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Abstract: In wireless powered communication networks (WPCNs), it is essential to research
energy efficiency fairness in order to evaluate the balance of nodes for receiving information
and harvesting energy. In this paper, we propose an efficient iterative algorithm for optimal
energy efficiency proportional fairness in WPCN. The main idea is to use stochastic geometry to
derive the mean proportionally fairness utility function with respect to user association probability
and receive threshold. Subsequently, we prove that the relaxed proportionally fairness utility
function is a concave function for user association probability and receive threshold, respectively.
At the same time, a sub-optimal algorithm by exploiting alternating optimization approach is
proposed. Through numerical simulations, we demonstrate that our sub-optimal algorithm can
obtain a result close to optimal energy efficiency proportional fairness with significant reduction of
computational complexity.
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1. Introduction

With the wide use of smartphones, tablets, and machine-to-machine (M2M) devices for various
applications and services, the amount of mobile data traffic has grown dramatically in recent years [1].
The deployment of low-power small base stations (BSs) in hotspot areas is a potential solution to
cope with the increase in traffic and devices [2]. In particular, with the density of low-power small
BSs, heterogeneous cellular networks (HetNets) could enhance area spectral efficiency, increase the
capacity of communication, and reduce transmission delay [3]. Therefore, a high dense heterogeneous
network is one of the preeminent technologies in the racetrack towards fulfilling the requirements of
next generation mobile networks [4].

In practice, low-power small BSs have advantages on both devices and networks in terms
of energy efficiency. On the one hand, low-power small BSs serving wireless devices with short
communication distances results in a lower power consumption. On the other hand, the BSs of
a macrocell can reduce power consumption by offloading part of the traffic to small BSs. As a
result, various energy-efficient designs have been proposed [5–9] to exploit the potential performance
gains brought by deployment of low-power small BSs. A novel approach for joint power control
and user scheduling has been proposed in [5] for optimizing energy efficiency (EE) while ensuring
user QoS in ultra-dense small cell networks (UDNs). An algorithm is proposed in [6] to enable
small cells activation/deactivation adaptively with respect to the dynamically fluctuating traffic
loads to fullfil the data rate requirement. The user association problem is investigated in [7] for
maximizing the energy efficiency of a network considering the capacity and energy consumption
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and a low-complexity algorithm achieving near-optimal performance is proposed. A non-convex
optimization problem is formulated for power control of small BSs to maximize their EE in [8] and a
distributed power control scheme is proposed to achieve the Nash equilibrium with the minimum
information exchange. The energy efficiency of the uplink transmission in HetNets, where the
user equipments (UEs) apply a flexible power control scheme subject to maximum transmit power
constraint, is investigated in [9]. Meanwhile, there has also been growing interest in studying various
techniques for the nodes to improve the energy efficiency of the network [10–12]. With the aid of
learning automata, an energy efficient barrier coverage algorithm is proposed to select minimum
number of required nodes to monitor barriers in deployed network [10]. An energy-efficient adaptive
resource scheduler for Networked Fog Centers is proposed in [11] for real-time vehicular cloud services
to meet quality-of-service (QoS) requirements. An energy-efficient stable election routing algorithm is
presented in [12] to maintain balanced energy consumption of nodes in a wireless sensor network.

Despite the fruitful research on the deployment of low-power small BS, several open issues
remain unsolved which are the obstacles for achieving high energy-efficient multi-tier HetNets. One of
the fundamental challenges is the energy limitation of sensors. In general, most of the nodes are
powered by battery with limited energy storage and lifetime. Hence, wireless powered communication
networks (WPCNs), where BSs in HetNets can use energy harvest (EH) and wireless power transfer
(WPT) technique, is a promising solution to prolong the lifetime of energy-limited nodes [13–18].
In [13], power allocation is designed for the maximization of energy efficiency of an energy harvesting
system relying on renewable natural energy sources such as solar and wind. However, renewable
energy sources are intermittent and the communication devices may not always be able to harvest
sufficient energy for supporting their energy consumptions. As an alternative, wireless energy transfer
technology allows low-power nodes to harvest energy from their received radio frequency (RF) signals
to recharge their batteries and prolong their lifetimes [14]. In [15], three policies of wireless power
transfer are proposed to guarantee secure communications in large scale cognitive cellular networks.
Considering direct communication in underlying downlink cellular networks, the harvested energy in
the RF is exploited to prolong the lifetime of nodes link and obtain the maximum the sum-rate by joint
resource block and power allocation [16]. In [17], the authors analyze the outage probability and the
corresponding optimal offloading bias in an EH HetNet which can provide energy for communication.
The optimal EE of cellular communication and device-to-device (D2D) communication hybrid network
is investigated by jointly the time allocation, spectrum allocation and the power control when D2D
transmitters obtain energy by wireless power transfer [18].

The second key problem is high energy efficiency transmission schemes in WPCNs. Compared
to the natural renewable sources available for EH technology, BS using WPT can offer a more
controllable and relatively stable energy source [19–23]. In [19], the authors studied the switching
between acting as an information relay and an energy harvesting node. In [20], the authors focus
on designing appropriate transmission policies to improve the global EE in sensor networks with
simultaneous wireless information and power transfer (SWIPT). An optimal maximum throughput
approach for energy beamforming, receive beamforming, and time-slot allocation jointly optimization
is proposed in [21]. The Ginibre model is adopted in [22] to analyze the performance of self-sustainable
communications over cellular networks considering the RF energy harvesting rate and the energy
outage probability. A unified framework is proposed in [23] to investigate the impact of SWIPT on
the system performance with both time splitting and power splitting schemes. However, the optimal
tradeoff between receiving information and harvesting energy from BSs in WPCNs has not been
reported yet. With the help of WPT technology, transmitting information and harvesting energy can be
added to the new fairness criterion.

