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Abstract: This paper presents a miniaturized Doppler radar that can be used as a motion sensor
for low-cost Internet of things (IoT) applications. For the first time, a radar front-end and its antenna
are integrated on a multilayer cellulose-based substrate, built-up by alternating paper, glue and
metal layers. The circuit exploits a distributed microstrip structure that is realized using a copper
adhesive laminate, so as to obtain a low-loss conductor. The radar operates at 24 GHz and transmits
5 mW of power. The antenna has a gain of 7.4 dBi and features a half power beam-width of
48 degrees. The sensor, that is just the size of a stamp, is able to detect the movement of a walking
person up to 10 m in distance, while a minimum speed of 50 mm/s up to 3 m is clearly measured.
Beyond this specific result, the present paper demonstrates that the attractive features of cellulose,
including ultra-low cost and eco-friendliness (i.e., recyclability and biodegradability), can even be
exploited for the realization of future high-frequency hardware. This opens opens the door to the
implementation on cellulose of devices and systems which make up the “sensing layer” at the base of
the IoT ecosystem.

Keywords: Doppler radar sensors; green electronics; all-natural electronic; circuits on cellulose;
paper-based substrates; flexible substrates; substrate integrated circuits; Internet of things (IoT)

1. Introduction

In recent years, Internet of things (IoT) has been driving academic and industrial research [1,2].
According to the IoT vision, objects are able to gather information directly form the surrounding
environment, to communicate among them by means of machine-to-machine (M2M) protocols, and
address this information to the Internet without any human intermediation: the “smart object” concept
has been coined. It is evident that the electronic hardware of these smart objects has to be conceived
starting from radically new paradigms. First, in view of the massive deployment of smart objects,
ultra-low cost fabrication technologies of on-board electronics have to be pursued in order to minimize
the economic impact of the added smart capabilities and hopefully maintain it negligible. Second, the
electronics added to provide everyday items with autonomous sensing and communication capabilities
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have to be consistent with their life cycle. This means that the hosted electronics must be biodegradable
or recyclable.

An impressive datum concerns the latter point: the United Nations estimates that humans throw
away about 50 million metric tons of electronics every year [3] and this number will surely increase
in the IoT era. The pollution associated with the electronic waste is mainly due to printed circuit
boards (PCB). Glass-reinforced substrate materials such as FR4 are dangerous because of their dust
and because they contain brominated bisPhenol-A (BPA) epoxy resins. One way to address such
a problem is to substitute standard PCB materials with bio-degradable materials such as, for instance,
cellulose-based composites [4]. The use of these composites have already been demonstrated even at
microwave frequencies [5–9]. Up to now, however, only very simple radio frequency (RF) building
blocks, mainly antennas, are available on cellulose. This contribution focuses on these hardware
implications, discussing, as a case of study, a typical microwave-wave sensor, implemented according
to the philosophy proposed by Savage [3]. Without lack of generality, we consider a motion radar
sensor for low-cost IoT applications. The detection of motion, indeed, is a well-known problem
with applications ranging from safety (detection of dangerous moving objects), security (anti-theft
systems) and health-care (detection of the heartbeat and breathing rates) [10,11], to building automation
(intelligent solid-state lighting systems), traffic monitoring [12,13] and robot control. A review
of recent technical advances in Doppler radars for healthcare applications can be found in [14],
and the basics of microwave doppler radar systems for biomedical applications are investigated
in [15]. The signal reflected for instance by the chest and heart of a person contains information
about cardiac, respiratory, and arterial movements [15–17], as well as about blood flow velocity in
major vessels [15]. Electromagnetic (em) waves, indeed have advantages with respect to ultrasonic
medical imaging: ultrasonic sensing requires contact of the source and receiver with the human body,
whilst the penetration capability of non-metallic objects by em signals allows for contactless and
non-invasive monitoring [16]. Radar technologies can also be used in wireless sensor networks to
collect spatio-temporal data from animals and to model their movement behavior [18,19]. In this
perspective, one can observe that the Doppler radar has the advantage of providing a completely
automatic activity recognition system. It can penetrate barriers which obscure optical systems and it
operates over long distances, regardless of whether it is day- or night-time. Another very interesting
application is the measurement of surface-flow velocity of rivers for the environmental monitoring.

