough. However, for a nonuniform linear array, we can still approximate
f (θi, θk) with a Kronecker delta function due to the fact that f (θi, θk) with θi = θk is much larger than
the values when θi 6= θk.

References

1. Li, J.; Stoica, P. MIMO Radar Signal Processing; Wiley: Hoboken, NJ, USA, 2009.
2. Haykin, S. Array Signal Processing; Prentice-Hall: Upper Saddle River, NJ, USA, 1984.
3. Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal

Process. Mag. 1996, 13, 67–94. [CrossRef]
4. Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986,

34, 276–280. [CrossRef]
5. Roy, R.; Kailath, T. ESPRIT—Estimation of signal parameters via rotation invariance techniques. IEEE Trans.

Acoust. Speech Signal Process. 1989, 17, 984–995. [CrossRef]
6. Gardner, W.A. Cyclostationarity in Communications and Signal Processing; Wiley: Hoboken, NJ, USA, 1994.
7. Gardner, W.A. Simplification of MUSIC and ESPRIT by exploitation of cyclostationarity. Proc. IEEE 1988, 76,

845–847. [CrossRef]
8. Schell, S.V.; Calabretta, R.A.; Gardner, W.A.; Agee, B.G. Cyclic MUSIC algorithms for signal-selective

direction estimation. In Proceedings of the 1989 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Glasgow, UK, 23–26 May 1989; pp. 2278–2281.

9. Xu, G.; Kailath, T. Direction-of-arrival estimation via exploitation of cyclostationary-a combination of
temporal and spatial processing. IEEE Trans. Signal Process. 1992, 40, 1775–1786. [CrossRef]

10. Charge, P.; Wang, Y.; Saillard, J. An extended cyclic MUSIC algorithm. IEEE Trans. Signal Process. 2003, 51,
1695–1701. [CrossRef]

11. Moffet, A. Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 1968, 16, 172–175. [CrossRef]
12. Gelli, G.; Izzo, L. Minimum-redundancy linear arrays for cyclostationarity-based source location. IEEE Trans.

Signal Process. 1997, 45, 2605–2608. [CrossRef]
13. Pal, P.; Vaidyanathan, P.P. Nested arrays: A novel approach to array processing with enhanced degrees of

freedom. IEEE Trans. Signal Process. 2010, 58, 4167–4181. [CrossRef]
14. Liu, C.L.; Vaidyanathan, P.P. Super nested arrays: Linear sparse arrays with reduced mutual coupling-part I:

Fundamentals. IEEE Trans. Signal Process. 2016, 64, 3997–4012. [CrossRef]
15. Vaidyanathan, P.P.; Pal, P. Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process.

2011, 59, 573–586. [CrossRef]
16. Qin, S.; Zhang, Y.D.; Amin, M.G. Generalized coprime array configurations for direction-of-arrival estimation.

IEEE Trans. Signal Process. 2015, 63, 1377–1390. [CrossRef]

http://dx.doi.org/10.1109/79.526899
http://dx.doi.org/10.1109/TAP.1986.1143830
http://dx.doi.org/10.1109/29.32276
http://dx.doi.org/10.1109/5.7152
http://dx.doi.org/10.1109/78.143448
http://dx.doi.org/10.1109/TSP.2003.812834
http://dx.doi.org/10.1109/TAP.1968.1139138
http://dx.doi.org/10.1109/78.640730
http://dx.doi.org/10.1109/TSP.2010.2049264
http://dx.doi.org/10.1109/TSP.2016.2558159
http://dx.doi.org/10.1109/TSP.2010.2089682
http://dx.doi.org/10.1109/TSP.2015.2393838


Sensors 2018, 18, 219 16 of 16

17. Abramovich, Y.I.; Spencer, N.K.; Gorokhov, A.Y. Positive-definite Toeplitz completion in DOA estimation
for nonuniform linear antenna arrays. II. Partially augmentable arrays. IEEE Trans. Signal Process. 1999, 47,
1502–1521. [CrossRef]

18. Zhou, C.; Gu, Y.; Zhang, Y.D.; Shi, Z.; Jin, T.; Wu, X. Compressive sensing based coprime array
direction-of-arrival estimation. IET Commun. 2017, 11, 1719–1724. [CrossRef]

19. Zhang, Y.D.; Moeness, G.A.; Braham, H. Sparsity-based DOA estimation using co-prime arrays.
In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Vancouver, BC, Canada, 26–31 May 2013; pp. 3967–3971.