Another fundamental issue of multi-tier heterogeneous WPCNs is to associate a sensor with a
particular serving BS. In practical systems, the received power based user association rule is the most
commonly adopted one [24], where a sensor will choose to associate with the specific BS providing
the maximum received signal strength (max-RSS). This user association policy is made according to
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the quality of service (QoS) requirements of the devices with the goal of maximizing the capacity of
communication. As far as the problem formulation is to maximize the EE of networks, the max-RSS
user association decisions may not be optimal. Considering that BSs in macrocells have a significantly
higher transmit power than those in small cells, the access network energy consumption is typically
higher when a user is associated with a macrocell. On the other hand, resource allocation with
the consideration of fairness has become an important issue in communication networks [25]. For a
traditional user fairness problem, each user should be allocated with a certain amount of radio resources
via a careful design of scheduling. In multi-tier heterogeneous WPCNs, the fairness problem arises
not only in scheduling within a traditional cell but also in the user association decision among BSs in
different tiers. Thus, the optimal energy efficiency proportional fairness of multi-tier heterogeneous
WPCNs by adjusting the user association policy should also be investigated.

To address the above issues in this paper, we propose a framework for modeling and evaluating
the downlink energy efficiency proportional fairness of multi-tier heterogeneous WPCNs. Our model
takes into account the information transmission for active nodes and WPT for inactive nodes at BSs.
Based on this system model, we propose a proportionally fair utility function to evaluate the average
EE of nodes. With the aid of stochastic geometry, the average transmission rate and the harvesting
energy of nodes in WPCNs are firstly analyzed to evaluate the impact on average EE. Consequently,
we could characterize the fairness utility function averaged over BS locations and fading channels,
so it does not depend on a specific network realization. Next, noted that the fairness utility function is
non-concave for user association bias, we show that the fairness utility function can be relaxed as a
concave function with respect to the receive threshold and user association bias. Then, by maximizing
the relaxed utility function, we can obtain the optimal receive threshold and user association bias
for the tradeoff between information transmission and power transfer. This allows us to derive an
efficient iterative algorithm for obtaining the optimal solution. Exploiting alternating optimization for
joint association probability and receive threshold, we also propose an efficient iterative algorithm
for obtaining the suboptimal solution and reducing the compute complexity of iterative algorithm.
The main contributions can be summarized as:

1. The average transmission rate and harvesting energy of nodes in WPCNs are analyzed and the
impact of user association bias and receive threshold on EE of networks is revealed.

2. In the downlink multi-tier heterogeneous WPCNs, there exists an optimal receive threshold for
maximizing the EE proportionally fair utility function in any tier.

3. An efficient iterative algorithm for obtaining the optimal solution of proportionally fair utility
function for downlink nodes is proposed.

The rest of this paper is organized as follows. In Section 2, the system modeled with a stochastic
geometry is presented. Considering the transmission rate and harvested energy, the energy efficiency
proportional fairness utility function is introduced. The impact of average transmission rate and the
harvested energy of nodes in WPCNs on the average EE proportional fair utility function are analyzed
in Section 3. The receive threshold and user association bias optimization for the maximization of
the system EE proportional fair utility function is designed in Section 4. By exploiting an alternating
programming, a novel low-complexity iterative algorithm was proposed to obtain the sub-optimal
solution of this problem. The derived results are validated in Section 5 by simulation results, where the
impact of various system parameters on the proportionally fair utility function is illustrated. Finally,
Section 6 concludes the paper.

A list of the symbols employed in this paper is given in Table 1.
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Table 1. Notations used in the paper.

Φk, λk PPP of k-th tier BS and the corresponding density
Φk, λu PPP of UEs and the corresponding density

Pt,k, Ps,k Dynamical transmit power and static power of k-th tier BS
Bk Bias factor of k-th tier BS
α Path loss exponent

hx,y Small scale fading between nodes located x and y
W, N Total bandwidth and number of UEs sharing the spectrum

2. System Model

2.1. Network Model

As shown in Figure 1, we consider a multi-tier heterogeneous WPCN in which the BSs of
each tier are spatially distributed to provide seamless access service over the whole R2 plane. Let
m(k)

i denote the location of BS i in tier k ∈ {1, ..., K}. The location of BSs in tier k is denoted by

Φk =
{

m(k)
i ; i = 1, 2, 3, ...

}
, where the transmit power of BSs in tier k is Pt,k and the bias factor is Bk,

where Bk ≥ 1 for any k ∈ {1, ..., K}. The bias factor is the factor which is used to adjust the association
probability among different tiers in multi-tiers HetNets. The transmit power of BSs can multiply the
bias factor to obtain “more” transmit power to let more users associate with the BSs. However, the
actual transmit power of BSs cannot increase by multiplying the bias factor. The achievable rate of
information transmission and the amount of wireless power transfer will not be impacted by the
bias factor. We assume Φk following an independent homogeneous Poisson point process (PPP)
with density λk, k ∈ {1, ..., K}. The superposition of K tiers can be denoted as Φ =

⋃
k Φk and forms

a weighted Poisson Voronoi tessellation due to the inhomogeneous transmit powers of the BSs in
different tiers.

Information transmission UE Wireless power transfer UE

Figure 1. System model of a multi-tier heterogeneous wireless powered communication
network (WPCN).

In addition, the nodes obey a homogeneous PPP Φu with density λu, which is independent of
Φk. We assume that λu is large enough so that each BS serves at least one associated UE per channel,
i.e., λu � λk for any k ∈ {1, ..., K}. That is, the downlink channels are fully occupied such as in
saturated conditions. Nodes in the downlink will receive the interference signal from other BSs serving
their own nodes on the same channels. Each node is assumed to be equipped with single-antenna
and a rechargeable battery with a large storage. In the downlink multi-tier heterogeneous WPCNs,
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each node can receive the desired information from its associated BS and harvest energy from both the
serving BS and the interfering BSs. It can be seen from the Figure 1 that some of UEs in WPCN receive
the information and others harvest energy from the BSs over the whole plane.

