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Abstract: Monitoring the air particulate concentration both outdoors and indoors is becoming
a more relevant issue in the past few decades. An innovative, fully automatic, monitoring system
called CleAir is presented. Such a system wants to go beyond the traditional technique (gravimetric
analysis), allowing for a double monitoring approach: the traditional gravimetric analysis as well as
the optical spectroscopic analysis of the scattering on the same filters in steady-state conditions.
The experimental data are interpreted in terms of light percolation through highly scattering matter
by means of the stretched exponential evolution. CleAir has been applied to investigate the daily
distribution of particulate matter within the Napoleonic Museum in Rome as a test case.
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1. Introduction

The Paris Climate Agreement of 3 September 2016 contains four major commitments for the signing
states, one of them being to stop increasing the greenhouse gas emissions as soon as possible. The term
“greenhouse gas” refers to carbon dioxide, methane, particulate matter, nitrous oxide and ozone.
Their control could slow global warming while at the same time improving public health and
agricultural yield [1]. Therefore, monitoring the inhalable fine particulate in the air is a topical issue
and requires a more accurate and versatile equipment in accordance with current legislation [2–7],
which provides only gravimetric measurements. This technique is subject to rigorous standards
to limit errors and the influence on the weight of aerosols, made up of noncombustible water or
hydrocarbons. It has numerous disadvantages—first of all the time lag between sampling on filters and
the determination of deposited particulate matter, which can also be very relevant at the daily time scale.
On the other hand, it has the capability of sampling air on physical media that can be stored, promoting
the creation of air databases for postprocessing. Other techniques have been developed parallel to
the gravimetric one to speed up the measurement: the nephelometric of diffused light at fixed angles,
usually at 90◦ from gaseous samples containing particulate matter; scattering spectroscopy; beta beam
attenuation; optical absorption or aethalometry. Scatter-based techniques are usually very fast and
allow to monitor particulate matter in real time; on the contrary, they are usually unclear and incur
serious measurement errors [8–11]. The beta radiation attenuation is a well-established technique with
many commercial devices available, but it has never been officially adopted as a monitoring technique
for the use of ionizing radiation.
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The measurement of optical attenuation, the aethalometer, appeared for the first time in 1984 [12],
mainly to measure the fraction of black carbon present in particulate matter. Later on, aethalometry
was used in a spectroscopic manner [13] in order to evaluate the optical absorbance, which was
demonstrated to scale as one-half of the optical depth instead of linearly as stated by the Beer’s law.
Aethalometry uses long strips of paper to collect dust, with an automatic movement of the paper
when dust gives an exponential decreasing of the transmission as high as 25% of the initial
value. Consequently, aethalometers always analyze transient regimes, with rapid variations due
to the exponential trend.

In order to overpass such undesirable behavior, we have considered the reverse possibility to
analyze filters in their stationary regime, i.e., when the amount of dust reaches almost a steady state,
by means of CleAir. CleAir is a fully automatic system that samples the air on quartz fiber filters,
according to EN 12341:2014 [6] and measures them in situ using a spectroscopic optical transmission
technique using six visible wavelengths (455, 470, 528, 590, 617 and 625 nm). It was designed and built
by the Department of Fundamental and Applied Science for Engineering in Sapienza University in
Rome [14]. CleAir measurement is similar to the aethalometric [13] technique but it is performed in
order to focus the attention on the attenuation connected with the scattering. The gravimetric and
the optical techniques ensure a cross-check of the sampled filters, which could be very important in
Italy or in Europe where the only legally recognized technique is the use of gravimetrics. CleAir both
provides a fast optical analysis of the air quality and makes the 24-h filters available for gravimetric
measurements according to the European standard [6]. Therefore, a calibration of the optical data
performed during short temporal ranges is possible in comparison with 24-hour filters. The total
flexibility of CleAir lets the device to carry on sampling on both long (24 h) and short (4 h) temporal
ranges, in order to monitor the daily evolution of PM10, (i.e., particulate matter with aerodynamic
diameters that are generally 10 µm and smaller) in terms of mass concentration and average
size distribution.