Radar sensors have evolved from bulky waveguide structures [20] to single-chip
solutions, the latter based on silicon Complementary Metal-Oxide Semiconductors (CMOS) [21],
Silicon-Germanium (SiGe) Bipolar-Complementary Metal-Oxide Semiconductors (BiCMOS) [22] or
III-V [23,24] processes. These sensors rely on Doppler [25–27] or Frequency-Modulated Continuous
Wave (FMCW) radar architectures [28,29]. Finally, several products have been placed on the
market [29,30]. All these designs use standard electronic technologies, mostly based on planar circuits
and glass-reinforced PCBs. Recently a FMCW ground penetrating radar (GPR) front-end was designed
on a paper substrate, but it operates in the Very High Frequency (VHF) – Ultra High Frequency (UHF)
bands frequency range [31].

In this contribution, a Doppler radar sensor for motion detection is proposed. In particular,
the whole radar front-end and its antenna are fabricated on cellulose and are experimentally
characterized. The originality of the proposed solution with respect to a previous work by our
group [32] lies in the fact that for the first time, a multilayer cellulose substrate is used to integrate
the whole front-end in a very compact size (comparable to that of a postage stamp). Furthermore, the
radar is modeled in a theoretical way: the intrinsic front-end sensitivity γ is introduced and verified
against experiments. The multilayer substrate is composed by two photo-paper sheets glued together,
the ground plane being in the middle, the antenna and the electronic circuitry being on the top and
bottom faces, respectively. The metal tracks are realized by utilizing a copper adhesive laminate
in order to have a low-loss conductor [33]. The radar sensor works at 24 GHz, a record frequency
for circuits on cellulose with such complexity, and is validated considering real-case applications.
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The prototyped front-end uses an external voltage-controlled oscillator (VCO), although an effort to
build an oscillator on cellulose is ongoing. At the moment the main difficulties are represented by the
limited Q-factor of paper-based resonators and by the package parasitics of available transistors.

The fact that such a complex system performs as expected, according to the performance
of the single building blocks, testifies to the robustness of the proposed technology. A campaign
of measurements has been carried out to analyze and characterize the proposed front-end.
The front-end operation is analyzed from both a theoretical and an experimental point of view.
Through this study we prove that green electronic systems are capable of operating up to the boundary
between microwaves and millimeter-waves, providing recyclable and ultra-low cost solutions for the
electronic hardware of the upcoming era.

2. Basic Theory and Front-End Sensitivity

The sensor architecture is shown in Figure 1 and is based on the Doppler radar proposed
by Catena et al. [34]. It consists of an external oscillator operating at 24 GHz, a single-balanced
diode mixer, a branch-line coupler and a planar patch array antenna. The last three blocks are
fabricated on cellulose.
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Figure 1. Block diagram of the radar sensor. The circuit uses a branch-line power divider to couple the
voltage-controlled oscillator (VCO) to both the antenna and the mixer. If the target moves, a Doppler
frequency shift fδ is produced in the reflected wave and is detected by the mixer circuit. The resistance
RIF and the capacitor CIF constitute a low-pass filter and terminate the mixer output port. LO: local
oscillator; RF: radio frequency.

In Figure 1 the signal generated by the external voltage-controlled oscillator (VCO) is equally
divided into two parts by using a hybrid branch-line coupler: the first half of the signal feeds the
antenna (transmitting path), while the second half feeds the local oscillator (LO) port of the mixer.
The signal coming from the antenna is sent to the radio frequency (RF) port of the mixer (receiving path)
and, thereon, to the oscillator. The latter is obviously an unwanted signal but, thanks to the low power
level of the received wave, it does not affect the oscillator operation. The separation between transmitter
and receiver is guaranteed by the isolation parameter of the quadrature hybrid (branch-line coupler);
the isolation is around 20 dB for the implemented circuit. Such a solution, although non-optimal
(there are at least 3 dB of losses in the receiving path), allows us to avoid the usage of expensive and
bulky components such as circulators and can be realized with a fully planar geometry. A mathematical
treatment of the leakage between transmitting (TX) and receiving (RX) channels of a Doppler radar
can be found in [25].
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A detailed theoretical description of Doppler radar motion sensors is given by Droitcour et al. [10,35]
and will not repeated here. The Droitcour papers also explain the range correlation concept, i.e., the basic
mechanism that allows a small Doppler shift (down to a few Hz) to be detected on top of a microwave
carrier (24 GHz in our case) that is affected by the oscillator phase noise. According to these studies,
the output signal vIF(t) of a Doppler radar can be modeled, in the time domain, as follows:

vIF(t) = α cos
[

θ +
4 π x(t)

λ
+ ∆φ(t)

]
(1)