2.2. Path Loss and User Association

We consider both small- and large-scale propagation effects in the channel model. In particular,
given a transmitter at x ∈ R2, the receiving power at y ∈ R2 is given by Pt,x Ahx,yL−1 (x, y), where Pt,x

is the transmit power, A is a propagation constant, hx,y denotes the fading channel power due to
multi-path propagation from x to y. Moreover, L (x, y) = ‖x− y‖α models the channel variations
caused by path loss ‖x− y‖, where α is the path loss exponent and ‖x− y‖ denotes the Euclidean
distance between x and y. We consider Rayleigh multipath fading and log-normal shadowing,
i.e., hx,y ∼ exp(1) is exponentially distributed with unit mean power. For deriving the analytical
results, it is assumed that it is rare for the path loss exponent to vary across different tiers.

Each node associates to the BS that provides the maximum average bias-received-power (BRP).
For example, the node located at y is associated to the BS at x in tier y if and only if Pt,kL−1 (x, y) Bk ≥
Pt,jL−1

min,j (y) Bj for j = 1, ..., K. When Bk is constant for any K-tier, the biased cell association policy
will reduce to maximum average received power policy. The maximum average BRP association
is stationary [26], i.e., the association pattern is invariant under translation with any displacement.
According to the Palm theory [27], the analytical results of a typical cell C0 in tier k can be extended
to other cells Ci (i = 1, 2, ...) in the same tier. Therefore, we only need to focus on the cell C0 for the
analysis in the remainder of this paper.

On the condition that the path loss exponent is the same in all tiers, the probability of a node
associated with k-th tier Ak under maximum average BRP policy can be obtained as [28]

Ak =
λk(Pt,kBk)

2/α

∑K
j=1 λj

(
Pt,jBj

)2/α
. (1)

We can see that the association probability depends on the cell association biases, the densities of
BSs, and the transmit powers in each tier.

2.3. Coverage Rate and Energy Harvesting

For multi-tier heterogeneous WPCNs, the thermal noise is usually negligible as compared to the
interference. Hence, we consider the signal-to-interference ratio (SIR) instead of SINR in this work.
When a randomly chosen node (termed the typical node) located at the origin O associates with its
serving BS (termed the typical BS) at cell Ci in tier k, the SIR of typical UE expression can be obtained
based on the channel path loss model as

SIRk =
Pt,khk,xL−1

k,x

∑K
j=1 ∑y∈Φj\x

Pt,jhj,yL−1
j,y

, (2)

where Lk,x is the distance between the typical node and its serving BS in tier k, Lj,y is the distance
between the typical node and interference BS in tier j.

In this paper, we consider the case when a node associated with cell j in tier k. Then, the coverage
probability of the node is defined as [29]

Ck = P (SIRk > θk) , (3)

where θk is the SIR threshold of nodes associated to the tier k in the network. By adopting the coverage
probability, the node cannot transmit information when SIRk ≤ θk. It is expected that when nodes with
a better transmit condition or less stringent QoS requirement will enable information transmission.
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Moreover, the SIR and receive threshold play important roles in the analysis of EE proportionally
fairness since they can affect the coverage probability.

On each spectrum resource block, we assume that if the SIR is less than θ, the node does not
allocate any rate and it just receives the wireless power transfer from all the BSs in the network.
Otherwise, it will be served with a constant rate to obtain the fairness of information transmission.
The downlink transmission rate of the node associated with tier k under this model is given by

Rk =
W
N

Ck log2(1 + θ), (4)

where N is the total number of active nodes sharing the downlink spectrum resource, and W is the
total bandwidth allocated to the nodes in the WPCNs.

When the nodes cannot transmit information, they can harvest energy from the BSs in whole
plane to save the energy consumption of networks, the received power of the nodes associated to
tier k is

PEH,k = η(1− Ck)PEH_t,k
= η(1− Ck)∑K

j=1 ∑y∈Φj
Pt,jhj,yL−1

j,y ,
(5)

where η is the energy harvesting efficiency of the nodes [30].

2.4. Energy Efficiency Proportional Fairness Utility Function

Considering that both information transmission and wireless power transfer contribute to the
energy efficiency of networks, we are interested in the typical node since its average performance
represents the average system performance. The energy efficiency of typical node associated with BSs
in tier k can be defined as Rk

Pt,k+Ps,k−PEH,k
, where Pt,k and Ps,k are the transmit power and static power of

BSs in tier k, respectively.
Considering that both information transmission and wireless power transfer can improve the

energy efficiency, we use the proportional fairness algorithm to schedule the users for balancing
the two kinds of users in WPCN. The proportional fair utility [31,32], captures the tradeoff between
opportunism and user fairness, by encouraging low rate users to improve their rates while saturating
the utility gain of high-rate users. According to the statement in [33], the proportional fairness
should be defined as the sum of logarithm function. Therefore, the average energy efficiency-based
proportional fairness of the typical node can be described as

UEE,k = E
[

log
(

Rk
Pt,k + Ps,k − PEH,k

)]
. (6)

Considering the fairness of typical node among its serving BS (termed the typical BS), the average
energy efficiency-based proportional fairness of the typical node in the multi-tier wireless network is

UEE =
K

∑
k=1

AkUEE,k, (7)

where Ak is the probability of a node associated with BSs in k-th tier and is described in (1).
Note that the utility of each node is based on its average energy efficiency averaged over the

fading channel. The mean system utility is the average of such utilities of all users over the network
topology, which is equivalent to the mean utility of the typical user according to the Palm theory.

3. Performance Analysis for Downlink WPCN

3.1. Coverage Probability

In this subsection, we will now compute the mean coverage probability of the typical user, which
is defined as E [log (Ck)]. When the typical node associates with cell Ci in tier k, the path loss between
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BS in cell Ci and the typical node is Lk,j = l, the cumulative distribution function (CDF) of SIR of the
typical node can be obtained as

E [Ck] = EΦ,h [P (SIRk > θk)]

(a)
= EΦ,h

[
P
(

Pt,khk,il−α

∑K
j=1 ∑y∈Φj\i Pt,jhj,yl−α

j,y
> θ

)]

= EΦ,h

[
P
(

hk,i > θlαP−1
t,k

(
∑K

j=1 ∑y∈Φj\i
Pt,jhj,yl−α

j,y

))]
(8)

(b)
= EΦ,h

[
exp

(
−θlαP−1

t,k

(
∑K

j=1 ∑y∈Φj\i
Pt,jhj,yl−α

j,y

))]
(c)
= EΦ,h

[
K

∏
j=1

LIj

(
θlαP−1

t,k

)]
,

where LIj (s) is the Laplace transform of Ij = ∑y∈Φj\i Pt,jhj,yl−α
j,y . (a) is derived from the expression of

SIR in (3); (b) is due to hx ∼ exp (1) is exponentially distributed with unit mean power; (c) is from the
Campbell theorem for PPP.