The aim of this work is to present CleAir and to apply it in a real environment, the Napoleonic
Museum in Rome. For this purpose, we have performed both daily and weekly monitoring campaigns
and SEM/EDS (scanning electron microscope with energy dispersive X-ray spectroscopy) analysis of
the indoor PM10.

The control of environmental parameters involved in the artworks’ deterioration processes is
essential to preserve artworks and collections in museums, galleries and churches. In the last decade,
monitoring campaigns of the main environmental parameters have been becoming a common practice
to define the historic microclimate to which vulnerable objects to temperature and humidity changes
have adapted [15], because departures from historic conditions might be risky. In recent years, it has
paid to be aware of the problem represented by the atmospheric particulate deposition on artifacts in
museums [16–22].

Some investigations have shown there is a significant increase of the particles with a diameter
greater than 1 µm during the museum’s opening hours [23–26]. In this work, a study of PM10 was
carried out within the Napoleonic Museum in Rome. It is housed on the ground floor of Palazzo Primoli
(an historic building of 16th century), in the centre of Rome, at the crossing between Lungotevere Tor
di Nona and Via Giuseppe Zanardelli (Lat. 41.9◦ and Long. 12.5◦). Such an area is just the boundary of
a limited traffic zone; consequently, significant fluxes of vehicles take place right outside the opening
doors of the museum throughout the day. The museum consists of 12 rooms and preserves an important
collection of paintings, original manuscripts, Napoleonic relics and family mementos donated to
the city of Rome by Count Giuseppe Primoli, a descendant of the Bonaparte family. The museum is
mainly visited in the winter period during the morning. The number of visitors is limited, up to few
hundred per hour. Some temporary exhibitions are also scheduled during the year.

The rooms are equipped with a central heating system that was added to the original building
and consists of cast iron radiators which are switched on from November until April. A humidification
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system is always operating in many rooms, with the aim to guarantee a range of relative humidity
between 40% and 60%.

2. Methods

2.1. CleAir System

CleAir is a fully automatic sampling and measuring unit that collects PM10 on standard [2] circular
quartz fiber filters. The CleAir system measures PM10 concentration and average size distribution
by means of a spectroscopic light transmission analysis. Its scheme is shown in Figure 1. Each filter,
after being preliminary weighted [6], is held inside a Teflon box with a metallic net in order to prevent
filter deformation or breakage due to air flow [6]. An electronic control unit drives the handling
system to pick up one filter box from the virgin housing and to carry it just below the optical system.
Here, six optical fibers carry the light generated by six equivalent LEDs from the power-supply unit
down to the filter location. The six LEDs cover the spectral bands deep blue (central wavelength
455 nm), blue (c.w. 470 nm), green (c.w. 528 nm), yellow (c.w. 590 nm), amber (c.w. 617 nm) and red
(c.w. 625 nm); a reference detector monitors their light-emission stability within the power supply
unit. An optical system collects the light emerging from the fibers and focuses it onto the filter.
A photodetector records the light transmitted through the filter and sends such information to
the general control unit. Now the filter is carried to the air sampling area, just below the inlet
pipe, where a specific sealing system avoids any pressure loss from the pipe.
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Figure 1. Schema of CleAir apparatus.

Ambient air passes through a size-selective inlet at a constant flow rate of 2.3 m3/h, using
the inertial separation principle. The filter remains in such position for the sampling time and then
it is transported back to the optical unit where the spectroscopic transmission is again recorded and
processed by the control unit. Such procedure is repeated back and forth following the programmed
sampling cycle and then, at the end, the filter is discharged in the sampled filter housing. Such sampling
cycles can be fully programmed by the operator, in order to get short/long/24-h measurements upon
request. CleAir can provide several following periods of sampling of the same filter, in order to record
the daily time evolution as well as the 24-h integral according to the European regulations. CleAir can
contain enough filters to ensure up to two weeks of measurement autonomy.