α =

√
2 GRX

PTX λ2 G2
A σ

(4 π)3 d4
0

RIF (2)

θ =
4 π d0

λ
+ θ0 (3)

In these equations d0 is the target distance at t = 0; x(t) is the time varying target displacement,
which is assumed to be much lower than d0; ∆φ(t) is the residual phase noise; λ is the carrier
wavelength; and θ0 is the phase offset. The remaining quantities can be defined with reference
to Figure 1 and are related to the front end. In particular: PTX is the transmitted power; GA is the
antenna gain (with respect to the isotropic radiator); GRX is the available power gain of the whole
front-end; RIF is the mixer termination resistance (i.e., where the output voltage is developed); and σ

is the radar cross-section of the target. The scale constant of the front-end, α, is estimated using the
radar equation in a way similar to what done by [35,36].

The output of the front-end is the IF voltage vIF; as already mentioned it is obtained by mixing
the received voltage signal with the LO signal and low-pass filtering the mixer output. Such a filtering
action is accomplished by the capacitor CIF.

The front-end in Figure 1 can work in two modes: in Doppler radar and Doppler vibrometer
mode [37]. In the first case, (Doppler radar) the displacement x(t) can be expressed as:

x(t) = v t (4)

where v is the relative speed of the moving target with respect to the radar, more specifically, the target
velocity component along the line connecting the target itself with the radar antenna. This implies that
the second term of the argument in (1) can be written as:

4 π x(t)
λ

= 2 π fδ t (5)

fδ being the well-known Doppler frequency:

fδ = 2 f0
v
c0

(6)

where f0 is the carrier frequency (24 GHz in our case) and c0 is the speed of light in a vacuum
(about 3× 108 m/s). As a result (1) becomes:

vIF(t) = α cos [2 π fδ t + θ + ∆φ(t)] (7)

Computing the quantity 2 f0/c0, a Doppler frequency of about 160 Hz per m/s of relative speed is
estimated. This means that, when an object is moving, the Doppler radar sensor can detect its speed
and thus its presence.
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On the other hand, when θ is an odd multiple of π/2 and x(t)� λ, the radar works as a Doppler
vibrometer, as illustrated in [10]. Under this condition, the cosine function in (1) can be approximated
by its argument:

vIF(t) ≈ α

[
4 π x(t)

λ
+ ∆φ(t)

]
(8)

This is a significant result showing that the output signal is proportional to the displacement
x(t) summed to the residual phase-noise ∆φ(t) and that the front-end can be used as a contactless
vibrometer, i.e., a scientific instrument capable of measuring the amplitude and frequency of a
mechanical vibration. When θ in (1) is an integer multiple of π, instead, the modulation sensitivity
is decreased and the system no longer works as a vibrometer, [10]. These null points occur with a
periodicity equal to λ/4 of the radar-to-target distance d0; i.e., every 3.1 mm at 24 GHz. As a final
consideration, it is important to note that the same scale constant α can be used to model the output
voltage of the front-end vIF in both operation modes. Such a constant can be written as the product of
the intrinsic front-end sensitivity γ times a factor accounting for the distance (λ

√
σ/d2

0):

α = γ

(√
σ λ

d2
0

)
(9)

γ =

√
2

PTX G2
A GRX

(4 π)3 RIF (10)

On the basis of the previous equations one can estimate the instrinsic sensitivity of the
cellulose-based front-end. It operates at f0 = 24 GHz (λ = 12.5 mm) with a transmitted power
of PTX = 5 mW (7 dBm). Assuming an antenna gain GA = 7.4 dBi (four patch array) an overall front-end
gain GRX = −14 dB (passive receiver) and a mixer termination resistance RIF = 240 Ω, γ ≈ 38.2 mV is
obtained. More details about these system parameters can be found in the Appendix A, where the
building-blocks of the radar sensor are briefly discussed.

3. Materials and Methods

The 24-GHz front-end is manufactured using the adhesive copper-laminate technology
described by Alimenti et al. [33,38]. This technology relies on a copper adhesive tape shaped
by a photo-lithographic process and then transferred to the cellulose substrate by means of a sacrificial
layer. Photo-paper by Mitsubishi Electric is adopted as a substrate material in all prototypes.
The multilayer structure is composed by two cellulose-based substrates and three metal layers,
as described below. The dielectric characteristic of the substrate was determined by evaluating
the phase delay of microstrip lines up to 30 GHz, as reported in [39].