The Laplace transform of the total interference power from the BSs in tier j can calculated as

EΦ,h

[
K
∏
j=1

LIj

(
θlαP−1

t,k

)]
= EΦ,h

[
exp

(
θlαP−1

t,k Pt,j ∑y∈Φj\i hj,yl
′−α
j,y

)]
= Eh

exp

2πλjθlαP−1
t,k Pt,j

∫ ∞(
Pt,j Bj
Pt,k Bk

)1/α

l

[
1−Lhj,y (y

−α)
]

ydy




(d)
= exp

2πλjθlαP−1
t,k Pt,j

∫ ∞(
Pt,j Bj
Pt,k Bk

)1/α

l

(
1− 1

1+y−α

)
ydy


≤ exp

2πλjθlαP−1
t,k Pt,j

∫ ∞(
Pt,j Bj
Pt,k Bk

)1/α

l
y−αydy


= exp

(
− 2πλjθl2

α−2

( Pt,j
Pt,k

)2/α( Bj
Bk

)2/α−1
)

,

(9)

(d) is derived from associated rule that when the node is associated with the k-th BS tier, the length

of interfering links and that of the serving link has the following relationship
∣∣lj,i
∣∣ ≥ ∣∣lk,0

∣∣ ( Pt,jBj
Pt,k Bk

)1/α
,

for any i and j.
Considering log (x) is a concave function, we can obtain from the Jensen inequality and (9)

E [log (Ck)] ≤ logE [Ck]

= −
2πλjθl2

α− 2

( Pt,j

Pt,k

)2/α( Bj

Bk

)2/α−1

(10)

(e)
= −2πθkl2Pk

α− 2
λ

α
2 +1
k

A
α
2 +1
k

K

∑
j=1

Aα+1
j

Pjλ
α
2
j

,

(e) is derived from the relationship described in (1).
It should be noted that the mean logarithm of coverage probability of the typical user is affected

by the receive threshold and user association probability. It is reasonable that if the receive threshold
increases, some nodes at the edge of covered region will be inactive and harvest energy. Meanwhile,
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the adjustment of user association probability will impact on the coverage probability of the typical
node. This is because more nodes receive information from BSs when the bias of BSs increases.

3.2. Average Number of Active Node

Due to the cells in multi-tier heterogeneous WPCNs form a weighted Poisson Voronoi tessellation,
the probability density function (PDF) of the size of the normalized Voronoi cell is approximated by a
two-parameter gamma function [34]

fs (x) =
3.53.5

Γ (3.5)
x3.5e−3.5x. (11)

For a given cell size, the number of users associated with a BS follows a Poisson distribution with
parameter Akλu

λk
. The probability mass function (PMF) of the number of users associated with a BS in

tier k can be derived from (11) as

P (Nk = n) =
∫ ∞

0

(
Akλux

λk

)n

n!
e
− Akλu x

λk fS (x) dx

=
∫ ∞

0

(
Akλux

λk

)n

n!
e
− Akλu x

λk
3.53.5

Γ (3.5)
x3.5e−3.5xdx (12)

=
3.53.5Γ (n + 3.5) (Akλu/λk)

n

n!Γ (3.5) (Akλu/λk + 3.5)n+3.5 .

Condition on the typical node associated with a BS in tier k, the PMF of the number of other users
associated with the BS can be obtained similarly to (12)

P
(

N′k = n
)

=
3.53.5Γ (n + 4.5) (Akλu/λk)

n

n!Γ (3.5) (Akλu/λk + 3.5)n+4.5 . (13)

The average bandwidth allocated to the typical user associated with BS in tier k is

E
(

W
N

)
= W ·E

(
1

N′k + 1

)
= W ·

∞

∑
n=0

1
n + 1

P
(

N′k = n
)

= W ·
∞

∑
n=0

1
n + 1

3.53.5Γ (n + 4.5) (Akλu/λk)
n

n!Γ (3.5) (Akλu/λk + 3.5)n+4.5

=
Wλk
Akλu

∞

∑
n=1

3.53.5Γ (n + 3.5) (Akλu/λk)
n

n!Γ (3.5) (Akλu/λk + 3.5)n+3.5 (14)

( f )
=

Wλk
Akλu

[1− P (Nk = 0)]

=
Wλk
Akλu

[
1− 3.53.5

(Akλu/λk + 3.5)3.5

]
(g)
≈ Wλk

Akλu
,

where (f) is obtained from the PMF of the number of users described in (12), and (g) is obtained due to
the assumption λu � λk.
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3.3. Harvested Energy

When the received SIR of UE is less than θ, it will harvest energy from BSs in the whole plane.
The average harvest energy can be calculated as

PEH_t,k = ∑K
j=1 E

[
∑y∈Φj

Pt,jhj,yL−1
j,y

]
(h)
= ∑K

j=1 2πλj
∫ ∞

0

[
1− Lhj,y

(
P−α

t,j
y−α

)]
ydy

= ∑K
j=1 2πλj

∫ ∞
0

[
1− 1

1+Pt,jy−α

]
ydy

= ∑K
j=1

2π2λjP
2/α
t,j

α sin(2π/α)
,

(15)

where (h) is from the Campbell theorem for PPP.
It should be noted that the average harvested energy is not impacted by user association

probability and receive threshold, but the density of users and the transmit power of BSs. This is
because the received power of nodes is affected by the distance from the BSs and the transmit power
of BS. However, the bias of BS cannot affect the actual receive power of nodes.