2.2. Stretched Exponential Analysis

The optical attenuation is mainly governed by the Mie scattering through the filter fibers.
Truly, the process is governed by multiple scattering events due to the dense structure of the filters,
which has been investigated by several researchers in the past. A reference work on this subject was
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published by Ångström in 1929 [27], where he analyzed the light transmission through the atmosphere.
He described such transmission using a modified Beer’s law:

T = e−ABS = e−(β/λα) (1)

where ABS is the optical absorbance, β is a coefficient that describes the optical attenuation due to
the scattering, λ is the light wavelength and the α exponent is inversely proportional to the average
diameter of dust particles in air. Such description is absolutely coherent with the Rayleigh scattering
theory for which light diffraction on very small particles scales as λ−4. Such Ångström description is
regularly adopted by “aerosol research community” to characterize their measurements. In 1991
Bruce et al. [28] found that the soot (black carbon, BC) absorption scales as λ−1. It might be
the consequence of multiple scattering that enhances the absorption as well. Multiple scattering was
clearly investigated by Bohren in 1987 [29] for both non-absorbing and absorbing media. Such analysis
was adopted by Arnott et al. in 2005 [13] to describe the data from the Reno Aerosol Optics Experiment.
Such work puts together the Ångström and Bruce models factorizing the optical absorbance as the sum
of an Ångström scattering term and BC absorption. Arnott observed that the aethalometer response
depends on the amount of deposit on the filter; for this reason they limited its use until the signal
reached 75% of the initial transmission value. At that point the aethalometer changes position, letting
the light be sampled on a clean and pristine portion of the quartz sampling tape. Such procedure
monitors the initial portion of the transmission signal, where the exponential function is steeper and
consequently where the largest indetermination can be accumulated.

CleAir follows the complementary approach to sample the air for a very long period (24 h) in order
to reach an almost steady state regime for the optical transmission. On the contrary, measurements on
short sampled filters can still be performed by a suitable choice of the reference “white” transmission.

The light transmission through a highly dense scattering medium can be considered as a percolation
of photons through a porous medium. Percolation can be considered as a light relaxation inside a highly
disordered system like a quartz filter is; thus, multiple scattering regime can be expressed in terms of
a stretched exponential relationship, as a function of the wavelength λ

T = e−(Λ/λ)α

(2)

We call Λ the percolation characteristic wavelength; please note that its α-th power is just
the β parameter in the Ångström law of Equation (1). Such further factorization of the Ångström law
allows a much clearer description of the phenomenon in terms of light percolation, whose description is
usually performed in terms of the stretched exponential law [30]. It has to bear in mind that, contrarily
to the usual negative exponential trends where the slope is in the denominator of the exponent fraction,
in such a case the percolation characteristic wavelength is at the numerator of the fraction. This means
that it is proportional to the amount of deposited particulate. Unlike the atmospheric aerosols [27],
also the α exponent is now directly proportional to the average diameter of the deposited particulate
on filters, and will be here called the size parameter. The α and Λ coefficients can be determined from
wavelength-dependent transmission measurements.

2.3. CleAir Calibration

The optical linearity of CleAir was analyzed using commercial neutral density filters overlapped
to the quartz filters. Optical densities (O.D.) ranging between 0.1 and 2.0 were used. A good linearity
for both high and low transmissions was recorded as shown in Figure 2, where the fit shows a linear
regression between the measured optical absorbance and the O.D., with a coefficient of determination
R2 equals to 0.99.



Sensors 2017, 17, 2076 5 of 12
Sensors 2017, 17, 2076  5 of 12 

 

 
Figure 2. The graph shows that the optical density (O.D.) values of the calibrated neutral-density 
filters are linearly correlated with the measured values of the optical attenuation (absorbance) 
(coefficient of determination R2 = 0.99). Therefore, the optical head of CleAir maintains a good 
linearity down to light transmissions as low as 1% of the virgin filter ones. The negative absorbance 
for the lowest O.D. is a consequence of a better coupling of the input light inside each filter. The O.D., 
optical absorbance and transmission are dimensionless parameters. 