3.1. Adhesive Copper-Laminate Process

The process is illustrated in Figure 2. First, a photo-resist film is deposited on the metal surface
of an adhesive copper laminate. Using a standard photo-lithography approach, such a film is patterned
by means of a mask with the circuit shape, an UV light source and a developer (a NaOH solution with
pH 12) to remove the unimpressed film (see Figure 2a). Then, the metal surface is etched by means
of ferric chloride as in Figure 2b,c. After etching, the adhesive material is exposed at the metal side
while it remains protected on the other side. At this point a sacrificial layer is applied on the metal
surface and then the protection layer is removed (see Figure 2d). The sacrificial layer allows keeping
the relative distances among the circuit traces, although they are not physically connected. In our case
the sacrificial layer is a paper-adhesive tape. The adhesive of the sacrificial layer must be less strong
than the glue of the copper tape itself to avoid accidental trace removal. As final steps, the etched
metal is transferred to the hosting substrate (Figure 2e), and finally, the sacrificial layer is removed,
Figure 2f. The last action also removes the exposed adhesive material.
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Figure 2. Fabrication process. (a) Photo-resist deposited on the metal layer and patterned using a mask,
UV and a developer. (b) Wet etching of the metal surface. (c) Adhesive laminate after the etching of the
metal layer: the adhesive material underneath is exposed. (d) Application of the sacrificial layer and
removal of the protection layer. (e) Circuit transferred to the host substrate. (f) Sacrificial layer removal;
the last step also removes the adhesive material. M: metal, A: adhesive, P: protection, R: photo-resist,
S: sacrificial layer, SUB: host substrate.

3.2. Fabrication of The Multilayer Cellulose-Based Front-End

In order to reduce the occupied substrate area, a completely new front-end with respect to [32]
is implemented. It adopts the multilayer substrate reported in Figure 3a. In this geometry the top
layer is devoted to the antenna array, while the bottom layer hosts the remaining front-end circuitry
(mixer and branch-line coupler). The top and the bottom metal layers share a common ground plane
located in the middle of the structure. The top (antenna) and bottom (active circuitry) layers are
connected by a via-through fabricated with a copper wire of 190µm in diameter. To allow for such
a connection without any signal short-circuit, a circular portion of the metal surrounding the via is
etched from the ground plane. The main substrate parameters are quoted in the caption of Figure 3.
The frequency response of such an interconnection was carefully optimized via electromagnetic
simulation (see Appendix A).



Sensors 2017, 17, 2090 7 of 17

w50

plane
ground

antenna
side

active
side

t m

t a

tan δrε

t ar,aε

r,aε

rε tan δ

r,aε

r,aε

t a

t a

t m

σ m

σ m t m

h

h

(a) multilayer substrate

cellulose−basedmetal
substratelayer

adhesive
layer

(b) legenda

Figure 3. Multilayer substrate. (a) Cross-section of the multilayer substrate structure adopted
for the fabrication of the 24 -GHz radar front-end. (b) Materials. Bulk copper with conductivity
σm = 5.8× 107 S/m is adopted to implement all the metal layers. The substrate parameters as follows:
h = 230µm, ta = 30µm, tm = 35µm. The photo-paper and the acrylic adhesive relative permittivity
are: εr = 2.9 and εr,a = 1.3 respectively. The photo-paper loss tangent is: tan δ = 0.08.

3.3. Building-Block Design and Characterization

The proposed 24-GHz radar front-end is a complete system operating at quite a high frequency.
To ensure that it works correctly, both an accurate design and characterization methodology are
adopted. First of all, the front-end is divided into four basic building blocks, namely: a patch
array antenna (to transmit and receive the radar signal); a mixer (to extract the Doppler frequency
component); a branch-line coupler (to couple together the antenna, VCO and mixer) and a via-through
interconnection (to connect both sides of the multilayer cellulose-based circuit). Secondly, each of
the above building blocks is designed as a separate circuit. The design activity relies on basic design
formulas, circuit simulations simulations and, when needed, 3D electromagnetic numerical analyses.
The latter methodology is particularly relevant to optimize all the distributed components of the radar
front-end such as the antenna, the branch-line coupler, the via-through interconnection and all the
microstrip transmission lines. Finally, as a third step, the building blocks are fabricated on cellulose as
stand-alone circuits and experimentally characterized. The measured frequency responses and figure
of merit (e.g., the conversion loss of the mixer) are carefully compared with the simulated performance
confirming, in all cases, the correctness of the design. The design and measurement of the main
building blocks, namely: antenna, branch-line coupler and mixer, are provided in the Appendix A.