4. Utility Optimization

4.1. Problem Formulation

For the considered system, the energy efficiency proportional fairness maximization problem can
be mathematically formulated as:

max
Ak ,θk

U (Ak, θk)

s.t. C1 : θk ≥ 0, ∀k,
C2 : ∑K

k=1 Ak = 1,
C3 : Ak > 0, ∀k,

(16)

where C1 are non-negative constraints of receive threshold variables for any tier, C2 ensures all active
nodes associate with network, C3 is the BSs in any tier at least serving for a active node.

This problem does not have a closed-form solution and it is not convex in general. Then, we will
relax the objective function in the special case and solve the problem. Considering that the log (x) is a
concave function, we can obtain

E [log (W/N)] ≤ log (E (W/N)) = log
(

Wλk
Akλu

)
. (17)

The left side of (17) is due to Jensen inequality and the right side is from (14). Meanwhile, due to
function log

(
Ck

Pt,k+Ps,k−η(1−Ck)PEH,k

)
is concave function for Ck, we can obtain that

E
[
log
(

Ck
Pt,k+Ps,k−η(1−Ck)PEH,k

)]
≤ log [E (Ck)]− log (Pt,k + Ps,k − η (1−E (Ck)) PEH,k) .

(18)

Substituted (17) and (18) into (6), we can obtain that

U (Ak, θk) ≤ Ur (Ak, θk)

=
K

∑
k=1

Ak log
(

Wλk
Akλu

)
+

K

∑
k=1

Ak log (log (1 + θk)) +
K

∑
k=1

Ak log [E (Ck)] (19)

−
K

∑
k=1

Ak log (Pt,k + Ps,k − η (1−E (Ck)) PEH,k).
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This upper-bounded energy efficiency proportional fairness utility function is formulated as

max
Ak ,θk

Ur (Ak, θk)

s.t. C1 : θk ≥ 0, ∀k,
C2 : ∑K

k=1 Ak = 1,
C3 : Ak > 0, ∀k.

(20)

4.2. Property of the Problem

The object function of Problem (20) is also non-convex, we will investigate the properties of the
problem in this subsection. We can solve the considered problem according to the following Theorems.

Theorem 1. For any tier in the downlink multi-tier heterogeneous WPCNs, there exists an optimal receive
threshold θ∗k for maximizing the energy efficiency proportional fairness utility function in tier k.

Proof. According to (19), it can be easily proved that

∂2 log (log (1 + θk))

∂θ2
k

= −
[

1
log2 (1 + θk)

+
1

log (1 + θk)

]
1

(1 + θk)
2 < 0. (21)

Hence, log (log (1 + θk)) is a concave function of θk .

Meanwhile, we can obtain that log [E (Ck)] is an affine function of θk from (10).

Substituting (10) and (15) into (19) yields

log (Pt,k + Ps,k − η (1−E (Ck)) PEH,k) (22)

= log

Pt,k + Ps,k − η

1− exp

−2πθkl2Pk
α− 2

λ
α
2 +1
k

A
α
2 +1
k

K

∑
j=1

Aα+1
j

Pjλ
α
2
j

∑K
j=1

2π2λjP
2/α
t,j

α sin (2π/α)

 ,

is a convex function of θk. Therefore, UEE,k (θk) is a concave function for θk.

The optimal receive threshold can be obtained via taking the first order derivative of UEE with
respect to θk as

∂UEE(θk)

∂θk
= 0 (23)

Hence, we could get the optimal receive threshold by the expression as follows

P̄ + β exp (−h (Ak) θk) = P̄h (Ak) (1 + θk) log (1 + θk) , (24)

where P̄ = Pt,k + Ps,k − η ∑K
j=1

2π2λj p
2
α
j

α sin( 2π
α )

which is independent of Ak , β = η ∑K
j=1

2π2λj p
2
α
j

α sin( 2π
α )

, and h(Ak)

can be obtained in the Appendix A.
Theorem 1 shows that if in any tier where the user association probability of nodes Ak is fixed, we

can find an optimal receive threshold θ∗k to obtain the tradeoff of nodes between receiving information
and harvesting energy. Note that the receive threshold includes two special cases: (i) when θk = 0, the
receive threshold is so low that all nodes can receive information regardless of the QoS requirement
from information transmission; (ii) when θk → ∞, the receive threshold is so high that all nodes should
harvest energy regardless of the distance between nodes and BSs. From (13), we can obtain the optimal
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receive threshold θ∗k > 0. Therefore, the optimal receive threshold θ∗k brings to the balance for node to
receive information and harvest energy.

To reveal the relationship between energy efficiency proportional fairness utility function and the
receive threshold in a two-tier heterogeneous WPCNs, we show some numerical results for different
transmit powers and densities of BSs in two-tier heterogeneous WPCNs in Figure 2. Numerical and
analytical results show that there exists an optimal threshold θ∗ for maximizing the utility function in
each tier.
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Figure 2. The relationship between energy efficiency proportional fairness utility function and the
receive threshold for different transmit powers and densities of BSs in two-tier heterogeneous WPCNs.

We can obtain the relationship between optimal receive threshold θ∗k and the user association
probability Ak as the following lemma.

Lemma 1. The optimal receive threshold θ∗k in any tier decreases with the user association probability Ak.

Proof. This lemma can be proved by exploiting the implicit function theorem which can be found in
Appendix A.

It should be noted that when the user association probability Ak increases, more nodes will be
associated with the BSs. In this case, the average transmit rate will decrease due to the bandwidth
allocated to each node reducing. Therefore, the decreasing of optimal receive threshold will increase
the energy efficiency proportional fairness utility function.

Theorem 2. The relaxed energy efficiency proportional fairness utility function is concave for association
probability in any tier.

Proof. This theorem can be proved by exploiting the implicit function theorem which can be found in
Appendix B.
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4.3. Sub-Optimal Algorithm Design

According to the above Theorem, we can obtain the solution by combining the solutions of the
two sub-problems. A two-step sub-optimal algorithm is proposed: (1) Initialize the receive threshold
of all nodes is zero, which means all nodes receive information. Adjusting the bias of BSs in each
tier to obtain the optimal energy efficiency proportional fairness; (2) Fix the optimal bias of BSs in
each tier, adjusting the receive threshold of nodes to obtain the optimal energy efficiency proportional
fairness. Then repeat to run step 1 and 2 until the result converge reaches the optimal solution. Due to
Theorem 2, the first step is solvable. Meanwhile, the second step is solvable according to Theorem 1.
The detailed description of this two-step algorithm is presented in Algorithm 1.