A preliminary calibration of the optical response upon deposited particles was performed 
depositing defined amounts of controlled particulate on filters, using the setup shown in Figure 3. A 
closed circuit air-flowing system withdrew calibrated amounts of silica powder (average size 5 μm) 
from a flask and let them deposit on filters kept in a special holder that homogenized the air flow in 
order to ensure a homogeneous distribution of particles. Both flask and filters were weighted before 
and after the deposition process in order to determine the exact amount of deposit. The weighting 
procedure is described in the following paragraph. 

 
Figure 3. Schema of the apparatus to deposit calibrated amounts of particles on the filters. 

Afterward, such filters were measured using the optical system of CleAir. In Figure 4, the 
optical absorbance is reported as a function of the weighted mass. From the linear fit the calibration 
coefficient has been derived, with a determination coefficient R2 of about 0.97. However it should be 
noted that the optical attenuation could depend on the nature of the deposited particulate which 
might varies from site to site. Thus, when a measuring campaign starts, a further calibration between 
the gravimetric and the optical masses should be performed in situ to increase the instrument 
sensitivity. After the second calibration the sensitivity is indeed enhanced, reaching an 
indetermination on the measurement of about 1–2%. 

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 0.5 1.0 1.5 2.0

1 0.32 0.1 0.032 0.01
TRANSMISSION

O.D.

O
PT

IC
AL

 A
BS

O
RB

AN
CE

Figure 2. The graph shows that the optical density (O.D.) values of the calibrated neutral-density filters
are linearly correlated with the measured values of the optical attenuation (absorbance) (coefficient of
determination R2 = 0.99). Therefore, the optical head of CleAir maintains a good linearity down to light
transmissions as low as 1% of the virgin filter ones. The negative absorbance for the lowest O.D. is
a consequence of a better coupling of the input light inside each filter. The O.D., optical absorbance
and transmission are dimensionless parameters.

A preliminary calibration of the optical response upon deposited particles was performed
depositing defined amounts of controlled particulate on filters, using the setup shown in Figure 3.
A closed circuit air-flowing system withdrew calibrated amounts of silica powder (average size 5 µm)
from a flask and let them deposit on filters kept in a special holder that homogenized the air flow
in order to ensure a homogeneous distribution of particles. Both flask and filters were weighted before
and after the deposition process in order to determine the exact amount of deposit. The weighting
procedure is described in the following paragraph.
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Figure 3. Schema of the apparatus to deposit calibrated amounts of particles on the filters.

Afterward, such filters were measured using the optical system of CleAir. In Figure 4, the optical
absorbance is reported as a function of the weighted mass. From the linear fit the calibration coefficient
has been derived, with a determination coefficient R2 of about 0.97. However it should be noted that
the optical attenuation could depend on the nature of the deposited particulate which might varies from
site to site. Thus, when a measuring campaign starts, a further calibration between the gravimetric and
the optical masses should be performed in situ to increase the instrument sensitivity. After the second
calibration the sensitivity is indeed enhanced, reaching an indetermination on the measurement of
about 1–2%.
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Figure 4. Calibration curve: optical absorbance (dimensionless parameter) vs. weighted mass.
The experimental points have a coefficient of determination as high as 0.97.

2.4. Standard Gravimetric Analysis

The optical analysis, performed on 24-hour filters, was compared with gravimetric analysis on
the same filters, in order to have a cross-check on the amount of deposited PM10. The gravimetric
measurement protocol was performed strictly according to the EN 12341:2014 standard [6],
which recommends on the type of usable filters (quartz fiber filters as large as 47 mm in diameter)
and on the handing procedure in order not to break them and lose mass. Filters were weighted before
and after sampling to determine the mass of collected PM10, which later enabled the calculation of
PM10 mass concentration. The difference between pre- and post-sampling filter weights was used to
determine the ambient air mass concentration. Before weighting, each filters were conditioned at least
for 48 h within a climate chamber with controlled temperature and relative humidity (i.e., 20 ± 1 ◦C
and 50 ± 5%). The gravimetric analysis was done on a microbalance (Mettler Toledo XSD3DU with
1 µg readability) equipped with AntiStatic Kit for the neutralization of electrostatic charge. The masses
of the individual weighing room blank filters were recorded at each weighing session, to check and
ensure constant conditions in the weighing room, and to estimate any effect affecting the mass of
the filters [8]. A final uncertainty of ±4 µg was determined for the gravimetric measurements.