4. Results

The implemented front-end is shown in Figure 4. First, the antenna is etched from the Cu laminate
and transferred to one sheet of photo paper (see Figure 4a). Then, with the same approach, the
microwave circuitry is realized and attached to the second substrate (see Figure 4b). Finally the ground
plane is positioned between the two substrates (i.e., the antenna and the microwave circuit substrates)
and everything is glued together. Note that, during the last step, all the pieces are aligned by means of
an optical instrument. A small hole (800µm in diameter) is previously etched on the ground plane to
allow for a via-through connection (wire measuring 190µm in diameter) between the antenna and the
other circuit components.
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(a) top (b) bottom

(c) demonstrator

Figure 4. Fabricated 24-GHz front-end on a multi-layer cellulose-based substrate. (a) Antenna
side. (b) Active circuit side. (c) Demonstrator including external VCO, intermediate frequency (IF)
amplification and triggering stages. The used substrate area is 20× 27 mm2. The realized cellulose
circuit has the size of a postage stamp.

Once the multilayer board is prepared, two beam-lead Schottky diodes are soldered to the circuit
along with the other few components of the front-end: a 0 Ω resistor used as a jumper, a 240 Ω resistor
representing the intermediate frequency (IF) load of the mixer (RIF) and a 10 -nF filtering capacitor at
the IF output (CIF). The antenna has a gain of 7.4 dBi with a 48-degree half-power beam-width [40].
The front-end is 20 mm wide and 27 mm high, resulting in an overall size comparable to that of a
postage stamp.

In order to verify the Doppler radar operation, the demonstrator of Figure 4c is implemented. It is
composed of a voltage-controlled oscillator (VCO) based on the Hittite HMC739LP4 (Analog Devices,
Norwood, MA, USA) integrated circuit. Such an oscillator provides the 24-GHz carrier at the front-end
with an available power of about 11 dBm (see the device data sheet). Note that the transmitted power
is less than 11 dBm because of the branch-line coupler insertion losses; these are equal to about 4 dB.
As a result the transmitted power PTX is around 7 dBm (i.e., 5 mW in linear scale).

The oscillator is connected to the cellulose-based front-end by means of two Southwest coaxial
to microstrip launchers. Then, the Doppler signal coming out of the IF port of the mixer, is sent to a low
frequency (LF) amplifying and triggering unit. This unit is based on a low-cost operational amplifier
(OPA) and has an amplifying chain formed by three inverting stages in cascade. These stages are with
AC coupled to the front-end to produce a high-pass filter with a cut-off frequency of 1 Hz. The overall
LF gain at mid-band is about 67 dB and can be further increased to improve the range of the radar
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sensor. The amplifier chain is followed by an inverting Schmitt’s trigger with adjustable thresholds.
Such a trigger is used to provide a digital output that can be acquired by a micro-controller unit.

4.1. People Detection

The following experiments are aimed at detecting a person in a working environment such as an
office [41]. This detection could be useful to activate an intelligent lighting system (lights on only when
a person is present) and thus save a significant amount of electric power. The advantage of radars over
IR movement sensors is that they are much more sensitive and that they can reliably operate in harsh
environments. The scenario is illustrated in Figure 5a.
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Figure 5. People detection results. (a) Experimental setup. (b) Analog output corresponding to a person
at an 8-m distance with a relative speed of 1.7 m/s. (c) Analog and digital outputs associated to a person
at a 3-m distance that slowly moves. In the last case the relative speed is of only 0.4 m/s. These signals
are measured after the amplification and, possibly, after the triggering stages of the demonstrator
(see Figure 4).

Figure 5 also reports the Doppler signals obtained from a walking person in different conditions.
We started with a person located 8 m from the antenna. Such a distance is in the range of the developed
sensor with 67 dB of LF gain. The analog output of the radar is shown in Figure 5b. The waveform
period is 3.7 ms and thus the Doppler frequency is 273 Hz. As a result, the radial velocity is 1.7 m/s.
Observing this graph it is also interesting to note that a low frequency oscillation is superimposed to the
273 Hz component. This is due to the swinging nature of the walking motion [13]. In Figure 5c the
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analog and digital outputs of the radar are recorded instead. In this case a person at a 3-m distance is
considered. As the movement begins, the sensor immediately detects it; the pulse period is about 15 ms
corresponding to a velocity of about 0.4 m/s. With other experiments we found that a minimum speed
of 50 mm/s (Doppler shift equal to 8 Hz) is clearly measured up to a distance of 3 m. This demonstrates
that the radar can detect very small movements and that it can be reliably used as a motion sensor.