Algorithm 1. Suboptimal Iterative Resource Allocation Algorithm

1: Initialize the maximum number of iterations Lmax, the maximum tolerance is 0 ≤ ε ≤ 1
2: Set the associated probability Ak = A(0)

k = 0dB, θk = θ
(0)
k = 0, ∀k = {1, 2, ..., K} , and iteration index n = 0

3: repeat {Loop}
4: Solve the convex problem in (19) for a given set of A(n)

k and obtain the optimal receive threshold {A(n)
k , θ

(n+1)
k }

5: Solve the convex problem in (19) for a given set of θ
(n)
k and obtain the optimal association probability {A(n+1)

k , θ
(n)
k }

6: if
∣∣∣An+1

k − An
k

∣∣∣ < ε and
∣∣∣θn+1

k − θn
k

∣∣∣ < ε then
7: Convergence = true
8: return

{
A∗k , θ∗k

}
=
{

A(n+1)
k , θ

(n+1)
k

}
and U∗ (Ak , θk) = U

(
A∗k , θ∗k

)
9: else
10: n = n + 1
11: Convergence = false
12: end if
13: until Convergence = true or n = Lmax

The problem (20) can also be solved to obtain the optimal receive threshold and user association
probability by performing optimal brute-force two-dimensional search. However, the computational
complexity of the proposed optimal two-dimensional search scheme is upper bound by O

(
θmax

M · K2

N

)
,

where θmax is the maximal value of the receive threshold, M is the step size of the one-dimensional
search on the receive threshold, K is the number of tiers in the network, and N is the step size of
the one-dimensional search on user association probability. It can be seen that the complexity of the
algorithm is relatively higher due to the two-dimensional search performed by the loop, and the
complexity increases nonlinearly as the search step decreases.

It is clear from Algorithm 1 that in the first step of the proposed sub-optimal algorithm, there
are K iterations. In each iteration, the number of comparisons required to find the best association
probability of that tier is log2 N by adopting the binary search. In the second step, for the fixed
association probability, the optimal receive threshold can be obtained by solving the Formula (24).
Therefore, the maximum number of comparisons required by our proposed sub-optimal algorithm
is O (K log2 N + K− 1). Compared with the optimal brute-force search, it can be clearly seen that by
relaxing the objective function and decoupling the problem into two sub-problems, the computational
complexity is significantly reduced. In addition, the suboptimal algorithm obtains the suboptimal
solution of the corresponding optimization problem, and the performance gap between the suboptimal
and optimal will be shown in the simulation results.

5. Numerical Simulations

In this section, we investigate the performance of the proposed user association and
threshold scheme through simulations. In the system performance simulations, we evaluate
numerically the energy efficiency proportional fairness of a two-tier downlink heterogeneous WPCNs.
Unless otherwise specified, the system parameters are assumed as: path loss exponent α = 4, system
bandwidth B = 10 MHz, static power consumption of BS in each tier is assumed to be equal to Ps = 0
dBm, the transmit power of BSs in tier 1 and 2 are Pt,1 = 41 dBm, Pt,2 = 33 dBm , the density of BSs in
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tier 1 and 2 is λ1 = 4× 10−5/m2, λ2 = 28× 10−5/m2, the bias factor of tier 1 is B1 = 0 dB, the density
of UEs is λu = 20λ1, the ratio of energy conversion for EH η = 0.7.

5.1. Effect of the Transmit Power of BSs

In Figure 3, we plot the energy efficiency proportional fairness of total two-tier heterogeneous
WPCNs with respect to the transmit power of BSs in tier 2 for different values of the tier-2 cell
association bias B2. We can see that as the transmit power of BSs in tier 2 changes from 1 dBm to
7 dBm, the maximal energy efficiency proportional fairness decreases. This is because, as the transmit
power of tier 2 increases, the energy efficiency proportional fairness of tier 2 decreases according to (7).
Therefore, the total energy efficiency proportional fairness of network decreases with the increasing
transmit power of BSs in tier 2. Meanwhile, due to the transmit power of BSs in tier 2 being less than
that of BSs in tier 1, the energy efficiency proportional fairness of the network increases as the bias of
tier 2 increases.
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Figure 3. Energy efficiency proportional fairness of total two-tier heterogeneous WPCNs with respect
to the transmit power of BSs in tier 2 for different values of the tier-2 cell association bias B2.

For comparison, Figure 3 also shows the energy efficiency proportional fairness of another fixed
threshold scheme. For this baseline scheme, we adopt a fixed threshold and small enough θ = 0.05.
Therefore, most of the nodes are in the heterogeneous WPCNs transmit information and the harvest
energy from the wireless power transfer is small. As can be observed, the energy efficiency proportional
fairness of the system with a fixed threshold is substantially lower than those of the proposed optimal
scheme. It can be seen that from the energy efficiency of the network, all of the nodes associating with
network is not the best strategy since the power consumption of BSs is large. We can choose optimal
threshold to let some nodes harvest energy temporarily.

In the current HetNet, a lot of low-power BSs is deployed around high-power BSs.
The deployment of the network can be described as the scenario that the density of BSs in tier 2
is larger than that of BSs in tier 1 and the transmit power of BSs in tier 2 is less than that of BSs in tier 1.
In this case, we can obtain from the Figure 3 that for improving the energy efficiency proportional
fairness of total network, when the transmit power of BSs in tier 2 is high, the bias factor of BSs in
tier 2 should be large. This is because if the low-power BSs can serve more nodes, the high-power BSs
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should offload some traffic to low-power BSs to enhance the energy efficiency proportional fairness of
total network and balance the traffic in different tiers.