20. Liu, J.; Lu, Y.; Zhang, Y. DOA Estimation with enhanced DOFs by exploiting cyclostationarity. IEEE Trans.
Signal Process. 2017, 65, 1486–1496. [CrossRef]

21. Chi, Y.; Scharf, L.L.; Pezeshki, A. Sensitivity to Basis Mismatch in Compressed Sensing. IEEE Trans.
Signal Process. 2011, 59, 2182–2195. [CrossRef]

22. Wang, M.; Nehorai, A. Coarrays, MUSIC, and the Cramér Rao Bound. IEEE Trans. Signal Process. 2017, 65,
933–946. [CrossRef]

23. Liu, C.L.; Vaidyanathan, P.P. Remarks on the spatial smoothing step in coarray MUSIC. IEEE Signal
Process Lett. 2015, 22, 1438–1442. [CrossRef]

24. Zhou, C.; Zhou, J. Direction-of-Arrival Estimation with Coarray ESPRIT for Coprime Array. Sensors 2017,
17, 1779. [CrossRef] [PubMed]

25. Pal, P.; Vaidyanathan, P.P. A grid-less approach to underdetermined direction of arrival estimation via low
rank matrix denoising. IEEE Signal Process Lett. 2014, 21, 737–741. [CrossRef]

26. Liu, C.L.; Vaidyanathan, P.P.; Piya, P. Coprime coarray interpolation for DOA estimation via nuclear norm
minimization. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS),
Montreal, QC, Canada, 22–25 May 2016.

27. Candès, E.J.; Recht, B. Exact matrix completion via convex optimization. Commun. ACM 2012, 55, 111–119.
[CrossRef]

28. Candès, E.J.; Tao, T. The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inf. Theory
2010, 56, 2053–2080. [CrossRef]

29. Guo, M.; Chen, T.; Wang, B. An improved DOA estimation approach using coarray interpolation and matrix
denoising. Sensors 2017, 17, 1140. [CrossRef] [PubMed]

30. Tao, C.; Muran, G.; Limin, G. A direct coarray interpolation approach for direction finding. Sensors 2017,
17, 2149. [CrossRef]

31. Chen, Y.; Chi, Y. Robust Spectral Compressed Sensing via Structured Matrix Completion. IEEE Trans.
Inf. Theory 2013, 60, 6576–6601. [CrossRef]

32. Liu, C.L.; Vaidyanathan, P.P. Cram´er-Rao bounds for coprime and other sparse arrays, which find more
sources than sensors. Digit. Signal Process. 2017, 61, 43–61. [CrossRef]

33. Romero, D.; Ariananda, D.D.; Tian, Z.; Leus, G. Compressive covariance sensing: Structure-based
compressive sensing beyond sparsity. IEEE Signal Process. Mag. 2016, 33, 78–93. [CrossRef]

34. Delikaris, S.; Vilkamo, J.; Pulkki, V. Signal-Dependent Spatial Filtering Based on Weighted-Orthogonal
Beamformers in the Spherical Harmonic Domain. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 24,
1511–1523. [CrossRef]

35. Rahmani, M.; Atia, G.K. A subspace method for array covariance matrix estimation. In Proceedings of
the 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Rio de Janerio, Brazil,
10–13 July 2016.

36. Liu, C.L.; Vaidyanathan, P.P. Correlation Subspaces: Generalizations and Connection to Difference Coarrays.
IEEE Trans. Signal Process. 2017, 65, 5006–5020. [CrossRef]

37. Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 1985.
38. Grant, M.; Boyd, S. CVX: MATLAB Software for Disciplined Convex Programming, Version 2.1. March 2014.

Available online: http://cvxr.com/cvx (accessed on 14 January 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/78.765119
http://dx.doi.org/10.1049/iet-com.2016.1048
http://dx.doi.org/10.1109/TSP.2016.2645542
http://dx.doi.org/10.1109/TSP.2011.2112650
http://dx.doi.org/10.1109/TSP.2016.2626255
http://dx.doi.org/10.1109/LSP.2015.2409153
http://dx.doi.org/10.3390/s17081779
http://www.ncbi.nlm.nih.gov/pubmed/28771212
http://dx.doi.org/10.1109/LSP.2014.2314175
http://dx.doi.org/10.1145/2184319.2184343
http://dx.doi.org/10.1109/TIT.2010.2044061
http://dx.doi.org/10.3390/s17051140
http://www.ncbi.nlm.nih.gov/pubmed/28509886
http://dx.doi.org/10.3390/s17092149
http://dx.doi.org/10.1109/TIT.2014.2343623
http://dx.doi.org/10.1016/j.dsp.2016.04.011
http://dx.doi.org/10.1109/MSP.2015.2486805
http://dx.doi.org/10.1109/TASLP.2016.2560523
http://dx.doi.org/10.1109/TSP.2017.2721915
http://cvxr.com/cvx
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Cyclostationary Signal Model and the Coprime Coarray Model 
	Cyclostationary Signal Model 
	Coprime Coarray Model 

	(Conjugate) Correlation Subspaces and the Proposed Coarray Interpolation Algorithms 
	(Conjugate) Correlation Subspaces 
	Coarray Interpolation Algorithms 

	Simulation Results 
	Conclusions 
	
	References