In order to provide a validation of the model stated by Equations (9) and (10), the front-end
output was measured for different target distances. The target was again a walking human (European
male, height 1.8 m and weight 70 kg) and an indoor experiment was carried out, in a large university
laboratory with several metallic closets. First the output voltage of the system in Figure 4 was recorded
with the DS1102E digital oscilloscope (Rigol Technologies, Beijing, China) and an FFT was performed
on the stored data. As an example, Figure 6, reports the data corresponding to the 6 m experiment.
The main FFT peak identifies both the Doppler frequency (x-axis) and the output voltage (y-axis). The
latter value was then divided by the LF gain of the operational amplifier, ALF = 2130, in order to
get the voltage amplitude at the front-end output and thus, according to Equation (1), α. The results
of this study are reported in Table 1, column 4, together with the model predictions, column 5. The
model values are obtained for γ = 38.2 mV, as evaluated at the end of Section 2, and assuming a radar
cross-section σ = 4 m2, see [42,43]. With such an assumption one can notice that the experiments are
within ±15% with respect to the data predicted by the model.
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Figure 6. People detection results. (a) Time domain output signal corresponding to a person at
a 6-m distance with a relative speed of about 1.5 m/s. (b) Frequency domain output signal obtained
performing the FFT of panel (a). The main peak corresponds to a Doppler frequency of 244 Hz.

Table 1. People detection: scale constant α.

d0 fδ v α (µV)
(m) (Hz) (m/s) Measurements Model

4 195 1.2 52.6 59.7
6 244 1.5 25.8 26.5

195 1.2 25.1
8 273 1.7 16.9 14.9

5. Discussion

The state-of-the-art for Doppler radar movement sensors is summarized in Table 2.
The design of Droitcour et al. [10] is implemented in 0.25 -µm CMOS technology and is applied
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to cardiopulmonary monitoring, thus confirming that this kind of radar is capable of detecting a very
low relative speed. The paper indicates that the measurements are taken a 0.5-m distance. This means
that there is margin for a 12 -dB gain increase and thus for range doubling.

Table 2. State-of-the-art for doppler radar sensors.

Ref. Technology f0 Antenna Gain PTX Range vmin Size
(GHz) (dBi) (dBm) (m) (mm/s) (mm2)

[10] 0.25 -µm CMOS 2.4 8 10 0.5 n.a. n.a.
[25] RO3003 and FR4 24 7 15 2 0.5 90× 65
[27] LTCC and FR4 24 n.a. n.a. n.a. 0.8 30× 30
[29] LTCC 24 n.a. 20 (*) 70 n.a. 34× 21
[30] LTCC 24 8.6 15 (*) 30 n.a. 25× 25
[44] discrete comp. 24 18 6 300 n.a. 79× 79
[32] cellulose single-layer 24 7 3 n.a. n.a. 35× 28

this work cellulose multilayer 24 7.4 7 10 50 20× 27

(*) Effective isotropic radiated power (EIRP) in dBm.

Two other sensors for low speed detection are reported by Lee et al. [25,27]. These sensors work
at 24 GHz and adopt a discrete component electronics on glass-reinforced (RO3003 and FR4, Rogers
Corporation, Rogers, CT, USA) or LTCC substrates. The minimum detectable speed reported by the
authors (vmin in Table 2) is 0.5 and 0.8 mm/s. The measurements are taken a 2-m distance.

The authors of [29,30] instead provide examples of commercial solutions. Both sensors are
implemented on an LTCC substrate and are suitable for people detection, robot guidance and
automotive applications. The datasheet of the first sensor [30] reports a maximum distance of 30 m.
The second sensor [29] is an FMCW radar that, probably can also be used in Doppler mode; the
maximum range is 70 m.

Finally, the paper by Alimenti et al. [44], describes a sensor for traffic monitoring. To achieve
a long detection range two separate 18-dBi antennas are used (one for the transmitter and one for the
receiver), according to a pseudo-monostatic architecture. Furthermore, to achieve a long detection
range, the receiver is equipped with a 10-dB low noise amplifier (LNA) and with a 90-dB amplifying
chain at low frequency.