2.5. Monitoring Campaigns within the Museum

The CleAir system was installed in one room close to the entrance, with a window facing Via
Giuseppe Zanardelli (Figure 5).
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Figure 5. Plan of the Napoleonic Museum: the arrow refers to the entrance while the X locates the CleAir
system. Such location was chosen to be enough internal in the museum, but relatively close to the main
entrance to be affected by external conditions.
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This room was chosen in an intermediate position between the inner rooms and the main entrance.
The one-week measurement campaigns were carried out in the period between 15 January 2016
and 15 May 2016 (Table 1), i.e., both during winter and spring seasons. Rome has a Mediterranean
climate with cool winters and warm to hot summers. Rainfall occurs mostly in winter and autumn,
with a predominance of southern and western winds.

Table 1. List of one-week measurement campaigns.

PM10 Campaigns during 2016

15–21 January 13–22 April
6–10 February 7–15 May

14–20 February

3. Results

3.1. Percolation Characteristic Wavelength

The performed optical measurements show a good linearity of the percolation characteristic
wavelength Λ to the amount of particulate mass, as shown in Figure 6. The linear fit has a R2

determination coefficient as high as 0.80. From such fit the final local calibration allows to retrieve
the deposited mass from the percolation characteristic wavelength. In Figure 7, the optical (crosses) and
gravimetric (circles) measurements are reported for the campaign held in the period 13–22 April 2016.
For both techniques, the measurement errors are delimited within the symbols. A good agreement
between optical and gravimetric measurements was found for all days but 18–19 April (Monday and
Tuesday). We believe that such discrepancy is due to the gravimetric measurements which might have
suffered a systematic error due to an incomplete drying process. In fact, the local revelation of humidity
in the air has shown a peak for those days. Thus, we might conclude that the weighting procedure of
the filters was still affected by a residual humidity that strongly increased the overall weight.
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Figure 6. Percolation characteristic wavelength as a function of the weighted mass for the whole
sampling campaign in the museum. The linear fit has a coefficient of determination R2 as high as 0.80.
Such a plot provides a fine calibration for retrieving the mass data from the optical ones.
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Figure 7. Daily PM10 concentration obtained using the optical (crosses) and the gravimetric (circles)
techniques, for the campaign 13–22 April 2016. The two point sets almost overlap everywhere but
on 18–19 April. From the environmental monitoring, it was pointed out that such two days had
an anomalous amount of humidity that we believe affected the gravimetric measurements but not
the optical ones.

Please note that the lowest amount of dust was detected on 17 April (Figure 7), which was Sunday
and the museum was closed.

3.2. Daily Evolution of the PM10 Concentration

CleAir was also set to sample air over 4 h, to optically measure the collected PM10 and then to
sample again on the same filter, starting from midnight until the following midnight. At the end of
the 24-h cycle, each filter was measured again and then stored to be replaced by a new one. In this
way, the 24-h cycle was divided into six intermediate testing groups providing the daily evolution
as well as the 24-h daily data. Typical daily trend distribution of the dust on air is reported in
Figure 8 for the April monitoring campaign. Almost every day, except on Sunday, the largest deposit
was recorded during the time slot between 08:00 and 12:00, and then gradually decreases starting
from the following hours. This was correlated with the typical daily procedures in the museum,
which report a large circulation of the internal and cleaning staff as well as the visitor flow, which is
mainly concentrated during the morning, reaching several hundred units per hour. During Sunday
(grey strip in Figure 8), the morning peak is absent and the particulate concentration remains practically
unchanged throughout the whole day. Moreover, in the first part of the days (00:00–08:00), the amount
of dust increases from the midnight values, remains almost constant during such interval (see the dotted
circle in Figure 8).