For different values of the transmit power of BSs, Figure 4 contains the mean energy efficiency
proportional fairness with respect to the density of BSs in tier 1 obtained from the proposed suboptimal
scheme and optimal brute-force two-dimension search scheme. We can see that as the transmit power
of BSs in tier 2 changes from 0 dBm to 7 dBm, the maximal energy efficiency proportional fairness
firstly increases and then decreases. This is because if the transmit power of tier 2 is small, it will serve
little nodes and a lot of nodes associated to the BSs in tier 1. Due to the BSs in tier 1 having larger
transmit power than BSs in tier 2, the energy efficiency proportional fairness of the network is small.
Therefore, the total energy efficiency proportional fairness of network firstly increases with the increase
of the transmit power of BSs in tier 2. Meanwhile, when the transmit power of BSs in tier 2 is large
enough, nodes associated with BSs in tier 2 cannot obtain higher energy efficiency. In this case, the
energy efficiency proportional fairness of the network decreases as the transmit power of BSs in
tier 2 increases.

As the transmit power of BSs in tier 2 changes from 0 dBm to 7 dBm, the energy efficiency
proportional fairness of nodes become a bell-shaped curve when the transmit power of BSs in
tier 2 increases. The maximal energy-efficiency proportional fairness increases firstly when the transmit
power of BSs in tier 2 is low. This is because when the transmit power of BSs in tier 2 is low, more
nodes associate with the BSs in tier 1 than in tier 2. Hence, the fairness among different tiers will be
small and the energy-efficiency proportional fairness of nodes will firstly increase with the transmit
power of BSs in tier 2. When the transmit power of BSs in tier 2 is high enough, more nodes associate
with the BSs in tier 2 than tier 1. In this case, the fairness among different tiers will also be small.
The energy-efficiency proportional fairness of nodes decrease with the transmit power of BSs in tier 2.
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Figure 4. The mean energy efficiency proportional fairness with respect to the association probability
of tier 2 obtained from the proposed suboptimal scheme and optimal two-dimension search scheme for
different values of the transmit power of base stations (BSs).

For comparison, Figure 4 also shows that when the density of BSs in tier 1 is 4× 10−5/m2, the
energy efficiency proportional fairness of network is less than that of the density of BSs in tier 1 with
8× 10−5/m2. This is because nodes will associate with BSs in tier 1 when the density of BSs in tier 1 is
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high. However, the energy efficiency proportional fairness of tier 1 is less than that of tier 2 due to the
transmit power of BSs in tier 1 being higher. Hence, the energy efficiency proportional fairness of the
network decreases. Meanwhile, it can be seen that the gap of energy efficiency proportional fairness of
the network between the proposed suboptimal scheme and the optimal brute-force two dimension
search can be ignored.

5.2. Effect of the Density of BSs

For comparison, Figure 5 also shows the energy efficiency proportional fairness of the networks, in
which the threshold is fixed as θ = 0.05. As can be observed, the energy efficiency proportional fairness
of the network with fixed threshold is substantially lower than those of the proposed optimal scheme.
When the threshold is small, all of the nodes associated with the network can transmit information
and consume the energy of the network. This scheme will not be beneficial to the energy efficiency of
the networks. We can allocate some nodes to harvest energy by improving the threshold. The nodes
can recharge their batteries by harvesting the RF energy via the WPT and exploiting the harvested
energy for uplink transmission.

In the current deployment of HetNet, we can obtain from Figure 5 that for improving the energy
efficiency proportional fairness of the total network, when the density of BSs in tier 2 is high the bias
factor of BSs in tier 2 should be small. This is because, if the number of low-power BSs increases, a lot
of traffic will offload from the high-power BSs to low-power BSs. If we want to enhance the energy
efficiency proportional fairness of the total network and balance the traffic in different tiers, the bias
factor of BSs in tier 2 should be small.
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Figure 5. The energy efficiency proportional fairness of total two-tier heterogeneous WPCNs with
respect to the density of BSs in tier 2 for different values of the tier-2 cell association bias B2.

5.3. Effect of the Association Probability

In Figure 6, we plot the energy efficiency proportional fairness of total two-tier heterogeneous
WPCNs with respect to the user association probability of tier 2 for different values of the transmit
power of BSs. We obtain that with the increase of user association probability of tier 2, the average
energy efficiency proportional fairness increases quickly and then remains unchanged. Due to the
transmit power of BSs in tier 2 being less than that of BSs in tier 1, the energy efficiency proportional
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fairness utility function of tier 2 is larger than that of tier 1 from (7). Therefore, nodes associated with
BSs in tier 2 will obtain a higher average energy efficiency proportional fairness. Meanwhile, the
energy efficiency proportional fairness remains unchanged as the user association probability gets
closer to 1 as shown in Figure 6. This is because when the association probability gets close to 1, the
load of tier 2 is balanced such that the nodes connected with BSs in tier 1 will not transfer to BSs in
tier 2. In this case, the energy efficiency proportional fairness is a constant. Furthermore, we note that
the mean energy efficiency proportional fairness decreases with the transmit power of BSs in tier 2
increases for the same association probability. It can be explained from (7) that the energy efficiency
proportional fairness increases with the reduction of transmit power. When the transmit power of BSs
in tier 2 decreases, the energy efficiency proportional fairness in tier 2 increases and that of the total
network also increases.
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Figure 6. The energy efficiency proportional fairness of total two-tier heterogeneous WPCNs with
respect to the association probability of tier 2 for different values of the transmit power of BSs.

5.4. Comparison of Computation Complexity

In order to compare the computation complexity of the two-step sub-optimal algorithm and the
brute-force two-dimensional search algorithm, we show in Figure 7 the different time costs of two
algorithms which obtain the maximal average energy efficiency-based proportional fairness of nodes
with different accuracy of the receive threshold and association probability. Our results show that, with
the increase of accuracy, the time cost on the brute-force two-dimensional search algorithm increases
with increasing exponent rate. The time cost on the two-step sub-optimal algorithm increases slowly
and is always less than that of the brute-force search algorithm. This simulation result shows the
advantage of our proposed sub-optimal algorithm on time complexity. Meanwhile, Figure 7 further
presents that the time cost of two algorithms are almost unchanged with different system parameters
such as density of BSs and nodes. This is because that the time complexity of two search algorithms
depends on the accuracy of the receive threshold and association probability.
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Figure 7. The time cost of brute-force two-dimensional search algorithm and two-step sub-optimal
algorithm with respect to the accuracy of system parameters.