This survey highlights that the presented front-end works at a record frequency for cellulose-based
circuits. Indeed, no complete circuit on cellulose, similar to that described, can be found in the
literature. Furthermore, its performance compares well with those of already published designs based
on standard substrates and microelectronic technologies. In particular it is worth noticing that the
detection range of the developed front-end is 3 m for the minimum target speed of 50 mm/s and about
10 m for a person walking with a speed higher than 1 m/s. This range can be further increased if the
gain of the OPA chain is increased. To this purpose it should be considered that the output front-end
noise (i.e., the noise measured at the output of the 67 -dB OPA with the LO switched on) is about
10 mV root mean square (RMS).

Concerning fabrication tolerances, we notice that the most sensitive component of the radar
front-end is the antenna, since it is constituted by resonant patches. The resolution of the used
lithography is of the order of the metal thickness, i.e., around 35µm. With such a resolution we are
able to control the resonant frequency of the radiating elements to within 0.6% with respect to the
value predicted by computer simulation [40]. Similar deviations were obtained for all the prototypes
realized in more than two years of experiments.

The circuit was fabricated in the spring 2014 and, since then, it has been tested many times without
showing performance degradation. During the last three years it has been stored in a cabinet, without
any particular precautions. On this basis, one can say that the proposed technology is robust enough
to operate in indoor environments.
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In conclusion, this paper demonstrates that use of circuits on cellulose-based substrates is feasible
up to the boundary between microwave and millimeter-waves. In particular, an ultra-low cost Doppler
radar front-end operating at 24 GHz is integrated, for the first time, in a multilayer cellulose substrate
made up of photo-paper sheets. The front-end is proven to be an excellent motion sensor capable
of detecting a walking person up to a distance of about 10 m. A minimum speed of only 50 mm/s
was clearly measured, even at a distance of 3 m. The estimated cost of the implemented front-end
is less than $2, when produced on a large scale. Finally, the extension of the green approach to the
entire system will be the topic of future research; in this perspective the focus is on the implementation
of paper-based oscillators capable to operate at 24 GHz. The above results constitute an important
step toward the adoption of green electronic processes for disposable sensors and for the electronic
hardware in the upcoming IoT era.
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Appendix A.

This appendix describes the circuit building-blocks of the cellulose-based Doppler radar front-end,
their design, and their experimental characterization.

Appendix A.1. Via-Through Optimization

One of the key elements in a multilayer circuit is the via-through connection, i.e., the structure
that allows metal tracks on different levels to be in galvanic contact. Such a structure is realized using a
vertical via that goes from the bottom layer (active side) to the top layer (antenna side) of the front-end
board. The central ground plane is discharged in a circular hole to avoid signal shorts.

The via-through shows parasitics of both an inductive (via connection) and capacitive (fringing
E-field at microstrip end) nature: at 24 GHz these parasitics become critical, thus altering the circuit
frequency response significantly. As a consequence, the via-through structure is optimized as follows.
First, a simple connection between a 50 Ω microstrip line on the bottom layer to another identical line
on the top layer is considered as in Figure A1a. Then, the via diameter is selected. In our experimental
prototypes the via is implemented by means of a 0.2 -mm wire. Finally, the diameter of the discharged
ground hole (Dh in the figure) is optimized by means of electromagnetic simulations in order to reduce
the return loss of the transition.
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Figure A1. Via-through connection in a multilayer cellulose circuit: structure (a) and simulated
scattering parameters (b). The main geometrical parameters are the hole diameter Dh = 1.05 mm, and
via diameter of 0.2 mm.
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Figure A1b reports the via-through return loss simulated with the CST software tool.
The optimized hole diameter Dh, determined through extensive simulations, is equal to 1.05 mm.
As can be seen from the figure, the obtained reflection coefficient is lower than −20 dB in the whole
frequency band up to 30 GHz. This result shows the theoretical feasibility of multilayer circuits
on cellulose.

Appendix A.2. Branch-Line Coupler

The branch-line coupler is a well-known 90◦ hybrid junction widely used at microwave
frequencies to split (or divide into two equal parts) an RF signal. Its name comes from the layout of the
most common configuration which has two pieces of lines, a quarter-wave long, connected in parallel
with two other lines at a mutual distance of λ/4 as well. In the case of the present circuit the ring
branch-line coupler is used; the latter one features curved branches rather than straight ones and is
more suited to operate at millimeter-wave frequencies. The mathematical description of planar hybrid
junctions is reported by several basic text books such as [45] (pp. 379–383).