This occurs because during this time interval, the internal air recirculation and heating system is
turned on, increasing the convective flows and raising up again the lightest dust already deposited or in
deposition by gravitational sedimentation. After 08:00, the dust in air increases, reaching its maximum
values in the morning time slot (08:00–12:00). Such behavior points out an anthropic influence on
the dust recirculation of the indoor air.
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Figure 8. Weekly campaign on 13–22 April 2016. The daily evolution (sampled every 4 h) of
the retrieved PM10 concentration points out a recurrent behaviour of the deposit, present in all
the open days. Both effects describe anthropic influences on the quality of the air inside the museum.
The very small fluctuation in the PM10 concentration was observed on Sunday.

3.3. The Size Parameter α

In all measurement campaigns, the α value varies very little, from 0.9 up to 1.1, when it is reported
as a function of the percolation wavelength Λ as shown in Figure 9.
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Figure 9. Correlation between the α size and the percolation wavelength. The small dispersion
of the measures proves that the PM10 concentration in the museum varied very little with a small
dispersion in size.

The very small dispersion of all the points proves that the PM10 in the museum air had small
variations both in concentration and average size. Regarding the size, the analysis of the filters at
the electron microscope allowed to characterize the real deposit of particles.

3.4. SEM/EDS Analysis

SEM/EDS analysis was performed using a dual-beam high-resolution field emission
scanning electron microscope (model Carl Zeiss Auriga 405) [31,32] with resolution of 1 nm
equipped with a Bruker QUANTAX energy dispersive X-ray spectroscopy probe. All the filter
images were analyzed using particle-counting software to cross-check the visible concentration
as well as the average diameter.
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From dimensional tests on SEM images (Figure 10), we have found that the average size of
the collected particulate matter is ≤3 µm; particles of larger aerodynamic diameters (5 µm and 10 µm)
are less abundant or even rare.
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Figure 10. SEM image of one filter with particles. Particle size analysis from SEM images pointed out
that the average particle dimension was lower than 3 µm. Large particles were rare in museum air.

From Figure 10 it is possible to determine that the size distribution is not wide; the particles look
like being almost mono-dispersed around the average size of 3 µm, as also revealed by the optical
analysis in Figure 9 where the α and Λ parameters seem to be very much concentrated in a small area
of the graph.

4. Conclusions

The CleAir fully automatic sampling and measuring unit was presented. CleAir is based on
the spectroscopic analysis of the light transmission through quartz filters. Contrarily to the similar
aethalometric measurements, CleAir works in a static condition where the filter have been stabilized
in terms of particle distribution inside. This regime ensures no measurement artifacts and more
precise tests. The data have been analysed in terms of light percolation through the filters by means
of a stretched exponential. Such description provides a very good correlation with the gravimetric
tests together with a much simpler formalism without the loss of scientific rigor. The specific tests
performed within the Napoleonic Museum in Rome allowed us to point out anomalies in the daily
and weekly air distribution, which is important feedback when considering management strategies.
However, from the specific tests, it was found that the average concentration of PM10 in the museum
remained fairly stable during all monitoring campaigns, with a mean value of 5.7 µg/m3 (standard
deviation of 2.5 µg/m3)—always significantly lower than the standard threshold for outdoor PM10
(50 µg/m3). In particular, although it was used an aerodynamic inlet for PM10, the particulate matter
detected was of a very small size, about 2.5–3.0 µm in diameter, characteristic of a PM2.5.

The CleAir system, thanks to the double measurement technologies, optical scattering spectroscopy
and the use of gravimetrics, is very versatile and follows the required European standards for particle
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pollution monitoring. The comparison of the two techniques in the museum campaigns has ensured
a constant measurement, with high accuracy, for both the absolute amount of particulate deposited
and its granulometric composition. The data have also been confirmed by ex-post SEM measurements.
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19. Grau-Bové, J.; Strlič, M. Fine particulate matter in indoor cultural heritage: A literature review. Herit. Sci.
2013, 1, 1–17. [CrossRef]
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