6. Conclusions

In this paper, we studied the energy efficiency proportional fairness for downlink multi-tier
heterogeneous WPCNs. The coverage probability, average number of active nodes, and the amount of
energy harvesting from WPT in networks is obtained as a function of the user association probability
and receive threshold with the aid of stochastic geometry. The original energy efficiency proportional
fairness utility function is designed with the user association probability and receive threshold
as a non-convex optimization problem. We relax the objective problem as a convex optimization
problem according to the properties of receive threshold and association probability. By exploiting
an alternating optimization, a novel suboptimal low-complexity iterative algorithm was proposed
to obtain a suboptimal solution. Simulation results showed that the proposed optimal scheme
achieves a significant improvement in system energy efficiency proportional fairness compared to the
baseline scheme.
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Appendix A

Proof of Lemma 1. From Theorem 1, we know that the first order derivative of UEE with respect to θk
is equal to zero when Ak is fixed. Similarly, we first write the energy efficiency of UE in (7) function
with respect to θk as follows

UEE (θk) =
K

∑
k=1

Ak{log
W

Ak N
+ log (log (1 + θk)) + log[E (Ck)]− log (P̄ + βE[Ck])}, (A1)
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where P̄ = Pt,k + Ps,k − η ∑K
j=1

2π2λj p
2
α
j

α sin( 2π
α )

which is independent of Ak , β = η ∑K
j=1

2π2λj p
2
α
j

α sin( 2π
α )

, and

Ck = exp[− 2πl2

α−2

K
∑

j=1
λj( p̂jk)

2
α (B̂jk)

2
α−1

]. For the sake of simplicity,we make h (Ak) a function of Ak as

shown below

h (Ak) =
2πl2

α− 2

K

∑
j=1

λj( p̂jk)
2
α (B̂jk)

2
α−1, h (Ak) > 0. (A2)

Then we can have that Ck = exp [−h (Ak) θk] and log [E (Ck)] = −h (Ak) θk. Moreover, we can
also get the further simplified expression of UEE (θk) as follows

UEE (θk)

=
K

∑
k=1

Ak{log
W

Ak N
+ log(log(1 + θk))− h (Ak)θk − log[P̄ + β exp (−h (Ak) θk)]}. (A3)

Hence, we define the function with respect to θk given below

UEE,k(θk) = Ak{log
W

Ak N
+ log(log(1 + θk))− h (Ak)θk − log[P̄ + β exp (−h (Ak) θk)]. (A4)

The target implicit function can be obtained via taking the first order derivative with respect to
θk as

P̄+β exp (−h (Ak) θk) = P̄h (Ak)(1 + θk) log(1 + θk), (A5)

where θk is the function of Ak . According to the implicit function theorem, we can get the
following expression

dθk
dAk

= −
LAk

Lθk

= −h(Ak)
′
[βh (Ak) exp (−h (Ak) θk) θk + P̄ log (1 + θk) + P̄θk log (1 + θk)]

h (Ak) [β exp (−h (Ak) θk) + P̄ log (1 + θk) + P̄]
(A6)

< 0.

Hence, θk decreases with Ak.

Appendix B

Proof of Theorem 2. In order to evaluate the convexity of UEE with respect to Ak ,we need to take
derivative of Ak when θk is fixed. To do so, we first write the energy efficiency of UE in (7) function
with respect to Ak given below

UEE

=
K
∑

k=1
Ak log W

Ak N+
K
∑

k=1
{Ak log(log(1 + θk)) + AkE[log(Ck)]− Ak log(P̄ + βE[Ck])},

(A7)

where P̄ and β are the same as proof of lemma 1. By taking a second order derivative of Ak log W
Ak N

with respect to Ak, we get

∂2
(

Ak log W
Ak N

)
∂A2

k
= − 1

Ak
< 0. (A8)
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Notice that the first part of the formulas is concave, we only need to prove that the latter part is
the concave function. Hence, we define the remaining part as the function given below

UEE,k = Ak log(log(1 + θk)) + AkE[log(Ck)]− Ak log(P̄ + βE[Ck]). (A9)

We can obtain from (10) that Ck is a function for Ak. Similarly, by taking a second derivative of
UEE,k with respect to Ak, we have

∂2UEE,k
∂A2

k

= −2mN
′
(Ak)− AKmN

′′
(Ak) +

βm exp(−mN(Ak))N
′
(Ak)

P̄+β exp(−mN(Ak))
− { Ak βE′ [Ck ]

P̄+βE[Ck ]
}′ ,

(A10)

where m =
2πl2Pkλ

α
2 +1
k

α−2 θk, N (Ak) =

∑K
j=1

Aα+1
j

Pjλ
α
2
j

A
α
2 +1
k

which is from the expression of E [log (Ck)] as (10).

Therefore, we have E [log (Ck)] = −mN (Ak) , E′ [log (Ck)] = −mN
′
(Ak) and E′ [Ck] =

−m exp (−mN (Ak)) N
′
(Ak). By taking the derivative of Ak ,we have

dN(Ak)

dAk
=

α + 1

Pkλ
α
2
k

A
α
2−1
k −

( α
2 + 1)

A
α
2 +2
k

K

∑
j=1

Aα+1
j

Pjλ
α
2
j

, (A11)

d2N(Ak)

dAk
2 = −2(α + 1)

Pkλ
α
2
k

A
α
2−2
k +

(α + 2)(α + 4)

4A
α
2 +3
k

K

∑
j=1

Aα+1
j

Pjλ
α
2
j

. (A12)

Hence, we can get the further simplified expression of UEE,k as follows

∂2UEE,k

∂A2
k

=
(α + 2)m

4A
α
2 +2
k

K

∑
j=1

Aα+1
j

Pjλ
α
2
j

(− αP̄ exp(mN(Ak))

P̄ exp(mN(Ak)) + β
) < 0. (A13)

Therefore, it is obvious that UEE,k is concave function, so UEE is also concave function.
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