The present ring coupler is designed with the CST electromagnetic simulator. The fabricated
layout is shown in Figure A2a, whereas Figure A2b reports the scattering parameters obtained
experimentally. The measured transmission coefficients on the direct (“direct 3-4” in the figure)
and coupled (“coupl. 3-1” in the figure) ports are equal to about −7 dB. This result is affected
by the losses of the lines used to connect the device to the test fixture used in the experiments.
De-embedding these losses a coupling factor around −4 dB is obtained; such a value is within 10%
with the electromagnetic simulations.

(a) branch-line prototype
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Figure A2. Branch-line coupler and patch antenna array. Branch-line: manufactured prototype
(a) and experimental results (b). The coupler diameter is about 4.4 mm. After Reference [39].
Antenna array:manufactured prototype (c) and experimental results (d). The antenna dimensions are
20× 20 mm2. After Reference [40].
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Appendix A.3. Patch Array Antenna

The antenna system is shown in Figure A2c and consists of four rectangular patch elements
configured as a 2× 2 array. A detailed description of such a component is reported in [40]. The array
layout is designed to obtain a broadside radiation while avoiding undesired grating lobes. In order to
tune the patch resonance to the operating frequency (24 GHz in the present case), the length of each
single radiating element is optimized by means of the CST electromagnetic simulator.

The feeding network of the antenna array is formed by three power dividers. The first two power
dividers are implemented on the same metal layer as the radiating elements by using two quarter-wave
impedance transformers connected to two T-junctions. The third power divider, instead, is obtained
adopting the via-through wire which connects the antenna to the bottom metal layer, where the
front-end circuitry is placed (see the previous section).

The experiments carried out on the realized prototype show a gain of about 7.4 dBi with a radiation
efficiency of 35%, where the latter is due to the substrate losses impacting on both the radiating
elements and the feeding network. It is worth noticing here that the measured efficiency is in good
agreement with the 37% value obtained from simulations (CST). Figure A2d reports the comparison
between the measured and the simulated radiation diagram (H-plane cut) at the operating frequency.
The agreement between experiments and model is within the measurement accuracy. The obtained
half power beam-widths are 55◦ in the E-plane and 48◦ in the H-plane. Moreover, the antenna has an
input reflection coefficient of about −29 dB at the center frequency and an operating bandwidth of
540 MHz (reflection coefficient lower than −20 dB).

Appendix A.4. Single-Balanced Diode Mixer

The mixer is a key building block in microwave sensors and telecommunication front-ends, and
allows for the frequency conversion from the RF to the intermediate frequency (IF), which is performed
by means of the LO signal. In Doppler radars it is used to detect the small frequency variations between
the transmitted and received signals.

The mixer adopted in our sensor is described in [46] and the manufactured layout is shown
in Figure A3a. It uses a single-balanced diode topology and a ring structure. Only three lumped
components are needed, namely: two low-barrier Schottky diodes and a 0 Ω resistor, used as a jumper.
A miniaturization of the mixer is obtained by placing the two diodes and the two quarter-wave
open-stubs (used to short-circuit the RF signals) inside the ring. Such a ring has a perimeter of 3λ/2
and a characteristic impedance of 70.7 Ω. Other stubs, outside the ring, are used to match the RF
and LO ports to 50 Ω and to provide a further isolation between IF and RF/LO ports. The design is
performed with the ADS Harmonic Balance (HB) simulator.

(a) layout
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Figure A3. Manufactured layout (a) and experimental results (b) of the Schottky diode mixer.
No components are soldered to the printed circuit board (PCB) shown in (a). The active area of
the structure is about 4.6 mm in diameter. Measured and simulated conversion loss are compared
in the plot; these results are obtained by sweeping the LO power between −10 dBm and 5 dBm with
fRF = 24 GHz, fLO = 23.95 GHz, f IF = 50 MHz, and PRF = −30 dBm. After Reference [46].
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The aforementioned mixer is intended for zero- or low-IF operation and works at 24 GHz,
with a bandwidth of ±150 MHz. The conversion loss, defined as the difference between the (available)
RF and the (delivered) IF powers in dBm, is used to evaluate the circuit performance. The experimental
results are reported in Figure A3b and are obtained by applying a 24 -GHz RF and a 23.95 -GHz
LO signal respectively to the mixer ports. As a consequence, an IF signal at 50 MHz is obtained:
the measured conversion loss in such a condition is around 10 dB. The LO to RF isolation at center
frequency is better than 35 dB.

The front-end gain, GRF in Figure 1, can be estimated by summing the mixer conversion losses with
the branch-line coupler insertion losses and changing the sign to the result: GRF ≈ −(10+ 4) = −14 dB,
equivalent to about 1/25 in linear scale.
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